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Abstract. We prove that, if there is a model of set-theory which contains no first
countable, locally compact, scattered Dowker spaces, then there is an inner model
which contains a measurable cardinal.

A Hausdorff space is normal if, for every pair of disjoint closed sets C and D,
there is a pair of disjoint open sets, U containing C and V containing D. A (normal)
space is binormal if its product with the closed unit interval I is normal. It is fair to
say that the study of normality, in particular the behaviour of normality in products
and the difference between normality and binormality, has played a central role in
point-set topology.

In 1951 Dowker [Do] introduced the notion of countable paracompactness, and
proved that a normal space is binormal iff it is countably paracompact. A space is
(countably) paracompact if every (countable) open cover has a locally finite open
refinement, however the important point to note, as far as we are concerned, is
that countable paracompactness is the difference between normality and binormal-
ity. A quick study of Dowker’s paper demonstrates just how natural the definition
is—indeed, countable paracompactness is not so much a generalization of paracom-
pactness, as one in a list of related properties which act to preserve normality-type
conditions in products with a compact, metrizable factor: X × I is respectively or-
thocompact, perfect, δ-normal, normal, perfectly or hereditarily normal, or mono-
tonically normal iff X is (respectively) countably metacompact [S], perfect (see [P
4.9]), countably paracompact [M], normal and countably paracompact [Do], per-
fectly normal [Ka] and [P 4.9], monotonically normal and semi-stratifiable [G 5.22].

Normal spaces that are not countably paracompact have become known as
Dowker spaces, and it is natural to ask whether such spaces exist.

In fact Dowker spaces do exist, but the example [Ru2], together with its mod-
ifications, has unsatisfyingly large cardinality and cardinal functions. This has
prompted the generic definition of small Dowker spaces, i.e. ones of small size or
small cardinal functions. Small Dowker spaces also exist, but, as yet, only with the
help of various set-theoretic assumptions. For example: when ♣ holds, there are
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first countable, locally compact ones—[dC], [Ru3]; if there is a Souslin tree, there
are first countable, hereditarily separable ones—[Ru1]; under CH, there are first
countable ones—[JKR]; under MA + c = ω2 +♦ω2(E), there are locally compact,
separable ones—[Ws], [Ru3]; under P(c), which follows from MA + ¬CH or the
PFA, there are first countable ones—[Be]. Furthermore, Watson [Wt] has shown
that the existence of a strongly compact cardinal implies the existence of a Dowker
space that is of scattered length ω.

There are also types of space which cannot be Dowker. Obviously metrizable,
Lindelöf, (countably) paracompact or (countably) metacompact spaces fail to be
Dowker; perfect spaces are countably metacompact and so cannot be Dowker, which
implies that Moore spaces are never Dowker; GO-spaces and monotonically nor-
mal spaces are not Dowker [Ru3]; normal, pseudo-compact or DFCC spaces are
countably compact [Tr] and so are not Dowker.

Is there a small Dowker space? Are there models of set-theory in which small
Dowker spaces with certain properties cannot exist? In this paper we give a par-
tial answer to the second of these questions. However we feel that this result is
misleading since we believe that the answer to the first question is probably yes.

The partial answer we give here is that large cardinals are needed for a model
in which there are no first countable, locally compact Dowker spaces.

1. Theorem. If no inner model of set theory contains a measurable cardinal, then
there is a first countable, locally countable, locally compact, zero-dimensional, col-
lectionwise normal Dowker space which is scattered of length ω and is therefore both
σ-discrete and weakly θ-refinable.

2. Corollary. If every normal, Hausdorff space satisfying at least one of the above
properties is countably paracompact, then some inner model contains a measurable
cardinal.

(It should be pointed out that the collectionwise normal case is only interesting
when some other property from the list is added, since Rudin’s Dowker space [Ru2]
is collectionwise normal.)

Of course, the motivation for Theorem 1 is Fleissner’s result [F1] that large
cardinals are needed for a model in which there are no normal, non-metrizable
Moore spaces, and the steps in the proof are much the same: we start from the
assumption that no inner model of set-theory contains a measurable cardinal, and
derive enough combinatorics to allow us to construct a typical (see [Ru3]) first
countable, locally compact Dowker space.

Our notation and terminology are standard, taken from [E], [Ku] and [KV].
However, for a function f : A → B, we denote {f(x) : x ∈ C ⊆ A} by f [C].

