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Abstract. In this paper we examine the structure of countable
closed invariant sets under a dynamical system on a compact met-
ric space. We are motivated by a desire to understand the possible
structures of inhomogeneities in one-dimensional non-hyperbolic
sets (inverse limits of finite graphs) particularly when those inho-
mogeneities form a countable set. All of the previous literature
regarding the collection of inhomogeneities of these spaces focuses
on the case when the collection of inhomogeneities is either finite,
a Cantor set, or the entire space. These are interesting cases; how-
ever they do not exhaust all of the possibilities. We address the
first case not previously covered: when the collection of inhomo-
geneities is countable.

OR???: We examine the possible structure of In, the set of of
inhomogeneities of a one-dimensional non-hyperbolic set (inverse
limits of finite graphs). All of the previous literature regarding
the inhomogeneities of such spaces focuses on the case when In is
either finite, a Cantor set, or the entire space. These are interest-
ing cases; however they by no means exhaust the possibilities. We
address the first case not previously covered: when the collection
of inhomogeneities is countable. We prove a surprising restriction
on the topology of countable In. Conversely, using a novel applica-
tion of techniques from descriptive set theory to construct various
tent map cores, we show that this restriction in fact completely
characterizes the structure of countable In.

1. Introduction

R.F. Williams showed that one-dimensional hyperbolic attractors
can be realized as inverse limits of one-dimensional branched mani-
folds [?]. He extended this result to higher dimensions in [?]. The
bonding maps used in his construction have a certain amount of regu-
larity that ensure the resulting space is a hyperbolic attractor. Namely
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in Williams’ construction branch-points are mapped to other branch-
points and edges are mapped monotonically onto unions of edges. This
forces the space to be locally the product of a Cantor set and an arc.

These hyperbolic spaces, and their higher dimensional analogues,
have been the focus of much study in the last few years. Notably
they have arisen in the study of substitution tiling spaces, cf. [?]
for n-dimensional tilings and [?] for 1-dimensional tilings. Sadun and
Williams have recently shown that n-dimensional tiling spaces are in-
deed Cantor set fiber bundles just like the hyperbolic attractors de-
scribed above [?]. In 2001 M. Barge and B. Diamond utilized a “pat-
tern” that arose from the regular structure inherent in Williams’ con-
struction [?] to characterize one-dimensional hyperbolic attractors that
are orientable and one-dimensional substitution tiling spaces [?]. I. Yi
has also used Williams’ description to find topological invariants for
the nonorientable case [?].

Unlike the hyperbolic case in which each point has a neighborhood
homeomorphic to the product of a Cantor set and an open arc, in a one-
dimensional non-hyperbolic space there may be many inhomogeneities,
i.e. points that have neighborhoods containing branch-points, end-
points, “folded up” arcs or even small non-arclike pieces, cf. [?] and
[?].

In this paper we continue our investigation of one-dimensional in-
variant sets that are non-hyperbolic [?]. We consider inverse limits of
maps, f , of finite graphs, G. We do not impose the condition that
branch-points are mapped to branch-points or that edges are mapped
onto a union of edges. Rather the spaces under consideration in this
paper possess the property of the Hénon attractor discussed by Barge,
Brucks and Diamond in [?] (see also [?]). Namely, neighborhoods of
points in these spaces appear at first glance to have a nice regular
structure, such as being the product of a Cantor set and an open arc,
but upon closer scrutiny, one sees that many neighborhoods contain
collections of arcs that are hopelessly folded up. Arc components do
not travel “straight” around the attractor, but they may turn around
and fold in complicated ways throughout the space, cf. [?, page 268].

In [?] we demonstrate that the points with neighborhoods that are
not homeomorphs of the product of a Cantor set and an open arc fall
into three categories:

(1) branch-points or limits of arbitrarily small non-arclike pieces,
(2) endpoints or limits of endpoints of some small arclike pieces,
(3) limits of “folded” arcs.
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It follows quickly from the precise definitions of the preceding three
classes of points that each defining property is topological. Moreover,
we showed that points in these sets correspond to points that always
project into certain ω-limit sets. This implies that the topological
structure of these inhomogeneities is closely related to the topological
and dynamical structure of the relevant ω-limit sets.

There is an extensive body of literature in which previous authors
have focused on the cases where the set of inhomogeneities is either
finite, [?], [?], [?], [?], & [?], a Cantor set, [?], or the entire space [?]
& [?]. There has been nothing written on the occurrence of a count-
ably infinite collection of inhomogeneities. We consider that case in
this paper, and, by using tools from descriptive set theory, we prove
a surprising restriction on the topology of the collection of inhomo-
geneities. Moreover, if the space is an inverse limit of a tent map, we
completely describe the possibilities for a countably infinite collection
of inhomogeneities. 1

2. Inhomogeneities in non-hyperbolic invariant sets

We encourage the reader unfamiliar with techniques from the theory
of inverse limit spaces to see [?] or [?].

