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Abstract. Given a map T : X → X on a set X we examine under what con-

ditions there is a separable metrizable or an hereditarily Lindelöf or a Lindelöf
topology on X with respect to which T is a continuous map. For separable

metrizable and hereditarily Lindelöf, it turns out that there is a such a topology

precisely when the cardinality ofX is no greater than the cardinality of the con-
tinuum. We go onto prove that there is a Lindelöf topology on X with respect

to which T is continuous, if either Tc+
(X) = Tc++1(X) 6= ∅ or Tα(X) = ∅

for some α < c+, where Tα+1(X) = T
(
Tα(X)

)
and Tλ(X) =

⋂
α<λ T

α(X)

for any ordinals α and λ a limit.

1. Introduction

If T : X → X is a function on a non-empty set X and P is some topological
property, then a fundamental and natural question asks whether one can endow X
with a topology that satisfies P and with respect to which T is continuous.

This question can be traced back to Ellis [1], who asks whether there is a non-
discrete topology on X with respect to which T is continuous. De Groot and de
Vries [4] provide a complete answer showing that, if X is infinite, there is always
a non-discrete metrizable topology on X with respect to which T is continuous.
They go on to prove that, provided X has at most c many elements, X may be
identified with a subset of the Cantor set and that, if T is one-to-one, then it it may
be taken to be a homeomorphism. They mention that, even assuming appropriate
cardinality restrictions, it is impossible in general to make X compact, metric,
though de Vries [11] proves that, if T is a bijection, the Continuum Hypothesis is
equivalent to the statement that there is a compact, metric topology on X with
respect to which T is a homeomorphism provided X has cardinality c.

The Banach Fixed Point Theorem implies that if X is a compact metric space
and T : X → X is a contraction, then

⋂
n∈N T

n(X) = {x} for some unique fixed
point x of T . In a question related to Ellis’s, de Groot asked whether there is a
converse in the following sense: if T : X → X, |X| = c and

⋂
n∈N T

n(X) = {x}
for some x, is there a compact, metric topology on X with respect to which T is
continuous? In general the compact metric case is impossible, however Janos [8]
proves that there is a totally bounded metric topology on X with respect to which
T is a contraction mapping and Iwanik, Janos and Smith [7] prove that there is
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a compact, Hausdorff topology on X with respect to which T is continuous, even
without the restriction on the cardinality of X.

In [3], the continuity of arbitrary maps in compact Hausdorff spaces (see Theorem
1.1 below) and the continuity of bijections in compact metric spaces (Theorem 1.2)
are characterized in terms of the orbit structures of the maps (see Definition 1.3
for the terminology). Iwanik [6] had earlier characterized continuity of bijections
in compact Hausdorff spaces.

Theorem 1.1. Let T : X → X. There is a compact, Hausdorff topology on X with
respect to which T is continuous if and only if

T
( ⋂
m∈N

Tm(X)
)

=
⋂
m∈N

Tm(X) 6= ∅

and either:
(1) T has, in total, at least continuum many Z-orbits or cycles; or
(2) T has both a Z-orbit and a cycle; or
(3) there are ni ∈ N, i ≤ k < ∞, such that T has an ni-cycle for each i and,

whenever T has an n-cycle, n is divisible by ni, for some i ≤ k; or
(4) the restriction of T to

⋂
m∈N T

m(X) is not one-to-one.

Theorem 1.2. Let T : X → X be a bijection. There is a compact metrizable
topology on X with respect to which T is a homeomorphism if and only if one of
the following hold.

(1) X is finite.
(2) X is countably infinite and either:

(a) T has both a Z-orbit and a cycle; or
(b) there are ni ∈ N, i ≤ k < ∞, such that T has an ni-cycle for each i

and, whenever T has an n-cycle, n is divisible by ni, for some i ≤ k.
(3) X has the cardinality of the continuum and the number of Z-orbits and the

number of n-cycles, for each n ∈ N, is finite, countably infinite, or has the
cardinality of the continuum.

In this paper, we address this question of continuity in Tychonoff, Lindelöf or
hereditarily Lindelöf spaces. To state our theorems, we make the following two
definitions.

Definition 1.3. Let T : X → X. The relation ∼ on X, defined by x ∼ y if and
only if there exist m,n ∈ N with Tm(x) = Tn(y), is an equivalence relation, whose
equivalence classes are the orbits of T .

If O is an orbit of T , then we say that:
(1) O is an n-cycle, for some n ∈ N, if there are distinct points x0, · · · , xn−1 in

O such that T (xj−1) = xj , where j is taken modulo n;
(2) O is a Z-orbit if there are distinct points {xj : j ∈ Z} ⊆ O such that

T (xj−1) = xj for all j ∈ Z;
(3) O is an N-orbit if it is neither an n-cycle for some n ∈ N, nor a Z-orbit.

Note that O is an N-orbit if and only if it is not a Z-orbit and there are distinct
points {xj : j ∈ N} ⊆ O such that T (xj) = xj+1 for all j ∈ N. If the set
S = {xj : j ∈M} witnesses that O is an n-cycle, Z-orbit or N-orbit, where M is an
appropriate indexing set, then we say that S is a spine for O. Of course that the
spine of and n-cycle is unique but spines of N- or Z-orbits need not be unique.
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Definition 1.4. Let T : X → X be a function. For any A ⊆ X, any ordinal α and
any limit ordinal λ, define Tα+1(A) = T

(
Tα(A)

)
and Tλ(A) =

⋂
α∈λ T

α(A).

We prove the following two theorems.

Theorem 1.5. Let T : X → X be a function. There is a (zero-dimensional)
Tychonoff, Lindelöf topology on X with respect to which T is continuous provided
either:

(1) T c+(X) = T c++1(X) 6= ∅; or
(2) Tα(X) = ∅ for some α < c+.

Corollary 1.6. Let T : X → X be a function. There is a (zero-dimensional)
Tychonoff Lindelöf topology on X with respect to which T is continuous provided
any of the following hold:

(1) T is a surjection;
(2) T is an injection;
(3) T is a < c-to-one function;
(4) T is a ≤ c-to-one map with at least one Z-orbit or n-cycle.

