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HOMEOMORPHISMS OF TWO-POINT SETS

BEN CHAD AND CHRIS GOOD

Abstract. Given a cardinal κ ≤ c, a subset of the plane is said to be a κ-point

set if and only it it meets every line in precisely κ many points. In response
to a question of Cobb, we show that for all 2 ≤ κ, λ < c there exists a κ-point

set which is homeomorphic to a λ-point set, and further, we also show that

it is consistent with ZFC that for all 2 ≤ κ < c, there exists a κ-point set X
such that for all 2 ≤ λ < c, X is homeomorphic to a λ-point set. On the other

hand, we prove that is is consistent with ZFC that for all 2 ≤ κ < c there exists

a κ-point set X which is not homeomorphic to a λ-point set for any distinct
2 < λ ≤ c.

1. Introduction

Given a cardinal κ ≤ c, a subset of the plane is a κ-point set1 if and only it it
meets every line in precisely κ many points, and is said to be a partial κ-point set
if and only it it meets every line in at most κ many points. By considering infinite
families of concentric circles, it is easily seen that κ-point sets exist for ℵ0 ≤ κ ≤ c,
and it is obvious that one-point sets do not exist. However, to demonstrate the
existence of n-point sets for 2 ≤ n < ℵ0, it seems apparent that we must resort
to transfinite techniques. The standard approach, which we take in this paper,
is essentially due to Mazurkiewicz2 [12] and is based on the existence of a well-
ordering of the real line, but we note that Chad et. al. [6] describe an alternative
construction of two-point sets which is consistent with ZF and only requires that
some suitable fragment of the real line can be well-ordered.

It is arguable that problems concerning two-point sets were first widely adver-
tised amongst topologists by Mauldin [13] in his article of problems for “Open
Problems in Topology” [15]. Mauldin gave three problems concerning two-point
sets, and to this day, the only remaining problem is to determine if a two-point set
can be chosen to be a Borel subset of the plane3. This problem is apparently very
deep, and it is likely that if we are to make any progress on it, then we will need
to further our knowledge about the structure of two-point sets.

There are interesting results that are known about the structure of κ-point sets
which demonstrate that differing values of κ give rise to related but distinct classes
of topological objects. For example, it is known that n-point sets are not Fσ subsets
of the plane for 2 ≤ n < ℵ0, the case of n = 2 originally having been shown by
Larman [10], with corrections later supplied by Baston and Bostock [1], and the
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more general case having been shown by Bouhjar et. al. [9]. On the other hand,
Larman [10] showed that two-point sets cannot contain arcs, and whilst Bouhjar
et. al. [3] showed that three-point sets are also required to have this property, they
further showed that four-point sets are not. As continuing evidence of our claim,
Kulesza [10] showed that two-point sets must be zero-dimensional, Fearnley et.
al. [8] showed that three-point sets must also be zero-dimensional, but the work
of Bouhjar et. al. [3] leads to the result that four-point sets may be either zero-
dimensional or one-dimensional.

This paper investigates some general relationships which hold between the classes
of κ point sets. Our first main result can be seen to be saying that the classes of
κ-point sets are pairwise overlapping (up to homeomorphism), and our second main
result shows that it is consistent with ZFC that their intersection is non-empty (up
to homeomorphism, over all 2 ≤ κ < c). Our final main result shows that it is
consistent with ZFC that none of the classes of κ-point sets contain another.

Our analysis can be motivated from two angles. Firstly, given his result that
there exists an n-point set which is homeomorphic to a function from R to R for
2 ≤ n < ℵ0, Cobb [7] asks if there exists an n-point set which is homeomorphic to
an m-point set for some distinct 2 ≤ n,m < ℵ0. A corollary to our first main result
gives an affirmative answer to Cobb’s question.

The second motivation for our work is a desire to better understand the structure
of two-point sets, and to follow a line of research started by Chad and Suabedissen
[5, 4]. These papers have studied autohomeomorphims of two-point sets, and their
main results include the facts that two-points may to chosen to be rigid or homo-
geneous or to have isometry group isomorphic to any subgroup of S1 of cardinality
less than c. These results examine a two-point by looking for similarity within itself;
our results will examine a two-point by looking for similarity with other distinct
types of geometric objects.

Throughout, we let L denote the collection of all lines in the plane. Also, if
2 ≤ κ < c, if P is a partial κ-point set, and if f is a homeomorphism of the plane,
then we let

L(P, κ) = {L ∈ L : |P ∩ L| = κ} and L(P, f, κ) = {A ∈ f(L) : |P ∩A| = κ} .

2. Homeomorphisms of κ-point sets

We begin by answering Cobb’s question.