In this section we will mention many of the preliminary definitions
and results regarding inhomogeneities in one-dimensional non-hyperbolic
invariant sets. For a more detailed discussion of items found in this sec-
tion see [?] or [?]. We consider a non-hyperbolic invariant set to be an
inverse limit on a finite graph. Let G be a graph and let f : G → G
be a map. We denote the inverse limit of f on G by lim

←
{G, f}, or

by XG if f is clear, and we denote the nth projection map restricted
to the inverse limit space by simply πn. All one-dimensional compact
connected metric spaces are realizable as such spaces, although not
necessarily with one bonding map or factor space. However, the class
of topological spaces we are considering is quite large.

In order to guarantee that the action of the induced map on arcs in
the inverse limit space is expanding, we usually assume that f is locally

1Replace by: . . . We consider that case in this paper. We prove a surprising re-
striction on the topology of the (compact) set of inhomogeneities when it is count-
able (Corollary ??). Moreover, given any countable compact space C that is not
excluded by this restriction, we construct an inverse limit of a tent map whose inho-
mogeneities are homeomorphic to C (Section ??). Our construction uses techniques
from descriptive set theory and this application to dynamical systems is, so far as
we are aware, novel. In the case of tent maps, these results completely describe the
possibilities for countable sets of inhomogeneities.
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eventually onto, l.e.o., i.e. for every compact connected B ⊂ G there
is a positive integer n such that fn(B) = G.

If f is a function, U is a set, and U is a collection of sets, we will abuse
notation throughout the paper by using f(U) to mean the collection
of points {f(x) : x ∈ U} and f(U) = {f(U) : U ∈ U}. We define
the mesh of U , mesh(U), to be the largest diameter of its elements,
provided such a number exists. The ω-limit set of a point x is defined
as

ω(x) =
⋂

n∈N
{fm(x)|m ≥ n},

and the ω-limit set of a set A is defined as

ω(A) =
⋃
x∈A

ω(x).

We denote the closure of a set, A, by A. We call a compact, connected,
metric space a continuum and we call a compact connected subset of a
continuum a subcontinuum.

Let X be a topological space and x ∈ X. Let V be an open set
containing x. Call a finite collection of open sets, U = {U1, U2, . . . Un},
of V a linear cover or simple chain provided Ui ∩ Uj 6= ∅ if, and only
if |i− j| < 2. We will call the elements of such a linear cover links. If
mesh(U) < ε then we call U an ε linear cover. Call a finite collection
of linear covers of V , U = {U1,U2, . . .Um} where Ui = {U i

1, U
i
2, . . . U

i
pi
},

a local chaining of V if, and only if,
⋃

i≤m Ui covers V , U
i

j ∩ U
k

l 6= ∅
if, and only if, i = k and |j − l| < 2. Call each element, Ui of a local
chaining U of V a strand of U . If each strand of U is an ε linear cover
call U a local ε-chaining of V .

Let C = {C1, C2, . . . Cn} and D = {D1, D2, . . . Dm} be linear covers
such that for each i ≤ m there is a j ≤ n such that Di ⊆ Cj then we
say D refines C and we write D ≤ C.

If U = {U1,U2, . . .Un} and V = {V1,V2, . . .Vm} are local chainings
of V with the property that

(1) every strand of V refines exactly one strand of U , and
(2) every strand of U is refined by some strand of V .

then we say V refines U and we write V ≤ U . The mesh of a local
chaining is the largest mesh of its strands.

X is locally chainable at x iff there is a neighborhood U of x and a
sequence of local chainings of U , {Ci}∞i=1, such that

(1) mesh(Ci) → 0 as i →∞ and
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(2) Ci ≤ Ci−1.

We will say that the neighborhood U is locally chainable in this case.
The notion of local chainability appeared earlier in [?].

Let U be a local chaining of some U ⊆ X. Let L = {L1, L2, . . . Lp}
be a linear cover that refines some strand Ui of U . Let L be a link of Ui.
We say that L turns in L provided there is a link, M , in Ui, adjacent
to L, and integers a and b with 1 ≤ a < b− 1 < b ≤ p such that

(1) La, Lb ⊆ M ,
(2) Lj ⊆ L−M for some a < j < b, and

(3)
⋃b

i=a Li ⊆ L ∪M .

We call L a local turnlink, or just a turnlink. If it is true that every ε
local chaining of U that refines Ui has a turnlink in L then we call L a
local essential turnlink, or just an essential turnlink. The definition of
essential turnlink is due to Bruin [?].

Let X be a metric space with a point x ∈ X such that X is locally
chainable at x. Let U be a neighborhood of x that is locally chainable.
Call x a folding point of X if for every ε > 0 there is a local ε-chaining,
C, of U that contains x in an essential turnlink. Denote the set of
folding points for a space X by Fd(X).