Theorem 1.7. Let T : X → X. The following are equivalent:
(1) |X| ≤ c;
(2) There is a (zero-dimensional) Hausdorff, hereditarily Lindelöf topology on

X with respect to which T is continuous;
(3) There is a (zero-dimensional) first countable, Hausdorff, Lindelöf topology

on X with respect to which T is continuous;
(4) There is a (zero-dimensional) separable metrizable topology on X with re-

spect to which T is continuous;
(5) There is a (zero-dimensional) topology on X, a homeomorphic embedding,

h, of X into the Hilbert cube [0, 1]N and a continuous function t on [0, 1]N

such that h
(
T (x)

)
= t
(
h(x)

)
.

We are left with the following question:

Question 1. Is there a map T on a set X that is not continuous with respect to
any Lindelöf topology on X?

We conjecture that the answer is yes, though so far have been unable to prove
so. In light of Theorem 1.5, we are really asking the following:

Question 2. Suppose that T c+(X) 6= T c++1(X). Is there a Tychonoff, Lindelöf
topology on X with respect to which T is continuous?

Question 3. Suppose that ||p|| = c+ (see Definition 3.1). Is there a Lindelöf
topology on T−k(p), for each k > 0, such that the restriction of T from T−(k+1)(p)
to T−k(p) is continuous?

Question 4. Suppose that T c+(X) = ∅ but that Tα(X) 6= ∅ for any α ∈ c+. Is
there a Lindelöf topology on X with respect to which T is continuous?

Our notation and terminology are standard as found in [2] and [10]. The paper
is organized as follows. In Section 2 we prove Theorem 1.7. The construction of
the Lindelöf topology in the proof follows from the construction of the Lindelöf
topology in the proof of Theorem 1.5, but the argument given in this section is
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far more direct and geometric. The proof of Theorem 1.5 is somewhat involved,
although we have taken some pains to simplify the exposition as far as possible.
In Section 3 we discuss a natural tree structure on

⋃
0≤k T

−k(x), for each x ∈ X,
and an associated rank. If X is Lindelöf and Tychonoff, then for each x ∈ X and
0 ≤ k, we know that the set T−k(x) is Lindelöf. In Section 4, we use the rank of
points of X, to put as appropriate topology on each orbit. Specifically we construct
the topology on T−(k+1)(x) from the topology on T−k(x) using the ranks of points
to keep track of which points should act as limit points, thus ensuring continuity
and the Lindelöf property. In the final section, we topologize X by considering the
various combinations of orbits, thus completing the proof of 1.5.

2. Continuity in Separable Metrizable and Hereditarily Lindelöf
Spaces

De Groot (see [5]) proved that every hereditarily Lindelöf space has cardinality
at most c. It turns out that this is the only condition required for there to be
an hereditarily Lindelöf topology making a given self map on a set continuous. A
version of the proof of (1) implies (5) in Theorem 1.7 essentially follows from the
proof of case (1) of Theorem 1.5, but the following argument is more natural.

Proof of Theorem 1.7. Clearly (5) implies (4) and (4) implies both (3) and (2).
Arhangel’skii proved that first countable, Hausdorff Lindelöf spaces have cardinality
at most c and de Groot proved that Hausdorff hereditarily Lindelöf spaces also have
cardinality at most c [5], so both (3) and (2) imply (1).

Assume, then, that T : X → X and that |X| ≤ c. Let I = [0, 1] and let
∂ = IN − (0, 1)N. Consider the three cases:

(a) T consists of just n-orbits, for some n ∈ N,
(b) T consists of just Z-orbits, or
(c) T consists of just N-orbits.

It suffices to show that, in each case, X can be embedded as a subset of IN in such
a way that the action of T corresponds to the restriction (to some subset) of a
continuous function on IN that fixes ∂. (In fact we embed X into [−2, 2]N instead
of IN, which is clearly equivalent.)

To see this, suppose that for each j ∈ N, tj is any continuous continuous function
from IN to itself that fixes ∂ = IN− (0, 1)N. Let {Hj : j ∈ N} be a sequence of pair-
wise disjoint closed subsets of IN, each homeomorphic to IN (by the homeomorphism
hj : Hj → IN), such that the diameter of diam(Hj) → 0 and Hj → (0, 0, . . . ) as
j →∞ (by which we mean that if xj is any point of Hj , j ∈ N, then xj → (0, 0, . . . )
as j → ∞). Let sj = h−1

j ◦ tj ◦ hj denote the continuous function from Hj to it-
self that corresponds to the action of tj . Clearly, there is a continuous function
s : IN → IN, with the property that the restriction of s to Hj , s �Hj is equal to sj ,
for each j.

Since we only need to embed into a subset of [−2, 2]N, we can further assume
that: there are no N-orbits (since an N -orbit can be considered to be a subset of
a Z-orbit; that T−1(x) has cardinality c for each x ∈ X; and that T has c many
Z-orbits (or c many n-cycles).
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Let T denote the unit circle in the plane and let φ be a rotation of the circle.
Let B = [−1, 1]2 × [0, 1]× IN and consider the subspace

B′ = T× {0} × {(0, 0, . . . )} ∪
⋃
1≤n

T×
{

1
n

}
×
{

(r1, . . . , rn, 0, 0 . . . ) : ri ∈ I
}
.

We define a continuous function Φ : B′ → B′ as follows:
(1) for x = (z, 0, 0, 0, . . . ), Φ(x) =

(
φ(z), 0, 0, 0, . . .

)
;

(2) for x = (z, 1, r1, 0, . . . ), Φ(x) =
(
φ(z), 0, 0, . . . );

(3) for 1 < n and x = (z, 1/n, r1, . . . , rn, 0, . . . ),
Φ(x) =

(
φ(z), 1/(n− 1), r1, . . . , rn−1, 0, . . .