Lemma 2.1. There exists a family {ft : t ∈ [0, 1]} of distinct homeomorphisms of
R2 such that:

(1) f0 is the identity function; and
(2) fs(L) ∩ft(L) = ∅ for all distinct s, t ∈ [0, 1]; and
(3) |A ∩B| ≤ ℵ0 for all distinct A,B ∈

⋃
t∈[0,1] ft(L).

Proof. We find it convenient throughout to identify R2 with C in the usual way.
For each r ≥ 0, let brc denote the integer part of r and let r′ = r − brc,

so that r′ denotes the fractional part of r. Let g : [0, 1] → [0, 1] be defined by
g(x) = 1 − |2x− 1|, and for each t ∈ [0, 1], let ft : C → C be the homeomorphism
defined by ft(reiθ) = rei(θ+tg(r

′)π). We note then that f0 is the identity function.
For each r ≥ 0, let Cr denote the (possibly degenerate) circle centered at the origin
of radius r. Then each ft rotates each Cr by a factor of tg(r′)π and so leaves it
invariant.

Since each fs and ft are homeomorphisms such that f−1
s ◦ft = ft−s, it suffices to

show that for all t ∈ (0, 1], L∩ ft(L) = ∅, and that for all distinct A,B ∈ L∪ ft(L),
|A ∩B| ≤ ℵ0.
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Let t ∈ (0, 1]. Noting that g−1({0}) = {0, 1}, we see that ft fixes every point of
Cr precisely when r ∈ Z and moves every point of Cr precisely when r 6∈ Z, and so
L ∩ ft(L) = ∅.

Let A,B ∈ L ∪ ft(L) be distinct. If A,B ∈ L then |A ∩B| ≤ 1, as must also be
the case if A,B ∈ ft(L). To complete the proof, let A = L1 and B = ft(L2) for
some L1, L2 ∈ L. To see that |A ∩B| ≤ ℵ0, it is enough to note that if r ≥ 0 and
if S ⊆ L2 is a line segment contained in the connected region enclosed by Cr and
Cr+1 then ft(S) is a path which meets every line in at most four points. �

Theorem 2.2. Let 2 ≤ κ, λ < c. Then there exists a κ-point set which is homeo-
morphic to a λ-point set.

Proof. Let f : R2 → R2 be a homeomorphism such that L ∩ f(L) = ∅ and distinct
members of L ∪ f(L) meet in at most countably many points (for example, take f
to be the homeomorphism f1 furnished by Lemma 2.1), and let 〈Aα : α < c〉 be an
enumeration of L ∪ f(L).

We will construct a κ-point set X to be the union of the members of an increasing
sequence 〈Xα : α < c〉, where for all α < c:

(1) Xα \
⋃
β<αXβ ⊆ Aα \ (

⋃
L(P, κ) ∪

⋃
L(P, f, κ)); and

(2) Xα meets each member of L in at most κ many points and each member
of L ∩ {Aβ : β ≤ α} in precisely κ many points; and

(3) Xα meets each member of f(L) in at most λ many points and each member
of f(L) ∩ {Aβ : β ≤ α} in precisely λ many points.

Suppose that for some α < c we have constructed the partial sequence 〈Xβ : β < α〉.
Let P =

⋃
β<αXβ . Then our hypothesis imply that |P | ≤ |α| ·max{κ, λ} < c. Let

µ < c be the unique cardinal number such that:

(a) if Aα ∈ L then |Aα ∩ P |+ µ = κ; and
(b) if Aα ∈ f(L) then |Aα ∩ P |+ µ = λ.

If µ = 0 then let Xα = P . Otherwise, we will select Xα in a recursion of length µ.
Let the sequence 〈xδ : δ < µ〉 be chosen such that

xδ ∈ Aα\
(⋃
L(P ∪ {xγ : γ < δ}, κ) ∪

⋃
L(P ∪ {xγ : γ < δ}, f, κ) ∪ {xγ : γ < δ}

)
.

To confirm that such a sequence exists, we note that each member of L is uniquely
defined by two points on it, that

|L(P ∪ {xγ : γ < δ}, κ)| < c and |L(P ∪ {xγ : γ < δ}, f, κ)| < c ,

and that Aα cannot be covered by fewer than c many members of (L ∪ f(L))\{Aα}.
We then set Xα = P ∪ {xδ : δ < µ}, and since 〈xδ : δ < µ〉 is injective, it follows
that |Aα ∩Xα| is the required cardinal taken from {κ, λ}.