Let G be a finite graph and let f : G → G be a continuous l.e.o.
map with finitely many turning points. Let XG = lim

←
{G, f}. Let V

be the set of branch-points of G, and let C be the set of turning points
for f . In [?, Theorem 2.1 & Lemma 4.1] we show that, the set of
folding points of XG contains all of the points x ∈ XG that are locally
chainable and do not have neighborhoods homeomorphic to the product
of a Cantor set and an arc. So define the set In[XG] = Fd[XG] ∪ {x ∈
XG|XG is not locally chainable at x}. Thus if x ∈ XG− In[XG] then x
has a neighborhood homeomorphic to the product of a Cantor set and
an arc.

We also prove several theorems that connect the set In[XG] with the
ω-limit sets of the turning points for f and the branch-points of G. For
completeness we now state the relevant theorems.

Theorem 2.1. [?, Theorem 3.2] Let G be a finite graph and let f :
G → G be a continuous l.e.o. map with finitely many turning points.
Let x ∈ XG such that πn(x) = xn 6∈ ω(V ) for all n ∈ N. Then XG is
locally chainable at x.

Theorem 2.2. [?, Theorem 3.3] Let G be a finite graph and let f :
G → G be a continuous l.e.o. map with finitely many turning points.
Let x ∈ XG such that if πn(x) = xn ∈ ω(V ) then the set Vn =
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{vj1 , vj2 , . . . vjr |xn ∈ ω(vji
)} has the property that Vn ∩ ω(V ) = ∅ then

XG is locally chainable at x.

Theorem 2.3. [?, Corollary 4.3.1] Let G be a finite graph and let
f : G → G be a continuous l.e.o. map with finitely many turning
points. Let x ∈ XG be a point of local chainability, then x is a folding
point for XG if, and only if, πn(x) = xn ∈ ω(C) for all n ∈ N.

In light of these theorems and the fact that f [ω(A)] = ω(A) for all
sets A, we see that to analyze the structure of the set In[XG] we need
to analyze the structure of ω(C) and ω(V ).

3. Restriction on scattered height

In this section we assume that XG is an inverse limit of a finite graph,
G with bonding map, f , that is finite-to-one and l.e.o. We also assume
that the set of inhomogeneities is countably infinite.

Since In[XG] is the collection of points that do not have a neighbor-
hood homeomorphic to the product of a Cantor set and an open arc,
the set In[XG] = Fd[XG] ∪ {x ∈ XG|XG is not locally chainable at x}
is the complement of a collection of open neighborhoods and as such it
is closed. In fact it is compact.

We begin this section with a brief discussion of the topological struc-
ture of countable, compact Hausdorff spaces.

The Cantor-Bendixson derivative A′ of a subset A of a space X is
the set of limit points of the set A and the iterated Cantor-Bendixson
derivatives of the space X are defined inductively by

X(0) = X,

X(α+1) =
(
X(α)

)′
,

X(λ) =
⋂

α<λ

X(α) if λ is a limit ordinal.

Clearly for some ordinal γ, X(γ) = X(γ+1) and X is said to be scattered
if this set is empty and X is nonempty. In this case, a point of X has
a well-defined rank, often called the scattered height or limit type of x,
defined by lt(x) = α if and only if x ∈ X(α) \ X(α+1). The αth level
Lα of X (or, more formally, LX

α ) is then the set of all points of limit
type α. Clearly Lα is the set of isolated points of X(α). The limit type
(or scattered height) Lt(X) of the space X, itself, is the least ordinal γ
such that X(γ) = ∅. Notice that Lt[X] is the Cantor-Bendixson Rank
of X, see [?, Page 33]. If X is a compact scattered space, then Lt(X)
is a successor ordinal α + 1 and the level Lα is a finite set of points
each of limit type α.
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If an ordinal (regarded as the set of its own predecessors) is given
its natural order topology then it forms a scattered space and it is
a standard topological fact that every countable, compact Hausdorff
space is not only scattered but homeomorphic to a countable successor
ordinal. Now, every successor (i.e. compact) ordinal δ has a canonical

decomposition, the Cantor Normal Form, δ =
( ∑k

i=1 ωαini

)
+1, where

ni is a positive integer and αi+1 < αi < ω1. Moreover, if lt(γ) < lt(δ),
then γ + δ = δ and so δ + γ is homeomorphic to δ. Hence every
compact ordinal is homeomorphic to ωαn + 1, for some 0 ≤ n ∈ ω and
0 ≤ α ∈ ω1, where α is the limit type of the n points in the finite top
level of the space.

In this section we prove a surprising restriction on the possible limit
type of the set of inhomogeneities of XG assuming that In(XG) is count-
able. The main result of this section, Corollary ??, states that when
In(XG) is countable, then Lt[In(XG)] is 0, 1 or α + 2 for some ordinal
α (so that the points of inhomogeneity of highest rank have scattered
height 0 or successor α + 1). This shows, for instance, that there is no
space, XG, with Lt[In(XG)] = ω or with Lt[In(XG)] = ω +1. Since the
points of highest limit type are periodic under any homeomorphism,
we accomplish this by examining the possible limit types of periodic
points contained in In[XG].2

We begin by considering the problem in a more general context.