)
Φ is continuous and extends to a continuous function on [−2, 2]w which fixes
[−2, 2]N − (−2, 2)N. Now if φ is an irrational rotation of T, then Φ has c many
Z-orbits and if φ is a rational rotation of order n ∈ N, then Φ has c many n-cycles.
In any case Φ has the property that Φ−1(x) has cardinality c for each x ∈ B′. By
choosing an appropriate zero-dimensional subset closed under the action of Φ we
are done (note that we do not require that this subset is closed). �

3. Self-maps and Well-founded Trees

In this section, we describe a natural ordinal invariant, the rank of x ∈ X under
T , for points under the action of T . We use the rank in Section 4, which corresponds
to the rank of well-founded trees from descriptive set-theory (see, for example, [9]),
to index our construction of a Lindelöf topology. Our idea is, roughly, that we will
only declare a point x, say, to be a limit point of a set of points A, if the rank of
each y ∈ A is no greater than the rank of x. This will ensure, via Lemma 3.2, that
there are ‘enough’ points in T−1(x) to act as limit points for T−1(A).

For notational convenience, we let T 0(p) = p or {p} depending on the context.

Definition 3.1. Suppose that T : X → X is a function. The rank of x ∈ X under
T is

||x|| =

{
α if x ∈ Tα(X) r Tα+1(X)
∞ if x ∈

⋂
α∈On T

α(X).

For each x ∈ X, and each y, z ∈
⋃

0≤k T
−k(x), define y Cx z if and only if

T j(z) = y for some j > 0.

For each x ∈ X,
(⋃

0≤k T
−k(x),Cx

)
forms a well-founded tree of height ||x|| if

and only if ||x|| <∞ (see [9, 25.5] for more on well-founded trees). For our purposes
it is sufficient to see that, if ||x|| < ||y||, then there is an order-preserving map from⋃

0≤k T
−k(x) to

⋃
0≤k T

−k(y).

Lemma 3.2. Let T : X → X and let x ∈ X.
(1) ||x|| =∞ if and only if there exists a sequence xn, n = 0, 1, 2, . . . , such that

x0 = x and T (xn+1) = xn. In particular, if x is a point on the spine of a
Z-orbit or of an n-cycle, then ||x|| =∞ and, if ||x|| =∞, then x is not in
an N-orbit.

(2) If ||x|| ≤ ||y||, then there is an order-preserving map

fxy :
( ⋃

0≤k

T−k(x),Cx

)
→
( ⋃

0≤k

T−k(y),Cy

)
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such that fxy
(
T−k(x)

)
⊆ T−k(y) for all k ∈ N.

Proof. Clearly, if there is a sequence of points xn, n ∈ N, such that x0 = x and
T (xn+1) = xn, then x0 ∈ Tα(X) for all ordinals α, and so ||x|| = ∞. Suppose,
then, that ||x|| = ∞, i.e. that x ∈ Tα(X) for all ordinals α. If ||y|| < ∞ for
each y ∈ T−1(x), then ||x|| = sup{||y|| + 1 : y ∈ T−1(y)} < ∞, so there is some
x1 ∈ T−1(x) with ||x1|| = ∞. It follows that there is an infinite sequence xn with
x0 = x, and xn = T (xn+1). Hence (1) follows.

For (2), following [9, 25.6]: If ||y|| = ∞, then by (1), there is some sequence of
points yk, k = 0, 1, 2, . . . , such that y0 = y and T (yk+1) = yk. In this case, define
fxy(z) = yk, if and only if z ∈ T−k(x). If ||y|| < ∞, then we argue by induction.
If z ∈ T−1(x), then ||z|| < ||x|| ≤ ||y||, so that there is some yz ∈ T−1(y) such
that ||z|| ≤ ||yz||. Let fz be an order-preserving map from

(⋃
0≤k T

−k(z),Cz
)

to(⋃
0≤k T

−k(yz),Cyz
)

such that fz
(
T−k(z)

)
⊆ T−k(yz) for all k ∈ N. Define

fxy(w) =

{
y if w = x,

fz(w) if w ∈
⋃

0≤k T
−k(z), for some z ∈ T−1(x).

Since
⋃

0≤k T
−k(z) ∩

⋃
0≤k T

−k(z′) = ∅ for any distinct z and z′ in T−1(x), fxy is
well-defined and we are done. �

Lemma 3.3. Suppose that T : X → X is a function.

(1) The following are equivalent.
(a) T c+(X) = T c++1(X);
(b) for all x ∈ X, either ||x|| < c+ or ||x|| =∞;
(c) for all x ∈ X there is a subset Dx ⊆ T−1(x) such that

(i) |Dx| ≤ c and
(ii) for each z ∈ T−1(x) there is some yz ∈ Dx such that ||z|| ≤
||yz||.

(2) Let T c+(X) = T c++1(X). Let x ∈ X and let Dx be s subset of T−1(x)
satisfying (1c). Suppose that y ∈ Dx and that Dx − {y} does not satisfy
(1c). Then either
(a) ||y|| =∞, so that ||x|| =∞, or
(b) there is a subset D′x of T−1(x), which does not contain y but does

satisfy (1c).
(3) If T c+(X) = T c++1(X) 6= ∅, then X has a Z-orbit or an n-cycle for some

n ∈ N.
(4) If Tα(X) = ∅ for any ordinal α, then X consists solely of N-orbits.

Proof. For (1): To see that (a) implies (b), suppose that T c+(X) = T c++1(X)
but that some x ∈ X has c+ ≤ ||x|| < ∞. Then, without loss of generality,
||x|| = c+ (if not then some point of

⋃
0≤n T

−n(x) has rank c+). But then x ∈
T c+(X)− T c++1(X), which is a contradiction.