3. Definition. For an infinite cardinal κ and a subset A ⊆ κ+, ¤κ(A) is the
assertion that there is a sequence {Cα : α ∈ κ+ and lim(α)} such that:

i) Cα is club in α;
ii) if cf(α) < κ, then otp(Cα) < κ;
iii) if β < α is a limit point of Cα, then β /∈ A and Cβ = β ∩ Cα.

We write ¤κ for ¤κ(∅). It it clear from the definition that ¤κ is really a
statement about κ+. For more about ¤κ see [De].
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4. Definition. A stationary subset E of some uncountable cardinal λ is said to be
non-reflecting if, for every α < λ, α ∩ E is non-stationary in α.

Notice that, if ¤κ(E), and E is stationary in κ+, then E must be non-reflecting.
(To see this, suppose to the contrary that α ∩ E is stationary in α for some α in
κ+; as Cα is club in α there is some limit point β in α ∩ E ∩ Cα, so β is in E,
which contradicts statement iii) of Definition 3.) Every stationary subset of ω1

is non-reflecting, but the existence of non-reflecting stationary subsets of ordinals
greater than ω1 is not guaranteed. (In fact, it is clear from what follows that large
cardinals are needed for a model in which there are no non-reflecting stationary
sets.)

We shall also need:

5. Definition. A cardinal κ is said to be a strong limit cardinal if (∀λ < κ)(2λ < κ).

Now, K is the Core model defined by Dodd and Jensen [DJ]. K contains the
constructible universe L and is contained in V . Here we need only the fact that,
combinatorially, K is very similar to L; in particular, ¤κ holds in K for all infinite
cardinals κ [Dd].

6. The Covering Lemma for V and K. Cov(V, K) is the assertion that, if X
is any uncountable set of ordinals (in V ), then there is a set Y in K such that X
is a subset of Y and |Y | = |X| (in V ).

Cov(V, K) implies that V is very similar to K. This need not always be the case,
for example when 0# exists (see [De]), however we have the following theorem due
to Dodd and Jensen [DJ].

7. Theorem (Dodd and Jensen). If no inner model of set theory contains a
measurable cardinal, then the Covering Lemma for V and K holds.

The proof of this result is extremely long and requires a detailed knowledge of the
fine structure of K, however, it is the starting point for Theorem 1. We shall now
proceed from the Covering Lemma, through a series of lemmas, to the construction
of Example 17, which will complete the proof. The crucial step is to notice that ♦
on a non-reflecting stationary subset of κ+ is enough to give normality.

The proof of Lemma 8 is essentially contained in the proof of Theorem 8.3 of
[F2].

8. Lemma (Various). Cov(V, K) implies that there exists an uncountable strong
limit cardinal κ of countable cofinality, such that 2κ = κ+ and ¤κ.

9. Definition. For a stationary subset S of κ+, ♦κ+(S) is the assertion that there
exists a sequence {Sα : α ∈ S}, such that Sα is a subset of α, and, whenever X is
a subset of κ+, the set

{α ∈ S : X ∩ α = Sα}
is stationary in κ+.

Unlike ¤λ, ♦λ is a statement about λ; we write ♦κ+ here to emphasise the
connection between ¤κ and ♦κ+ . Notice that for any subset A of κ+, ♦κ+(A)
implies that A has to be stationary in κ+.

10. Definition. For any (regular) cardinal λ let

W (λ) = {α ∈ λ : cf(α) = ω}.
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In particular, let W denote W (κ+). It is easy to see that W (or indeed W (λ)) is
stationary.

The next lemma is a slight rewording of Exercise IV.8 in [De], its proof is a
modification of Lemma IV.2.8 [De]. Lemma 12 is exactly IV.2.10 from [De]

11. Lemma. Suppose that the conclusion of Lemma 8 holds, then ♦κ+(W ).

12. Lemma. If both ¤κ and ♦κ+(W ), then there exists a stationary subset E of
W such that both ¤κ(E) and ♦κ+(E).

Because both ¤κ(E) and ♦κ+(E) hold, we do indeed have ♦ on a non-reflecting
stationary subset of κ+. In the next two lemmas we deduce the ♣-type principle
which is used in the construction of the example. The proof of Lemma 14 is a
standard coding argument (see, for example, [Ws]).

13. Definition. ♦κ+(E, 2) is the assertion that there exists a sequence {〈Sα, Tα〉 :
α ∈ E}, such that both Sα and Tα are subsets of α, and, whenever X and Y are
subsets of κ+, the set

{α ∈ S : X ∩ α = Sα, Y ∩ α = Tα}

is stationary in κ+.

14. Lemma. ♦κ+(E, 2) is equivalent to ♦κ+(E).

The proof of Lemma 14 mimics the folklore proof that ♦ is equivalent to ♦(ω1, 2),
a similar proposition is to be found in [Ws].