Lemma 3.1. Let X be a compact metric space, and let f : X → X
be a continuous finite-to-one map, and let A be a closed subset of X
with the property that f(A) = A. Then f [LA

α ] ⊇ LA
α for all countable

ordinals α.

Proof. Since f maps A onto itself, in particular f [LA
0 ] ⊇ LA

0 . Let α
be a countable ordinal and suppose that f [LA

α ] ⊇ LA
α . Let z ∈ LA

α+1.
Then there is a sequence of points, (yn)n∈N, in LA

α converging to z. For
each such point, yn, let y′n be a preimage of yn in LA

α . Let
(
y′ni

)
i∈N

be a convergent subsequence of (y′n)n∈N. Let z′ = limi→∞ y′ni
. Then

lt(z′) > α. Since f is continuous, f(z′) = z. Thus lt(z′) ≤ α + 1.
Hence lt(z′) = α + 1. This implies that f [LA

α+1] ⊇ LA
α+1.

Now suppose that α is a limit and the theorem is true for all β < α.
Then if z ∈ LA

α with yn ∈ LA
βn

and βn → α and n → ∞ the above
argument will provide a preimage of z, z′, with lt(z′) > β for all β < α.
So lt(z′) ≥ α, but since f(z′) = z, lt(z′) = α. This completes the
proof. ¤
Thus, by the previous lemma, we have that for every α

2Change here
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h
[
LIn[XG]

α

]
= LIn[XG]

α

for every homeomorphism h : XG → XG. Hence if Lt [In[XG]] = γ + 1,

then L
In[XG]
γ is a finite set that is preserved by every homeomorphism

of XG, so it consists of finitely many periodic orbits for each home-
omorphism, h, of XG. Let f̂ denote the induced homeomorphism on
XG, i.e. the shift homeomorphism induced by the bonding map f . By
our assumptions about the bonding map, f , we know that f̂ stretches
small arcs in XG.

The main result of this section relies on the fact that each point in
the top level of In[XG] is a periodic point that is repelling with respect

to In[XG] under either f̂ or f̂−1.
Given a compact metric space X, f a self-map of X, a periodic point

x of f of period r, and subset A of X such that x ∈ A, we say that x
is repelling with respect to A iff for any sufficiently small ε > 0 and any
z ∈ A there is some m such that d(f rm(z), x) ≥ ε.

The main result of this section relies on the fact that each point in
the top level of In[XG] is a periodic point that is repelling with respect

to In[XG] under either f̂ or f̂−1.

Lemma 3.2. Let X be a compact metric space, f a continuous finite-
to-one map of X, x a periodic point of f of period r, and (zn)n∈N a
sequence of points converging to x. Suppose that x is repelling with
respect to (zn)n∈N. Then, for sufficiently large k and each m ≥ k,
either

(1) {f rj(zn) : j ∈ N, d
(
f rj(zn), x

)
< 1/2m ≤ d

(
f rj+1(zn), x

)} is a
finite set or

(2) there is a point ym such that
(a) 0 < d(ym, x) ≤ 1/2m for each m,
(b) ym is a limit of a set of the form {f rn(zn) : n, rn ∈ N}, and
(c) if, moreover, lt(zn) ≥ αn for each n ∈ N, then

lt(ym) ≥ sup{αn + 1 : n ∈ N}.
Proof. By considering the map f r instead of f if necessary, without
loss of generality we may assume that r = 1 and x is a fixed point of
f .

Since (zn)n∈N converges to x and each zn is eventually mapped further
than 1/2k from x, for each k ≤ m, if d(zn, x) < 1/2m, then there is some
jn such that d

(
f jn(zn), x

)
< 1/2m ≤ d

(
f jn+1(zn), x

)
. Since X is com-

pact, the set {f jn(zn) : n ∈ N, d
(
f jn(zn), x

)
< 1/2m ≤ d

(
f jn+1(zn), x

)}
is either finite or has a limit point ym and d(ym, x) ≤ 1/2m. Since
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d(f jn+1(zn), x) ≥ 1/2m for each n ∈ N, d(f(ym), x) ≥ 1/2m and so
ym 6= x.

If lt(zn) ≥ αn, then lt
(
f jn(zn)

) ≥ αn by continuity. Hence lt(y) ≥
sup{αn + 1 : n ∈ N}. ¤

Given a compact metric space, X, a continuous map, f , of X and a
countable closed subset, A, of X that is forward invariant with respect
to f we now show that any periodic point, x, in A that is repelling
with respect to A cannot have limit type of a limit ordinal.

Theorem 3.3. Let X be a compact metric space, and f : X → X be
a continuous finite-to-one map. Let A ⊂ X be countable, closed and
forward invariant with respect to f . Let x be a periodic point of f of
period r. If x is repelling with respect to A and ltA(x) = α, then α is
not a limit ordinal.

Proof. Again, without loss of generality, we may assume that x is a
fixed point of f .