Suppose that (b) holds. If ||x|| = ∞, then there is some y ∈ T−1(x) such that
||y|| = ∞, so that we can let Dx = {y}. On the other hand, ||x|| < c+, then the
set of ordinals

{
||y|| : y ∈ T−1(x)

}
has cardinality ≤ c and we see that (c) holds by

Lemma 3.2.
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To see that (a) follows from (c), suppose that T c+(X) 6= T c++1(X), so that there
is a point x such that ||x|| = c+, in which case sup

{
||y|| : y ∈ T−1(x)

}
= c+. Since

c+ has cofinality strictly greater than c, no such subset Dx can exist.
For (2): Suppose that Dx and y are as stated and suppose that ||y|| 6= ∞, so

that ||y|| < c+. Note that T−1(x) 6= {y}, since otherwise Dx − {y} = ∅ vacuously
satisfies (1c). Let Z be the set of all z ∈ T−1(x) for which there is no z′ ∈ Dx−{y}
with the property that ||z|| ≤ ||z′||. This implies that for each z ∈ Z, ||z|| ≤ ||y||.
Since ||y|| < c+, ||y|| has cofinality at most c. But then there is a subset Z ′ of Z
of cardinality at most c with the property that for all z ∈ Z there is some z′ ∈ Z ′
such that ||z|| ≤ ||z′|| ≤ ||y||. Setting D′x = (Dx ∪ Z ′)− {y}, we are done.

(3) and (4) follow from (1) of Lemma 3.2, since if T c+(X) = T c++1(X) 6= ∅,
||x|| =∞ for every x ∈ T c+(X). �

4. Putting a Topology on
⋃
k∈N T

−k(p)

Let C denote a Cantor set in [0, 1] and for this section let us say that (τ,≺) is
an augmented graph provided:

(1) τ has a unique top element tτ ;
(2) mτ = max{m : there is a branch in τ of length m} <∞
(3) there is an nτ ∈ N such that each t ∈ τ is associated with a natural number

0 < n(t) ≤ nτ ;
(4) if s ≺ t, then n(t) ≤ n(s);
(5) for each s ≺ t, there is a surjective projection mapping πst : Cn(s) → Cn(t)

and that if r ≺ s ≺ t then πrt = πst ◦ πrs.
For any F ⊆ τ , let ↓ F = {s ∈ τ : s � t for some t ∈ F}.
Let Zτ =

⋃
t∈τ Cn(t)×{t}. For each s ∈ τ , let Bs =

⋃
t�s Cn(t)×{t}. For r ∈ Cn

and j ∈ N, let Bj(r) denote the 1/2j-ball about r. For any (r, t) ∈ Cn(t) × {t},
j ∈ N and finite F ⊆ {s ∈ τ : s ≺ t}, let

B(r, t, j, F ) =
((
Bj(r)× {t}

)
∪
⋃
s≺t

π−1
st

(
Bj(r)

)
× {s}

)
\
( ⋃
s∈F

Bs

)
.

Let Tτ be the topology on Zτ that is generated by the collection of all such sets
B(r, t, j, F ).

Lemma 4.1. (Zτ , Tτ ) is a compact, zero-dimensional space. Moreover, if Y is a
subset of Zτ with the property that for every (r, s) ∈ Y and s ≺ t, πst(r, s) ∈ Y ,
then Y is Lindelöf.

Proof. Zero-dimensionality follows since each Bj(r) is a clopen set.
For each t ∈ τ , let ρ(t) denote the length of the longest branch below t, so

that ρ(t) ≤ ρ(tτ ) = mτ . To see that Zτ is compact, note first that each subspace
Cn(t) × {t} is homeomorphic to the usual Euclidean space Cn(t). In particular, for
any open cover of Zτ by basic open subsets, there is a finite subcover of Cn(tτ )×{tτ},
{B(ri, tτ , j, Fi) : i ≤ m}. This cover must cover all of Zτ except for, possibly, the
sets Bs, s ∈ Fi for some i ≤ m. Since each Cn(s)×{s} is compact and ρ(s) < ρ(tτ ),
we may repeat this argument a finite number of times to obtain a finite subcover
of Zτ .

Suppose then that Y is a subspace of Zτ with the property that whenever (r, s) ∈
Y and s ≺ t, then (πst(r), t) ∈ Y . Note that each subset Cn(t) × {t} of Zτ is
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hereditarily Lindelöf. Let U be a cover of Y and let Yt = Y ∩
(
Cn(t)×{t}

)
for each

t ∈ τ .
Since Ytτ is Lindelöf, it has a countable cover {Utτ ,i : i ∈ N} ⊆ U . Since

(πstτ (r), tτ ) is in Ytτ whenever (r, s) ∈ Y , {Utτ ,i : i ∈ N} covers all but countably
many of the sets Yt. Let T0 = {tτ} and let t ∈ T1 if and only if Yt is not covered
by {Ui : i ∈ N}. By the definition of the topology on Zτ , if t ∈ T1, then t ≺ tτ .

As for Ytτ , for each t ∈ T1, there is a countable cover {Ut,i : i ∈ N} ⊆ U of Yt.
Since (πst(r), t) ∈ Y , whenever (r, s) ∈ Y and s ≺ t, {Ut,i : i ∈ N} covers all but
countably many Ys for which s ≺ t. Let s ∈ T2 if and only if Ys is not covered
by the countable collection of open sets {Ut,i, i ∈ N, t ∈ T0 ∪ T1}, so that T2 is a
countable set.

Repeating this argument, we obtain a series of countable sets Tj and countable
collections {Ut,i : i ∈ N} ⊆ U , for each t ∈ Tj such that, {Ut,i : i ∈ N, t ∈
T0 ∪ · · · ∪ Tj} covers all of Y except for, possibly,

⋃
s∈Tj+1

Ys. By construction, if
s ∈ Tj+1, then s ≺ t for some t ∈ Tj . Since the maximum length of each path
through τ is mτ , Tmτ is empty and, therefore,

{
Ut,i : i ∈ N, t ∈

⋃
j≤mτ Tj

}
is a

countable subcover of U . �

For each non-spine point p such that T (p) is on a spine, we identify T−k(p) with
a Lindelöf subset of Zτ , for some augmented graph τ , so that the action of T from
T−k(p) to T−k+1(p) is continuous.

Lemma 4.2. Let T : X → X and let O be an orbit of T with spine S. Let s ∈ S
and let p ∈ T−1(s)− S. Suppose that for every x ∈

⋃
0≤k T

−k(p) there is a subset
Dx ⊆ T−1(x) such that

(1) |Dx| ≤ c and
(2) for each z ∈ T−1(x), there is some yxz ∈ Dx such that ||z|| ≤ ||yxz||.