The axiom we actually use to construct the example is something which we call
♣κ+(E, 2), after Ostaszewski’s ♣ [O]. The proof that ♦κ+(E, 2) implies ♣κ+(E, 2)
is essentially the same as the proof that ♦ implies ♣ and is therefore omitted.

15. Definition. ♣κ+(E, 2) is the assertion that for each limit ordinal α in E of
countable cofinality there exists a pair 〈Sα, Tα〉 of ω-sequences, each cofinal in α,
such that, whenever X and Y are subsets of κ+ of size κ+, there is some α ∈ κ+

with Sα ⊆ X and Tα ⊆ Y . (In fact the set of such α forms a stationary set.)

16. Lemma. ♦κ+(E, 2) implies ♣κ+(E, 2).

17. Example. (♣κ+(E, 2)) There is a first countable, locally countable, locally
compact, strongly zero-dimensional, collectionwise normal Dowker space, which is
scattered of length ω and is therefore both σ-discrete and weakly θ-refinable.

Proof. For each limit ordinal α in E, let 〈Sα, Tα〉 be as given by ♣κ+(E, 2). Without
loss of generality, we may assume that Sα ∩ Tα is empty. Partition Sα into disjoint
ω-sequences Sα,n, n ∈ ω and Tα into disjoint ω-sequences, Tα,n. Let

Rα,n = Sα,n ∪ Tα,n and Rα =
⋃
n∈ω

Rα,n = Sα ∪ Tα,

index Rα,n increasingly as {βα,n,j : j ∈ ω}, and index Rα increasingly as {βα,k :
k ∈ ω}.

The point set for the space X is κ+×ω, and the map π is the natural projection,
π((α, n)) = α, from X onto κ+ with its usual order topology.



LARGE CARDINALS AND SMALL DOWKER SPACES 5

Inductively we define a neighbourhood base Bx of compact, clopen subsets at
each point x. The topology T on X is generated by

⋃
x∈X Bx.

Let x = (α, n). If either n = 0, α = β + 1 for some β, or α is not in E, then x is
isolated, i.e. Bx = {{x}}. For the induction, let x = (α, n + 1), and suppose that
B(β,m) has been defined for each (β, m), where β < α and m < n + 1, and suppose
that α is a limit ordinal in E. Recall that Rα,n is indexed increasingly as {βα,n,j :
j ∈ ω}. For each point y(j) = (βα,n,j , n), j ≥ 1, βα,n,j occurs as some βα,k(n,j)

in the enumeration of Rα. Choose By(j) in By(j) such that π[By(j)] is a subset of
(βα,k(n,j)−1, βα,k(n,j)], and define Bx to be the collection of sets {B(x, k)}k∈ω such
that

B(x, k) = {x} ∪
⋃

j≥k

By(j) for k ∈ ω.

Let T be the topology generated by the Bx.
With this topology, points of X are either isolated or have a neighbourhood

homeomorphic to the ordinal space ωm + 1, for some m ≤ n. Therefore (X, T ) is
T3, first countable, locally countable, locally compact, zero-dimensional and locally
metrizable. It is also scattered of height ω and hence σ-discrete and, by a result of
[N1] , weakly θ-refinable.

Claim 1. The subspace Xα = α× ω is metrizable for all α ∈ κ+.

Proof of Claim 1. The proof is by induction. Assume that Xβ is metrizable for all
β ∈ α.

Since E is a non-reflecting stationary set, if α is a limit ordinal (either in E or
not), or α ≤ ω1, then there is a sequence {αγ : γ ∈ θ ≤ α}, which is both closed,
and cofinal in α − E. But then X(γ) = (αγ , αγ+1] × ω is a metrizable subspace
of X and the collection {X(γ) : γ ∈ θ} is a partition of Xα into disjoint, clopen,
metrizable sets. Hence Xα is metrizable.

Now suppose that α = β + 1. Without loss of generality, we may assume that
β is a limit ordinal. If β is not in E, then the two sets Xβ and {(β, n) : n ∈ ω}
partition Xα into disjoint, clopen, metrizable sets, and we are done. So, assume
that β is an element of E.