Suppose that lt(x) = α is a limit ordinal. Then there is a sequence
of points (zn)n∈N in A converging to x such that lt(zn) = αn, where
(αn)n∈N is a strictly increasing sequence of ordinals converging to α. So
Lemma ?? applies. Since (αn)n∈N is strictly increasing with supremum
α, for each m ≥ k, the set {f j(zn) : j, n ∈ N, d

(
f j(zn), x

)
< 1/2m ≤

d
(
f j+1(zn), x

)} is either infinite or {lt (
f j(zn)

)
: j, n ∈ N, d

(
f j(zn), x

)
<

1/2m ≤ d
(
f j+1(zn), x

)} is a finite set containing some ordinal α′ ≥ α.
In either case, there is a point ym such that 0 < d(ym, x) ≤ 1/2m and
lt(ym) ≥ α. Since the sequence (ym)m∈N converges to x we have a
contradiction and the limit type of x is either 0 or a successor. ¤

This immediately implies the following.

Corollary 3.4. Let X be a compact metric space and let f be a con-
tinuous finite-to-one map of X with repelling periodic point, x. Then
ltA(x) is not a limit ordinal for any closed, forward invariant, countable
set A.

Proof. A repelling periodic point is easily seen to be repelling with
respect to any closed, forward invariant, countable set A of which it is
a limit point. ¤

In XG, however, points that are periodic under f̂ are not necessarily
repelling under f̂ . But they are repelling with respect to In[XG]. This
gives us the main result of the section. We write lt(x) for ltIn[XG](x).

Theorem 3.5. Let f : G → G be a continuous finite-to-one map of G
that is l.e.o. Let XG denote the inverse limit of f . Let x ∈ In(XG) be
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a periodic point under the shift homeomorphism, f̂ . Then lt(x) is not
a limit ordinal.

Proof. Without loss of generality assume that x is fixed under the shift
homeomorphism and x = (x, x, . . . ).

Suppose that lt(x) = α and that (zn)n∈N is a sequence from In(XG)
converging to x such that α = sup{lt(zn) + 1 : n ∈ N}. We will show

that for either the shift homeomorphism, f̂ [(x1, x2 . . . )] = (f(x1), x1 . . . ),

or for the inverse of the shift, f̃ [(x1, x2 . . . )] = (x2, x3 . . . ), there is a
subsequence, (zni

)i∈N, of (zn)n∈N on which x is repelling and has the
property that α = sup{lt(zni

) + 1 : i ∈ N}. The result will follow.
Let λ > 0 be small enough so that |x−w| ≥ λ for each w ∈ f−1(x).

Let k ∈ N be large enough so that 1
2k+1 < λ and B 1

2k+1
(x) is contained

in the basin of repulsion for x (recall that f is l.e.o. so each point is a
repellor).

We begin by assuming that there is a subsequence of (zn)n∈N, (zni
)i∈N,

with α = sup{lt(zni
)+1 : i ∈ N} and π1(zni

) = x for each i ∈ N. Let mi

be the least integer, j, such that πj(zni
) 6= x. Clearly πmi

(zni
) ∈ f−1(x),

so |πmi
(zni

) − x| ≥ λ. Then d[f̃mi(zni
), x] ≥ λ

2
≥ 1

2k . Hence x is re-
pelling with respect to (zni

)i∈N.
Now assume that there is no such subsequence. So either there is

a tail of (zn)n∈N, (zn)n≥M , such that α = sup{lt(zn) + 1 : n ≥ M}
and π1(zn) 6= x or α is not a limit ordinal. Suppose that there is
a tail of (zn)n∈N, (zn)n≥M , such that α = sup{lt(zn) + 1 : n ≥ M}
and π1(zn) 6= x. Consider zn. If π1(zn) 6∈ B 1

2k+1
(x) then clearly there

is an integer, mn = 0, such that d[f̂mn(zn), x] ≥ 1
2k . On the other

hand, if π1(zn) ∈ B 1

2k+1
(x) \ {x}, then clearly there is an integer mn so

that fmn [π1(zn)] 6∈ B 1

2k+1
(x). Either way d[f̂mn(zn), x] ≥ 1

2k and x is

repelling with respect to (zn)n≥M . ¤

Corollary 3.6. Let f : G → G be a continuous finite-to-one map of
G that is l.e.o. Let XG denote the inverse limit of f . If In[XG] is
countable, then Lt [In[XG]] is either 0, 1, or α + 2 for some countable
ordinal α.

Proof. Let Lt [In[XG]] = β + 1, where β is a countable ordinal. Then

L
In[XG]
β is a collection of periodic points under the map f̂ of scattered

height β. Let x be such a point with period n. By Theorem ??, β
cannot be a limit ordinal. Hence lt(z) = β = α + 1 for some α, and so
β + 1 = α + 2. This establishes the corollary. ¤
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This is equivalent3 to saying that for such an f , if In[XG] is countable,
then it is homeomorphic to one the following countable ordinals (with
its usual order topology): n + 1 or (ωα+1n) + 1, for some n ∈ ω and
0 ≤ α ∈ ω1

We also have the following restriction for ω-limit sets of continuous
maps of the interval

Corollary 3.7. Let f be a continuous finite-to-one map4 of [0, 1] such
that every periodic point of f is repelling. Let x ∈ [0, 1] and suppose
that ω(x) is countably infinite. If z ∈ ω(x) is a periodic point, then
lt(z) is 0 or a successor. Moreover, Lt(ω(x)) is 0, 1 or α + 2 for some
α ∈ ω1.