Then for each k ≥ 0 there is a (zero-dimensional) Tychonoff Lindelöf topology
Tk on T−k(p) with respect to which the action of T from T−k−1(p) to T−k(p) is
continuous.

Proof. For each k ≥ 0, we will embed T−k(p) as a subset of some Zτk for some
augmented graph (τk,≺k). To simplify the notation, once it has been embedded,
we will often refer to T−k(p) as a subset of Zτk , referring to points of T−k(p) as
points of Zτk . We will further ensure that for any x = (r, s) ∈ T−k(p) and s ≺k t,
(πst(r), t) ∈ T−k(p) (so that Claim 4.1 is satisfied) and ||(r, s)|| ≤ ||(πst(r), t)|| (so
that the construction can continue).

For any finite sequences r = (r1, . . . , rn) and s = (s1, . . . , sm), let r as be the
concatenation (r1, . . . , rn, s1, . . . , sm)). If s = (s1), we may write r as1 instead of
r a(s1).

Let κ = |X|. Clearly {p} = Z0, where 0 here denotes the one point graph which is
trivially augmented. Now consider T−1(p). Let τ1 = {tα : α ∈ κ} be the augmented
graph with order tα ≺1 tβ if and only if α 6= 0 = β (so that tτ1 = t0), n(t) = 1 for all
t ∈ τ1, and πst the identity on C. We identify T−1(p) with a subset of Zτ1 as follows.
Let Dp be the set furnished by the statement of the lemma with the property that
for each z ∈ T−1(p), there is some ypz ∈ Dp such that ||z|| ≤ ||ypz||. For each
z ∈ T−1(p)−Dp, fix such a ypz. By Lemma 3.2, there is an order preserving map
opz from

⋃
0≤k T

−k(z) to
⋃

0≤k T
−k(ypz). Identify each y ∈ Dp uniquely with a

point (ry, t0) ∈ Zτ1 , where ry ∈ C, and identify each z ∈ T−1(p) − Dp uniquely
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with (rypz , tα) for some 0 < α ∈ κ. By Claim 4.1, T−1(p), regarded as a subspace
of Zτ1 is Lindelöf, since for each z = (r, tα) ∈ T−1(p), (πtαt0(r), t0) = (r, t0) is in
T−1(p). Notice also that ||z|| ≤ ||(πtα,t0(r), t0)||. Clearly the restriction of the map
T from T−1(p) to {p} is continuous. Moreover mτ1 = 2.

Suppose now that, for k > 1, we have embedded T−k(p) as a subset of Zτk for
some augmented graph τk with mτk = k+ 1 in such a way that for any s ≺k t ∈ τk
and any point (r, s) ∈ T−k(p), (πst(r), t) ∈ T−k(p), ||(r, s)|| ≤ ||(πst(r), t)|| and the
restriction of T to T−k(p) is a continuous function to T−k+1(p).

We define a new augmented graph τk+1 from τk. Let τk+1 = τk × κ and define
(s, α) ≺k+1 (t, β) if and only if either s ≺k t and β = 0 or s = t, α 6= 0 = β.
(Diagrammatically, to obtain τk+1 from τk, re-label each node s ∈ τ as (s, 0) and
then add new nodes (s, α) for each α ∈ κ below the node (s, 0)). Then tτk+1 =
(tτ , 0) is the top element of τk+1 and every branch of τk+1 has length at most
mτk + 1 = k+ 2. For each (s, α) ∈ τk+1, let #(s, α) denote the number of elements
of {(t, β) : (s, α) �k (t, β)} for which β = 0 and define n(s, α) = n(s) + #(s, α).
Clearly #(s, α)) ≤ mτk+1 so that n(tτk+1) ≤ n(tτk) + mτk+1 and n(t, β) ≤ n(s, α),
whenever (s, α) ≺k+1 (t, β).

Notice also that if (s, α) ≺ (t, β) is the immediate ≺k+1-predecessor of (t, β),
then either

(1) s = t and α 6= 0 = β, in which case n(s, β) = n(t, α), or
(2) s is the immediate ≺k-predecessor of t and α = β = 0, in which case

#(s, α) = #(t, β) + 1 and n(s, α) = n(t, β) + 1 = n(t) + #(t, β) + 1.
In Case (1), define π(s,α)(t,β) to be the identity from Cn(s,α) = Cn(t,β) to itself. In
Case (2), define π(s,α)(t,β) : Cn(s,α) → Cn(t,β) by

π(s,α)(t,β)

(
r1, . . . , rn(s), rn(s)+1, . . . , rn(s)+#(s,α)

)
=πst(r1, . . . , rn(s)) a(rn(s)+1, . . . , rn(s)+#(t,β)

)
.

So the image of a point r ∈ Cn(sα) under π(s,α)(t,β) consists of the image of the first
n(s) coordinates under the map πst followed by the first #(s, α)− 1 = #(t, β) co-
ordinates of the remaining #(s, α) coordinates of r. Since there is a finite sequence
of immediate predecessors between any (s, α) ≺k+1 (t, β), we can define π(s,α)(t,β)

by composing a finite number of such maps.

Claim. The map

Π :Zτk+1 → Zτk(
(r1, . . . , rn(t,α)), (t, α)

)
7→
(
(r1, . . . , rn(t)), t

)
is continuous

Proof. Recall that for s ∈ τk, Bs =
⋃
t�ks Cn(t) × {t} and that for r ∈ Cn and

j ∈ N, Bj(r) is the 1/2j-ball about r. For any (r, t) ∈ Zτk , j ∈ N and finite
F ⊆ {s ∈ τk : s ≺k t},

B(r, t, j, F ) =
((
Bj(r)× {t}

)
∪
⋃
s≺kt

π−1
st

(
Bj(r)

)
× {s}

)
\
( ⋃
s∈F

Bs

)
is a basic open set in Zτk . Note form (1) above that n(s, α) = n(s, 0) for all s ≺k t.