Let the Xα now be defined for all α < c and let X =
⋃
α<cXα. Conditions (2)

and (3) in our recursion were chosen so that X meets each member of L in at least
κ many points and each member of f(L) in at least λ many points. In the case
that κ is finite, condition (2) is sufficient to ensure that X meets each member of L
in at most κ many points, however in the case that κ is infinite, we must appeal to
conditions (1) and (2) to guarantee this. Similarly, it can be argued that X meets
each member of f(L) in at most λ many points. Then f−1|X : X → f−1(X) is a
homeomorphism between the κ-point set X and the λ-point set f−1(X). �

The following corollary answers Cobb’s question.

Corollary 2.3. Let 2 ≤ n,m < ℵ0. Then there exists an n-point set which is
homeomorphic to an m-point set.
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3. The existence of universal two-point sets

It turns out that we can strengthen Theorem 3.2, provided that we assume the
Continuum Hypothesis.

Definition 3.1. Let 2 ≤ κ < c. Then a κ-point set is said to be universal if it is
homeomorphic to some λ-point set for all 2 ≤ λ < c.

To prove the existence of universal κ-point sets, it will be sufficient to demon-
strate the existence of a universal two-point set.

Theorem 3.2 (CH). There exists a universal two-point set.

Proof. Let 〈κγ : γ < ℵ0〉 enumerate the set of all cardinals 2 < κ ≤ ℵ0. Let
〈tγ : γ < ℵ0〉 be an injective sequence on (0, 1], let {ft : t ∈ [0, 1]} be a family of
functions given by Lemma 2.1, let fγ denote ftγ , and let {Aα : α < c} enumerate
L ∪

⋃
γ<ℵ0

fγ(L).
We will construct an increasing sequence 〈Xα : α < c〉 of subsets of the plane

such that for all α < c:

(1) Xα \
⋃
β<αXβ ⊆ Aα \

(⋃
L
(⋃

β<αXβ , κ
)
∪
⋃
γ<ℵ0

⋃
L
(⋃

β<αXβ , f, κ
))

;
and

(2) Xα meets each member of L in at most κ many points and each member
of L ∩ {Aβ : β ≤ α} in precisely κ many points; and

(3) for each γ < ℵ0, Xα meets each member of fγ(L) in at most κγ many points
and each member of fγ(L) ∩ {Aβ : β ≤ α} in precisely κγ many points.

Suppose that for some α < c we have constructed the partial sequence 〈Xβ : β < α〉.
Let P =

⋃
β<αXβ . Then

∣∣∣Xβ \
⋃
γ<β Xγ

∣∣∣ ≤ ℵ0 for all β < α, and so |P | ≤ ℵ0. We
choose Xα more or less as we did in the proof of Theorem 2.2: if Aα ∈ L then we
choose Xα so that |Xα\P | ≤ 2 and Xα meets Aα in precisely two points; otherwise,
Aα ∈ fγ(L) for some γ < ℵ0, and we choose Xα so that |Xα \ P | ≤ κγ and Xα

meets Aα in precisely κγ many points.
Let X =

⋃
α<cXα. Then X is a two-point set and for any κ < c, κ = κγ for

some γ < ℵ0, and f−1
γ (X) is a κ-point set homeomorphic to X. �

Corollary 3.3 (CH). Let 2 ≤ κ ≤ ℵ0. Then there exists a universal κ-point set.

4. The existence of delicate two-point sets

As one might reasonably expect, not every two-point set is homeomorphic to a
κ-point set. In fact, provided that we assume a certain set-theoretic axiom about
the real line, this is true in a strong sense. We will make use of the axiom that
“R cannot be covered by fewer than c many of it’s nowhere dense subsets”, and we
will refer to this axiom, which is implied by the Continuum Hypothesis or Martin’s
Axiom, as ND.

Definition 4.1. Let 2 ≤ κ < c. Then a κ-point set X is said to be delicate if
whenever f is a homeomorphism of X which is not affine (that is, there exists
x, y, z ∈ X such that x, y and z are collinear but f(x), f(y) and f(z) are not) then
f(X) is disjoint from some line.

It turns out that if we suppose that R is not a union of fewer than c many of
it’s nowhere dense subsets, then delicate κ-point sets exist. In the next theorem,
we will construct a κ-point set X with the property that if f is any non-affine
homeomorphism of X, then f(X) is disjoint from at least one line. Hence, a
homeomorphic image of X is either a κ-point set (because the homeomorphism
preserves collinearity), or it fails to be a λ-point set for any cardinal λ 6= κ.
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Theorem 4.2 (ND). For all 2 ≤ κ < c, there exists a κ-point set X such that for
all homeomorphisms f : X → f(X), if f is not affine, then f(X) is disjoint from
some line.