Proof. Since every periodic point of f is repelling, by Theorem ?? the
limit type of a periodic point z of ω(c) is not a limit ordinal. Since ω(c)

is a countable compact set, T = L
ω(c)
β is finite for some β ∈ ω1. Since

f(T ) = T , T consists of periodic points and β = α + 1 is a successor.
Hence Lt(ω(c)) = α + 2 for some α ∈ ω1. ¤

So again, for such f , if ω(c) is countable then it is homeomorphic to
one of the ordinals listed after Corollary ??.

It is an easy exercise to alter the previous proofs and use the inverse
of the map if we assumed that the action of the map is attracting rather
than repelling on the invariant set.

4. Preliminaries from descriptive set theory

In the previous section we showed that if the set In[XG] is countable
then In[XG] must have scattered height 0, 1 or α+2 for some countable
ordinal α. The next obvious question is “For each countable ordinal α,
does there exist a non-hyperbolic invariant set XG with scattered height
exactly α + 2?” In the next few sections we answer this question in
the affirmative. We do this by considering simpler inverse limit spaces:
inverse limits of unimodal maps of the interval [0, 1]. We showed in
[?] that, given a unimodal map f : [0, 1] → [0, 1] with critical point
c, the set In(lim

←
{[0, 1], f}) coincides exactly with the set of points in

lim
←
{[0, 1], f} that always project into ω(c). So, in order to construct a

space with inhomogeneities that have limit type α+2, we will construct
a unimodal map (actually a tent map) with critical point c with the
property that ω(c) has limit type α + 2.

3I’ve added this bit
4Do we have to add leo here?
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In this section we briefly describe for completeness the construction
of a well founded tree of height α for each countable ordinal α. Such
trees have the remarkable property that they are countable with finite
branches but can have height α for any countable ordinal α. For more
details we refer the reader to [?, I.2].

Let A be a countably infinite set of symbols and let A<N be the set of
all finite sequences of elements of A. Given two elements s, t ∈ A<N we
say that t C s if and only if s is an initial segment of t, i.e. if and only if
t = (t1, t2, · · · , tn) and s = (t1, · · · , tm) for some m < n. If n = m + 1,
then t extends s by one symbol and we write tl s. If s = (s1, · · · , sm)
and t = (t1, · · · , tn), then we denote (s1, · · · , sm, t1, · · · , tn) by st.

A subset T of A<N is said to be a tree on A if it is closed under initial
segments, i.e whenever t ∈ T and, for some s ∈ AN, t C s, then s ∈ T .
Since the null sequence ( ) is an initial segment of any sequence, ( ) is
the top element of every tree on A.

An infinite branch in T is an infinite sequence b = (b1, b2, b3, · · · ) of
elements from A such that (b1, · · · , bn) ∈ T for all n ∈ N. If T has
no infinite branches, then the relation C is well-founded (i.e. has no
infinite descending chains) and T is said to be a well-founded tree.

We can inductively associate a well-defined ordinal height htT (s) to
each element s of a well-founded tree T by declaring

htT (s) = sup
{

htT (t) + 1 : t ∈ T and t C s
}

and associate to each well-founded tree T a well-defined height Ht(T ) =
htT

(
( )

)
. Clearly, if t C s, then htT (t) < htT (s), htT

(
( )

)
> htT (s) for

any ( ) 6= s ∈ T and if s ∈ T has maximal length, then htT (s) = 0.
Trees of height α can be defined recursively. Let sa be the singleton

sequence (a) for some a ∈ A. Obviously T0 = {∅} is a tree of height 0
on A. So suppose that α = β +1 and let us assume that there is a tree
Tβ on A of height β. Since A is infinite, there is, in fact, a countably
infinite family of disjoint trees {Un : n ∈ N} each order isomorphic to
Tβ. Define

Tα =
{
( )

} ∪ {
sat : t ∈ Un, n ∈ N

}
.

Clearly Tα is a well-founded tree on A. Moreover htTα(sat) = htUn(t)
for every t ∈ Un and n ∈ N, so Ht(Tα) = β + 1 = α.

Now suppose that α is a limit ordinal and that for every β < α there
is a tree Tβ of height β on A. Again, since A is countably infinite, we
may assume that Tβ and Tγ are disjoint whenever β 6= γ < α. Define

Tα =
{
( )

} ∪ {
sat : t ∈ Tβ, β < α

}
.

Again it is clear that Tα is a well-founded tree and that Ht(Tα) = α.
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Notice that, as constructed, if t ∈ Tα = T for some α and htT (t) = β
then if γ = β +1, there are infinitely many s ∈ T such that htT (s) = β
and s l t and if γ is a limit, then for each β < γ, there is some s l t
such that htT (s) = β.