Now Π−1(Bj(r) × {t}) =
⋃
α∈κBj(r) × Cn(t,0)−n(t) × {(t, α)}. Moreover, if

s ≺k t, then πst(Bj(r)) = Bj(r) × Cn(s)−n(t) so that Π−1
(
π−1
st

(
Bj(r)

)
× {s}

)
=
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α∈κBj(r) × Cn(s,0)−n(t) × {(s, α)}. By the definition of ≺k+1, though, {(t, α) :

α ∈ κ} ∪ {(s, α) : α ∈ κ, s ≺k t} = {(t, 0)} ∪ {(s, β) : (s, β) ≺k+1 (t, 0)}. It follows
that

Π−1

((
Bj(r)× {t}

)
∪
⋃
s≺kt

π−1
st

(
Bj(r)

)
× {s}

)
=
(
Bj(r)× Cn(t,0)−n(t) × {(t, 0)}

)
∪

⋃
(s,α)≺k+1(t,0)

π−1
(s,α)(t,0)

(
Bj(r)× Cn(t,0)−n(t)

)
× {(s, α)}

Also

Π−1(Bs) =
⋃
u�ks

Π−1(Cn(u) × {u})

=
⋃
u�ks

⋃
α∈κ

Cn(u,α) × {(u, α)}

=
⋃

(u,α)�k+1(s,0)

Cn(u,α) × {(u, α)},

which implies that Π−1

(⋃
s∈F Bs

)
=
⋃

(s,0)∈F×{0}B(s,0). It follows that the set

Π−1
(
B(r, t, j, F )

)
is open in Zτk+1 . �

It remains to embed T−(k+1)(p) into Zτk+1 . Consider first a point x = (r, tτk) ∈
T−k(p). Let Dx be the set furnished by the statement of the lemma with the
property that for each z ∈ T−1(x) there is some yxz ∈ Dx such that ||z|| ≤ ||yxz||.
For each z ∈ T−1(x) − Dx, fix such a yxz. For each y ∈ Dx, pick a unique
ry ∈ C and identify y with the point (r ary, (tτk , 0)) = (r ary, ττk+1). Identify each
z ∈ T−1(x)−Dx uniquely with (r aryxz , (tτk , α)) for some α ∈ κ.

Now suppose that xi = (ri, ti) is a sequence of points from T−k(p), for each
0 ≤ i ≤ m, such that

(1) t0 = tτk ,
(2) ti+1 is the immediate ≺k-predecessor of ti,
(3) πti+1ti(ri+1) = ri,
(4) the set T−1(xi) has been embedded into Zτk+1 for each i < m

(5) for each i < m, the set Dxi has been identified with a subset of Cn(ti,0) ×
{ti, 0} in Zτk+1 .

We know that ||xm|| ≤ ||xm−1||, which implies that there is an order preserving
map o from

⋃
j≥0 T

j(xm) to
⋃
j≥0 T

j(xm−1) that, in particular, maps T−1(xm)
to T−1(xm−1). For any y ∈ Dxm , then, o(y) = (r, (tm−1, α)) ∈ T−1(xm−1). By
construction (as π(tm−1,α)(tm−1,0) is the identity), (π(tm−1,α)(tm−1,0)(r), (tm−1, 0)) =
(r, (tm−1, 0)) ∈ Dxm−1 and ||(r, (tm−1, α))|| ≤ ||(r, (tm−1, 0))||, so that ||y|| ≤
||(r, (tm−1, 0))||. Hence for each y ∈ Dxm , we can fix some wy = (ry, (tm−1, 0)y) ∈
Dxm−1 such that ||y|| ≤ ||wy||. Since |Dxm | ≤ c, we can associate a unique
rwy ∈ C to each y and w for which wy = w. Given y ∈ Dxm and wy =
(ry, (tm−1, 0)y) ∈ Dxm−1 , identify y with the point (ry arwy, (tm, 0)). Now for
each z ∈ T−1(xm) − Dxm , fix some yxmz = (rxmz, (tm, 0)) ∈ Dxm such that
||z|| ≤ ||yxm || and associate z uniquely with (rxmz, (tm, α)) for some α ∈ κ. This
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embedding ensures that for any s ≺k+1 t ∈ τk+1 and any point (r, s) ∈ T−k−1(p),
(πst(r), t) ∈ T−k−1(p), ||(r, s)|| ≤ ||(πst(r), t)||. Moreover, by construction, for any
(r, t) ∈ Zτk+1 , T (r, t) = Π(r, t) so that T �T−k−1(p) is continuous as required. �

Exactly the same argument can be used to prove the following lemma dealing
with N-orbits. We recall that T−0(x) = {x} and note that the index α is introduced
here purely for notational consistency in Section 5.

Lemma 4.3. Let T : X → X and let Nα be an N-orbit of T with spine {xα,n : 0 ≤
n} chosen so that T−1(xα,0) = ∅. Let Sα,0,0 = {xα,0} and Sα,0,k = ∅ for all 0 < k,
and let

Sα,n,k =

{
{xα,n} k = 0
T−k(xα,n) r T−(k−1)(xα,n−1) 0 < k,

for all 0 < n. Suppose that, for every x ∈ N , there is a subset Dx ⊆ T−1(x) such
that

(1) |Dx| ≤ c and
(2) for each z ∈ T−1(x), there is some yxz ∈ Dx such that ||z|| ≤ ||yxz||.

Then for each n and k in N, there is a (zero-dimensional) Tychonoff Lindelöf
topology Tα,n,k on Sα,n,k with respect to which the action of T from Sα,n,k+1 to
Sα,n,k is continuous.