By construction, {Bj}j∈ω, where Bj = B((β, j), 1), forms a disjoint collection of
clopen, metrizable subsets of Xα. Furthermore, if xj is any point of Bj , then the
set {π(xj)}j∈ω forms an ω-sequence, cofinal in β (though not necessarily indexed in
increasing order), so the only possible limit point of the sequence {xj}j∈ω is (β, k)
for some k in ω. This is impossible since {Bj}j∈ω is a disjoint collection and is,
therefore, a discrete collection. But now the two sets

B =
⋃

j∈ω

Bj and Y = Xα −B

partition Xα into disjoint, clopen, metrizable subspaces, and again Xα is metrizable.

That X is a Dowker space now follows from the familiar

Claim 2. Every subset A of X of size κ+ has a limit point, and there are no two
disjoint closed subsets, both of size κ+.

Proof of Claim 2. |A| = κ+, so for some n ∈ ω,

An = A ∩ (κ+ × {n})
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has size κ+. By ♣κ+(E, 2), Rα×{n}, and hence Rα,n×{n}, is contained in An, for
some α in E, so A has a limit point in κ+ × {n + 1}. In fact, since κ+ is a regular
cardinal, A has κ+ limit points in κ+ × {n + 1}.

Now let C and D be closed subsets of X of cardinality κ+. From the previous
paragraph it is clear that

|C ∩ (κ+ × {n})| = |D ∩ (κ+ × {n})| = κ+,

for some n. By ♣κ+(E, 2), there is an α in E for which both Sα×{n} is a subset of
C ∩ (κ+ × {n}), and Tα × {n} is a subset of D ∩ (κ+ × {n}). Therefore Sα,n × {n}
is a subset of C, and Tα,n × {n} is a subset of D. Since C and D are both closed
(α, n+1) is in both C and D. Hence C and D are not disjoint—proving the claim.

Normality is immediate from Claims 1 and 2: Let C and D be disjoint closed
sets. By Claim 2, at least one, C say, has size less κ+, and there is some α = β + 1
in κ+ such that Xα = α × ω contains C. By Claim 1 and the fact that α is a
successor ordinal, Xα is a clopen metrizable subspace of X in which C and D∩Xα

can be separated by disjoint open sets. The normality of X follows easily. In fact, if
D is a discrete collection of closed subsets of X, then, since every subset of size κ+

has a limit point, D has size less than κ+, and at most one member of D has size
κ+. Therefore, since Xα is metrizable for all α < κ+, X is collectionwise normal.

A Tychonoff space Y is strongly zero-dimensional iff for every pair of completely
separated subset, A and B, of Y there is a clopen set K which misses B but contains
A. The strong zero-dimensionality of X also follows from Claims 1 and 2: Suppose
that A and B are subsets of X which are completely separated by the function
f : X → [0, 1] and that f [A] = {0} and f [B] = {1}. The sets f−1 [[0, 1/4]] and
f−1 [[3/4, 1]] are disjoint closed sets containing A and B respectively, so, arguing
as above, there is a clopen subeset Xα of X which misses B say. Now Xα is
a metrizable, locally compact, zero-dimensional subspace of X and is therefore
strongly zero-dimensional (see [E 6.2.10]). Strong zero-dimensionality now follows
easily.

To see that X is a Dowker space, we show that it is not countably metacompact.
By Dowker’s characterization of countable metacompactness [Do], it is enough to
show that there is a decreasing sequence {Dn}n∈ω of closed sets with empty inter-
section such that whenever {Un}n∈ω is a decreasing sequence of open sets, each Un

containing Dn, the intersection of the Un is non-empty.
Let Dn = κ+ × [n, ω). {Dn}n∈ω is a decreasing sequence of closed subsets of X

with empty intersection. If Un is any open set containing Dn, then Dn and X−Un

are disjoint closed subsets. Dn has cardinality κ+, so, by Claim 2,

|X − Un| ≤ κ and |
⋃
n∈ω

(X − Un)| = |X −
⋂
n∈ω

Un| = κ.

But this means that
⋂

n∈ω Un is non-empty, so X is not countably metacompact.

This completes the proof of Theorem 1. The same construction works if we
assume either V = L or V = K (in which case we may take κ = ω), or the
non-existence of 0# (instead of ‘no inner model contains a measurable cardinal’).

18. Lemma. The space X is not hereditarily normal.
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Proof. Consider the subspace Y = κ+× 2, i.e. the first two levels of X. Divide the
top level κ+ ×{1} of Y into two disjoint subsets, C and D, each of cardinality κ+,
so that C and D are disjoint closed subsets of Y . Let U and V be any two closed
neighbourhoods of C and D respectively, then both

|U ∩ (κ+ × {0})| = κ+ and |V ∩ (κ+ × {0})| = κ+.