5. Preliminaries from dynamics of maps of the interval

We now provide the necessary definitions from dynamics for the ex-
amples that we construct in §??. Let f : [0, 1] → [0, 1] be a unimodal
map with critical point c. For any x ∈ [0, 1] we define the itinerary of
x under f to be If (x) = t0t1t2 . . . where ti ∈ {0, 1, C} and ti = 0 if
f i(x) ∈ [0, c), ti = 1 if f i(x) ∈ (c, 1], and ti = C if f i(x) = c. The
kneading sequence for f , K(f), is If [f(c)]. We adopt the standard con-
vention of stopping an itinerary at the first occurrence of the symbol
C. In the rest of the paper if A is a finite word, B is a word, and A is
an initial segment of B we will write A v B.

A sequence, M , in symbols 0 and 1 is primary provided it is not
a ∗-product, i.e. there is no finite word W and sequence (ui)i∈N of
points from {0, 1} with M = Wu1Wu2Wu3 . . . . The shift map, σ, on
sequences is defined by σ[t0t1, . . . ] = t1t2 . . . . We order sequences using
the parity-lexicographic ordering, ≺. To define this order we first define
0 < C < 1. Let t = t0t1t2 . . . and s = s0s1s2 . . . be sequences of zeroes
and ones. Let n be the least j such that tj 6= sj. Let m be the number
of occurrences of the symbol 1 in the string t0t1 . . . tm−1 = s0s1 . . . sm−1.
If m is even then define t ≺ s if, and only if, tm < sm. If m is odd then
define t ≺ s if, and only if tm > sm. It is easy to show that if x < y
then If (x) ≺ If (y). A sequence, K, is shift-maximal provided that for
all j ∈ N, σj(K) ≺ K or σj(K) = K.

Given q ∈ [1, 2], we define the tent map Tq by the following:

Tq(x) =

{
qx if x ≤ 1/2

q(1− x) if x ≥ 1/2,

We will restrict this map to its core, i.e. the interval [T 2
q (1/2), Tq(1/2)],

which is the only interval that contributes to the inverse limit space,
and we will rescale this restricted map, Tq|[T 2

q (1/2),Tq(1/2)] to the entire
interval. This rescaled map we will call the tent map core and we
denote it by fq : [0, 1] → [0, 1]. Notice that the critical point for fq is
not 1/2, rather it is the point c = 1− 1/q. In order to ensure that fq is

l.e.o. we also assume that q ∈ (
√

2, 2]. Due to renormalization of tent
maps when q ∈ [1,

√
2] this is not a restriction on the topology of the

inverse limit space.
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Theorem 5.1. [?, Lemma III.1.6] Let K be a infinite sequence of 0s
and 1s that is shift-maximal and primary. Then there is a parameter,
q, in (

√
2, 2] generating a tent map core, fq, with kneading sequence K.

Lemma 5.2. [?, Theorem II.3.8] Let f be a unimodal map of the in-
terval with an infinite postcritical orbit. Let J be an infinite sequence
of 0s and 1s. Then there is a point, x, in [0, 1] with If (x) = J if, and
only if, σ[K(f)] ¹ σj(J) ¹ K(f) for all positive integers j.

For the next few lemmas we assume that f : [0, 1] → [0, 1] is a l.e.o.
unimodal map with critical point c. This implies that If is injective.
The following lemmas are immediate consequences of the definitions or
the continuity of f and so we have omitted their proofs.

Lemma 5.3. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1]
such that ω(x) is countable. For any point y ∈ ω(x) with lt(y) = α,
there is some countable ordinal β ≤ α such that if y′ ∈ ω(x) and
fk(y′) = y, for some k ∈ N, then lt(y′) ≥ β.

Now, let Σf be the set of allowable itineraries of f , i.e. Σf is the
collection of all sequences of 0’s and 1’s that are either infinite or finite
and have last symbol C with the property that ζ ∈ Σf if, and only if,
there is a y ∈ [0, 1] such that If (y) = ζ. Let ζ ∈ Σf and let A be a
finite word such that A v ζ. Denote the set {x ∈ [0, 1]|A v If (x)} by
WA.

Lemma 5.4. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let ζ ∈ Σf

and let A be a finite initial segment of ζ. Then WA is a closed interval
with precritical endpoints.

Lemma 5.5. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1]
be a point that is never mapped to the critical point. Let A be a finite
word such that A v If (x). Then x ∈ W ◦

A. Moreover for any x ∈ [0, 1]
and for all ε > 0 there is a finite initial segment, A′ v If (x) such that
WA′ ⊆ Bε(x).

The following lemma will be used throughout the rest of the paper to
use finite words from the itinerary of a point to determine if it is in
the ω-limit set of the critical point. It follows easily from the other
lemmas.

Lemma 5.6. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1]
be a point that is never mapped to the critical point. Suppose that
y ∈ [0, 1] is also not precritical. Then y ∈ ω(x) if, and only if, for
all finite words A satisfying A v If (y) there is an infinite sequence of
positive integers, (ki)i∈N, such that A v σki [If (x)].
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The following lemma is an immediate consequence of Lemma ??.