Proof. Note that Nα =
⋃
n,k∈N Sα,n,k. Since N is an N-orbit, by Lemma 3.3,

||x|| < c+ for every x ∈ N and, moreover, for each 0 < n, we can choose Dxα,n so
that it does not contain xα,n−1. We can, therefore, apply the proof of Lemma 4.2
to the restriction of T to

(⋃
0<k T

−k(xα,n)
)

r
(⋃

0<k T
−k(xα,n−1)

)
=
⋃

0<k Sα,n,k
with p = xα,n. �

5. Combining Orbits

In this section we complete the proof part (1) of Theorem 1.5. Given the con-
structions of Section 4, we show that there is a Lindelöf topology on X provided
T c+(X) = T c++1(X) 6= ∅. In this situation, (3) of Lemma 3.3 enures that there are
Z-orbits or n-cycles. We prove the second statement of Theorem 1.5, that there is a
zero-dimensional, Lindelöf topology on X if Tα(X) = ∅ for some α ∈ c+, which im-
plies that X consists solely of N-orbits, using a modification of the proof of Lemma
4.2.

Proof of Theorem 1.5 (1). By Lemma 3.3 (3), we know that X has some combina-
tion of Z-orbit and n-cycles. Since a free union of countably many Lindelöf space is
again Lindelöf, we may assume, without loss of generality, that either (a) X consists
exclusively of Z-orbits and N-orbits or (b) X consists of m-cycles for some fixed
m ∈ N and N-orbits. In fact it is sufficient to consider the following four cases:

(ai) X consists entirely of Z-orbits;
(aii) X has one Z-orbit and all other orbits are N-orbits;
(bi) X consists entirely of m-cycles for some fixed m ∈ N;

(bii) X has one m-cycle and all other orbits are N-orbits.
Case (a): Let us assume that we have chosen appropriate spines for each orbit.

Index the Z-orbits of T as {Zα : α ∈ ζ} and denote the spine points of Zα by
{zα,n : n ∈ Z, α ∈ ζ} so that T (zα,n+1) = zα,n. Index the N-orbits of T by
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{Nα : α ∈ ν} and denote the spine points of Nα by {xα,n : n ∈ N, α ∈ ν} so that
T (xα,n+1) = xα,n and T−1(x0) = ∅

By Lemmas 3.3 and 4.2, for each non-spine point p ∈ T−1(zα,n) and for each
k ≥ 0 there is a (zero-dimensional) Lindelöf topology Tp,k on T−k(p) with respect
to which the action of T from T−k−1(p) to T−k(p) is continuous. Recall we let
T−0(x) = {x} and Tx,0 =

{
∅, {x}

}
. Define Sα,l,k = {xα,n}, if k = 0, and Sα,l,k =

T−k(xα,n) r T−(k−1)(xα,n−1) if 0 < k. Since every x ∈ X with ||x|| <∞ has rank
||x|| < c+, Lemmas 3.3 and 4.3 imply that, for each α ∈ ν and each k and l in N,
there is a zero-dimensional, Lindelöf topology Tα,l,k on Sα,l,k with respect to which
the action of T from Sα,l,k+1 to Sα,l,k is continuous. Again T−0(xα,l) = {xα,l} and
Tα,l,0 =

{
∅, {xα,l}

}
.

Case (ai): X consists entirely of Z-orbits. For each α ∈ λ and n ∈ Z, index the
non-spine points of T−1(zα,n+1)− {zα,n} by {pα,n,β : β ∈ µα,n+1}. Notice that for
any n ∈ Z, any k > 0 and any q ∈ T−(k−1)(pα,n+k,β), we have T (pα,n,β) = zα,n+1

and zα,n+k = T k(zα,n) = T k(q). For each α ∈ ζ and n ∈ Z, let

Lα,n =
⋃
0≤k

T−k
(
T k(zα,n)

)
= {zα,n} ∪

⋃{
T−(k−1)(pα,n+k,β) : 0 < k β ∈ µα,n+k

}
.

Notice that Zα =
⋃
n∈Z Lα,n and that, for all n ∈ Z, T−1(Lα,n) = Lα,n−1 and

T (Lα,n) ⊂ Lα,n+1 (and Lα,n+1 − T (Lα,n) is exactly the set of points p ∈ Lα,n+1

for which T−1(p) = ∅). Moreover, if Ln =
⋃
α∈ζ Lα,n, then X =

⋃
n∈Z Ln.

Topologize X as follows:

(1) for each α ∈ ζ, n ∈ Z, β ∈ µα,n and k ≥ 0, let T−k(pα,n,β) be a clopen set
with relative topology Tpα,n,β ,k, so that each point p ∈ T−1(zn)−{zn−1} is
isolated;

(2) for each α > 0 and n ∈ Z, let basic open neighbourhoods about the point
zα,n take the form

Lα,n −
⋃
{T−(k−1)(pα,n+k,β) : (k, β) ∈ F},

for some finite set F ;
(3) for each n ∈ Z, let basic neighbourhoods of z0,n take the form(
L0,n −

⋃{
T−(k−1)(p0,n+k,β) : (k, β) ∈ F

})
∪
⋃
{Lα,n : 0 < α ∈ ζ, α /∈ G},

for finite sets F and G.

Clearly every point ofX has a clopen neighbourhood in this topology, so thatX is
zero-dimensional and Tychonoff. To see that X is Lindelöf, it is enough to note that,
for each n ∈ Z, Ln is Lindelöf. But if U is any open cover of Ln and z0,n ∈ U ∈ U ,
then Ln r U is a subset of

⋃
α∈G Lα,n ∪

⋃
{T−(k−1)(p0,n+k,β) : (k, β) ∈ F

}
for

some finite F and G. If zα,n ∈ Uα ∈ U for any α ∈ G, then Lα,n r Uα is a subset
of
⋃
{T−(k−1)(pα,n+k,β) : (k, β) ∈ Fα}. Hence Ln − (U ∪

⋃
α∈G Uα is covered by

finitely many sets of the form T j(p), all of which are clopen and Lindelöf.
Continuity of T follows directly, since inverse image of a basic open set under T

is again a basic open set.