By ♣κ+(E, 2), U and V have a common limit point in κ+ × {1}, which must be in
either C, which is a subset of U , or D, which is a subset of V . Therefore U and V
have a common element in κ+ × {0}. Hence Y is not normal.

Since E is non-reflecting, this subspace Y is < κ+-collectionwise Hausdorff (i.e.
discrete collections of points of size less than κ+ can be separated by pairwise
disjoint open sets), but not collectionwise Hausdorff. Tall has asked [vMR ?47]
whether it is consistent (assuming large cardinals) for every first countable space
which is ω1-collectionwise Hausdorff to be collectionwise Hausdorff—presumably he
has the above example in mind.

While pseudocompact spaces are never Dowker, the following lemma says that
every continuous, R-valued function on X is eventually constant.

19. Lemma. If f : X → R is any continuous function, then there is a γ ∈ κ+

such that f is constant on X −Xγ .

Proof. For each n ∈ ω, let An be the set f−1 [[n, n + 1]]. Pick some n for which
An ∩ (κ+ × {0}) has size κ+. Inductively define subsets Bk of An such that: B0 is
An; if Bk is the interval [b, b +1/2k], then Bk+1 is either the interval [b, b +1/2k+1]
or the interval [b + 1/2k+1, b + 1/2k], and; Bk ∩ (κ+ × {0}) has size κ+. Since An

is compact,
⋂

Bk is non-empty—in fact it contains just one real, r say.
For each n ∈ ω let Rn be the closed set f−1 [[r − 1/n, r + 1/n]]. Now each Rn

has cardinality κ+, and it follows from Claim 2 of 17 that r is the only point in R
with this property. This implies not only that r is in the f -image of κ+ × {0}, but
that there is some γ0 ∈ κ+ for which f ¹ (γ0, κ

+) × {0} is the constant function
taking the value r. By the continuity of f , for each n there is a γn such that
f ¹ (γn, κ+)× {n} is the constant function taking the value r.

Let γ be sup γn.

A space is realcompact if it is homeomorphic to a closed subspace of a Tychonoff
product (0, 1)λ of the open unit interval. Since pseudocompact, realcompact are
compact, and since pseudocompact, normal spaces are countably paracompact, it
is reasonable to ask about the existence of realcompact Dowker spaces. However,
from Lemma 19 it follows that

20. Lemma. X is not realcompact.

Proof. Let Zγ be the subset (γ, κ+)×ω of X, and let Z be the collection of all such
subsets. Z is a collection of functionally closed subsets of X and the ultrafilter U
of functionally closed sets generated by Z has the countable intersection property.
However

⋂U is empty and, by [E 3.11.11], X is not realcompact.

The normal Moore space conjecture (that all normal Moore spaces are metriz-
able) has been solved modulo the existence of large cardinals: In [N2] Nyikos shows
that all normal Moore spaces are metrizable assuming the PMEA, the consistency
of which is implied by the consistency of a strongly compact cardinal. Fleissner’s
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result, mentioned above, shows that some large cardinal asumption is necessary for
this result. Let us conclude with a number of observations which indicate why a
result for small Dowker spaces analogous to Nyikos’s seems unlikely.

We start with a theorem from [NP].

21. Theorem (Nyikos and Purisch). Let X be a locally countable, regular space
of countable scattered length. If X is hereditarily collectionwise Hausdorff, then X
is paracompact.

It is immediate that

22. Corollary. There are no locally countable, hereditarily collectionwise Haus-
dorff Dowker spaces of countable scattered length.

From Nyikos’ provisional solution to the normal Moore space problem [N2] and
from [Ta 2.20] we obtain

23. Corollary. Let X be a locally countable, hereditarily normal space of countable
scattered length.

(PMEA) If X has character less than the continuum, then X is not a Dowker
space.

(V = L) If X is first countable or is locally compact, then X is not a Dowker
space.

24. Fact. PMEA does not destroy first countable Dowker spaces: Adding one
Cohen real gives a model in which there is Souslin tree (see p 311 [KV]) and hence
a first countable Dowker space [Ru1]. If κ is strongly compact, then adding κ many
Random reals to this model preserves the Souslin tree [J] (and hence the Dowker
space), but also implies the PMEA.

Since PFA implies MA + c = ω2, [Be] implies

25. Theorem. (PFA) There is a first countable Dowker space.

On the other hand we have, essentially from [Bl];

26. Theorem. (PFA) No locally compact, σ-discrete space of cardinality smaller
than c = ω2 can be a Dowker space.

Finally let us recall from above that Watson [Wt] has constructed a Dowker
space directly from the assumption that there exist a strongly compact cardinal
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