Proof. Let 2 ≤ κ < c, let 〈Lα : α < c〉 enumerate the collection of all lines, and let
〈fα : α < c〉 enumerate all partial functions f : R2 → R2 such that:

(1) f is not an identify function; and
(2) the domain of f is a Gδ subset of R2; and
(3) neither f nor f−1 are affine; and
(4) f is a homeomorphism onto its image.

Since each fα is a homeomorphism, we can construct a sequence 〈Kα : α < c〉 of
collections of lines such that for each α < c:

(1) f−1
α (K) is not a line for each K ∈ Kα; and

(2) the members of Kα are pairwise parallel; and
(3) |Kα| = c.

We note then that the members of each Kα are pairwise disjoint, as are the members
of each f−1

α (Kα). Also, note that whilst K ∈ Kα will meet the domain of fα in at
least three points (which witness that f−1

α is not affine), we do not require that K
is contained in the domain of fα.

We will construct a κ-point set to be the union of the members of an increasing
sequence 〈Xα : α < c〉, and we also construct a sequence of lines 〈Kα : α < c〉, where
for all α < c:

(1)
∣∣∣Xα \

⋃
β<αXβ

∣∣∣ ≤ κ + ℵ0 and
(
Xα \

⋃
β<αXβ

)
∩
⋃
L
(⋃

β<αXβ , κ
)

= ∅;
and; and

(2) Xα meets each member of L in at most κ many points and each member
of {Lβ : β ≤ α} in precisely κ many points; and

(3) Kα ∈ Kα; and
(4) Xα and

⋃
β≤α f

−1
β (Kβ) are disjoint; and

(5) For each β ≤ α and for each γ < c, if
⋃
β≤αXβ meets Lγ in less than κ

many points then f−1
β (Kβ) ∩ Lγ is nowhere dense in the relative topology

on Lγ .
Suppose that for some α < c we have constructed the partial sequences 〈Xβ : β < α〉

and 〈Kβ : β < α〉. If
⋃
β<αXβ meets Lα in κ many points then set Q = P . Other-

wise it follows from the inductive hypothesis and ND that∣∣∣∣∣∣Lα \
⋃
β<α

f−1
β (Kβ)

∣∣∣∣∣∣ = c ,

and so by choosings suitable points in Lα \
(⋃
L
(⋃

β<αXβ , κ
)
∪
⋃
β<α f

−1
β (Kβ)

)
,

let Q be a partial κ-point set such that P ⊆ Q and Q \ P ⊆ Lα and |Lα ∩Q| = κ.
Noting that |Q| < c, select Kα ∈ Kα to be such that Q ∩ f−1

α (Kα) = ∅. Let
M⊆ L be such that L ∈M if and only if L ∩ f−1

α (Kα) is somewhere dense in the
relative topology on L. By elementary properties of Euclidean topologies, it can be
shown that f−1

α (Kα) contains at most countably many pairwise disjoint maximal
line segments, and so |M| ≤ ℵ0. For each L ∈ M, L 6= f−1

α (Kα), and so by the
continuity of fα there exists an interval IL ⊆ L such that f−1

α (Kα) ∩ IL = ∅. By
choosing suitable points in

(⋃
L∈M IL

)
\
(⋃
L(Q, κ) ∪

⋃
β≤α f

−1
β (Kβ)

)
, we select

Xα to be a partial κ-point set which extends Q and meets each L ∈M in κ many
points. Then |Xα \ P | ≤ ℵ0.

Let X =
⋃
α<cXα. Then X is a κ-point set. To see that X is delicate, suppose

that f : X → f(X) is a homeomorphism of X onto a λ-point set, for some 2 ≤ λ < c
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such that λ 6= κ. Then neither f nor F−1 cannot be affine, and so by Lavrentieff’s
Theorem there exists an extension of f to a homeomorphism g : Y → g(Y ) such
that Y is a Gδ subset of R2. Letting α < c be such that g = fα, we can argue that
f−1
α (x) ∈ X ∩ f−1

α (Kα) for each x ∈ f(X) ∩Kα, which is a contradiction. �

Corollary 4.3 (ND). There is a two-point set X such that for all homeomorphisms
f : R2 → R2, if f is not affine, then f(X) is disjoint from some line.

We finish by remarking that it is not possible to construct a two-point set X
such that every homeomorphic image of X which is not a two-point set is a κ-point
set for some ℵ0 ≤ κ < c. The homeomorphism of the plane such that

(x, y) 7→

{
(x, y) if 0 ≤ y,
(x+ y, y) if y ≤ 0,

maps any n-point set to a partial 2n-point set for any n < ℵ0.
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