Case (aii): X consists of exactly one Z-orbit and N-orbits. Let the Z-orbit be Z0,
and as in case (ai) let {p0,n,β : β ∈ µα,n} denote the points of T−1(z0,n+1)−{zo,n}
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and let L0,n =
⋃

0≤k T
−k(T k(z0,n)

)
. Let X have the topology generated by the

following sets:

(1) for each α ∈ ν, k and l in N, let Sα,l,k be a clopen set with relative topology
Tα,l,k;

(2) for each n ∈ Z, let basic open neighbourhoods of z0,n take the form(
L0,n−

⋃{
T−(k−1)(p0,n+k,β) : (k, β) ∈ F

})
∪
⋃
{Sα,l,k : α ∈ ν, k, l ∈ N, l − k = n, (α, l, k) /∈ G},

for finite sets F and G.

Again it is clear that this topology on X is zero-dimensional and Tychonoff.
For each n ∈ Z, let Ln = Ln,0 ∪

⋃
{Sα,l,k : α ∈ ν, k, l ∈ N, l − k = n} so that

X =
⋃
n∈Z Ln. Each Ln is Lindelöf, since each Sα,l,k is Lindelöf. Hence X is

Lindelöf. Continuity again follows from the definition of the topology.

In Case (bi), X consists solely of m-cycles for some m ∈ N, in Case (bii), X
consists of a single m-cycle and N-obits. In both cases the proof is identical to that
of Cases (ai) and (aii) except that the indexing number n ∈ Z is taken modulo m,
so that for example zα,n = zα,n+m. �

Proof of Theorem 1.5 (2). By Lemma 3.3 (4), X consists entirely of N-orbits. Let
{Nα : α ∈ ν} list the N-orbits and let {xα,n : 0 ≤ n} index the spine of Nα so that
T (xn) = xn+1 and T−1(x0) = ∅. Since ||x|| < c+, for all x ∈ X, 3.3 (1) implies
that for each x ∈ X there is a subset Dx ⊆ T−1(x) such that |Dx| < c and, for
each z ∈ T−1(x), there is some yz ∈ Dx such that ||z|| ≤ ||yz||. Moreover, by 3.3
(2), we may assume that for all α ∈ ν and all n ∈ N, xα,n /∈ Dxα,n+1 . Now, since
the cardinality of the set

{
||xα,n|| : α ∈ ν, n ∈ N

}
is at most c, there is a subset

D ⊆ ν such that

(1) |D| ≤ c and
(2) for all α ∈ ν, there is some η ∈ D such that ||xα,n|| ≤ ||xη,n|| for all n ∈ N.

As before, let Sα,0,0 = {x0} and Sα,0,k = ∅ for all 0 < k, and let

Sα,n,k =

{
{xα,n} k = 0
T−k(xα,n) r T−(k−1)(xα,n−1) 0 < k,

for all 0 < n.
Let X∗ = X∪{pn,i : i = 0, 1, n ∈ N}, where pn,i /∈ X for any n ∈ N and i = 0, 1.

We shall define a map T ∗ : X∗ → X∗ and a topology on X∗ with respect to which
T ∗ is continuous from which we define a Lindelöf topology on X with respect to
which T is continuous. For all n ∈ N and α ∈ ν define

T ∗(x) =


pn,0 if x = pn,0

pn,0 if x = pn,1

pn,1 if x = xα,n

T (x) if x ∈
⋃

0<k Sα,n,k

Note that T ∗ is a function with countably many 1-cycles, namely
⋃

0≤n T
∗−1(pn,0),

for each n ∈ N, each with spine point pn,0 such that T ∗−1(pn,0) = {pn,0, pn,1} and
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T ∗−1(pn,1) = {xα,n : α ∈ ν}. For each non-spine point x of each 1-cycle let

D∗x =

{
Dx if pn,1 6= x ∈ X
{xη,n : η ∈ D} if x = pn,1.

It follows that the action of T ∗ on
⋃
k∈N T

∗−k(pn,1) satisfies the conditions of
Lemma 4.2, so that for each n and k in N there is a zero-dimensional Lindelöf
topology Tn,k on T ∗−k(pn,1) with respect to which the action of T ∗ is continuous.

Now that X =
⋃
n∈N

⋃
0<k T

∗−k(pn,1) and since T ∗−k(pn,1) is zero-dimensional
and Lindelöf, there is a zero-dimensional, Lindelöf T on X defined by declaring each
T ∗−k(pn,1) to be clopen with relative topology Tn,k. It remains to ensure that the
action of T with respect to this topology is continuous. So let U be an open subset
of some clopen set T ∗−k(pn,1). If 1 < k, then T ∗−1(U) = T−1(U), so that T−1(U)
is open. If k = 1, then T−1(U) = T ∗−1(U) ∪ {xα,n−1 : xα,n ∈ U}, which is open
provided {xα,n−1 : xα,n ∈ U} is open in T ∗−1(pn−1,1). But this is easily arranged.
Associate T ∗−1(p0,1) with a subset of Zτ1 as in the proof of Lemma 4.2, so that xα,0
is identified with the point (rα, tα) ∈ Zτ1 . By the choice of the set D, for all α ∈ ν
there is η ∈ D such that ||xα,n|| ≤ ||xη,n|| for all n ∈ N. Since T (xα,n) = xα,n+1 for
all α ∈ ν and n ∈ N, D∗pn+1,1

= T (Dpn,1). Therefore, we can embed each T ∗−1(pn,1)
as a subspace of the space Zτ1 simply by identifying xα,n with the point (rα, tα).
The construction of Lemma 4.2 is unaffected and we are done as, for each n ∈ N,
T is a homeomorphism from {xα,n : α ∈ ν} to {xα,n+1 : α ∈ ν}. �

Proof of Corollary 1.6. For (1), if T is a surjection, then (1) of Theorem 1.5 obvi-
ously holds. For (2) and (3), if T is an injection, then certainly it is < c-to-1, and if
it is < c-to-one, then, for each x ∈ X, either ||x|| =∞ or ||x|| < c, so that either (1)
or (2) of 1.5 hold. For (4), if T is ≤ c-to-one, then, for each x ∈ X, either ||x|| =∞
or ||x|| < c+, which implies that T c+(X) = T c++1(X). Since T has at least one
orbit that is not an N-orbit, T c+(X) 6= ∅ and we can apply (1) of 1.5. �
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