Lemma 5.7. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1]
and suppose that y ∈ ω(x). Then y is isolated in ω(x) if, and only
if, for every finite word W that is an initial segment of If (y) there
is a positive integer N and t ∈ {0, 1} such that if m > N and W is
an initial segment of σm[If (x)] then Wt is also an initial segment of
σm[If (x)].

The last lemma of the section will be useful in connecting the various
levels of ω(c) with the levels of Fd[lim

←
{[0, 1], f}].

Lemma 5.8. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. Let x ∈ [0, 1].

Suppose that ω(x) is countable, then f [L
ω(x)
α ] ⊇ L

ω(x)
α for all countable

ordinals α.

Proof. Since f is continuous and f [ω(x)] = ω(x) the result follows from
Lemma ??. ¤

6. Examples

In this section we construct a collection of tent map cores, with
critical point c, that have the property that, for every countable ordinal
α, Lt[ω(c)] = α+2. We then demonstrate in the next section that this
implies that the set In[lim

←
{[0, 1], f}] has limit type α + 2. In light of

Corollary ?? this is the richest collection of limit types possible.
Let γ be a countable ordinal and T = Tγ be the well-founded γ

tree constructed via the process outlined in Section ??. Let (Ni)i∈N be
an increasing sequence of positive integers with infinite complement,
M . Let φ be a bijection from M to T , and define Γ such that given
r = (r1, r2, r3, . . . rn), a finite sequence of terms from M , r ∈ Γ if,
and only if, φ(ri+1) l φ(ri) for each 1 ≤ i ≤ n − 1. Clearly Γ is
countable, so assume some enumeration, (ri)i∈N, of Γ. For ri ∈ Γ write
ri = (ri

1, r
i
2, . . . r

i
mi

).
Starting with the words A = 1001 and B = 101, and given ri in Γ,

define the finite word

Ci = ABri
1ABri

2A · · ·ABri
mi A,

where by W n we mean W ˆW ˆW . . . ˆW n-times, and by C0 we mean
A. Define

s = AABN1C1B
N2C1B

N3C2B
N4C1B

N5C2B
N6C3B

N7C1 · · ·
where the subscripts of the Ci follow the pattern:
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1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2 . . .

Proposition 6.1. s is strictly shift-maximal, primary and (101)∞ ≺ s.
Thus there is a parameter, q ∈ (

√
2, 2], such that fq is the core of a

tent map with kneading sequence s.

Proof. Clearly (101)∞ ≺ s, and because s starts with AA which does
not reoccur in s, s is primary. Let k ∈ N and consider σk(s). If the
first symbol of σk(s) is 0 then σk(s) ≺ s. Similarly if σk(s) starts with
11 or 101 then σk(s) ≺ s. Notice there is no string of 1000 in s. So
suppose that σk(s) begins with 1001 = A. Recall that s = AA · · · , and
by definition there is not another occurrence of AA in s. So σk(s) must
start AB = 1001101. Clearly, AB · · · ≺ AA · · · . Thus s is strictly
shift-maximal. By Theorem ?? there is a parameter q ∈ (

√
2, 2] such

that the core of the tent map fq has kneading sequence s. ¤
Let q be the parameter guaranteed by the previous lemma and con-

sider the tent map core, fq, with kneading sequence s. We call tent
map cores constructed via the well-founded tree construction outlined
above well-founded tent map cores. Let c be the critical point for this
map and consider ω(c). We will show that Lt[ω(c)] = γ + 2. Given
x ∈ [0, 1], we denote the itinerary of x under fq by I(x).

Proposition 6.2. Let x ∈ [0, 1]. Then x ∈ ω(c) if, and only if,

I(x) =

{
σj[BkCiB

∞] for some 0 ≤ j < 5, k ∈ N, i ∈ N ∪ {0},
σ`[B∞] for 0 ≤ ` < 3.

Proof. We begin by considering the case of x ∈ [0, 1] such that I(x) =
σ`[B∞] for some 0 ≤ ` < 3. Since for each n ∈ N there is an integer m
such that Np > n for all p > m and since BNp occurs in I(c) for each
p ∈ N, we have that the point y ∈ [0, 1] with I(y) = B∞ is in ω(c).
Recall that ω(c) is forward invariant and x is clearly a forward image
of y, hence x ∈ ω(c).

Consider the case of i = 0. Suppose that x ∈ [0, 1] with I(x) =
σj[BkAB∞]. We will show that the point y ∈ [0, 1] with I(y) = BkAB∞

is in ω(c). Let (mi)i∈N be a sequence of positive integers such that
rmi

= (rmi
1 ). There is a subsequence of (rmi

)i∈N, (rmij
)j∈N, such that

r
mij

1 → ∞ as j → ∞. By definition Cij occurs infinitely often in I(c)

and, for sufficiently large j, BkA is the tail of Cij . Hence BkA occurs
infinitely often in I(c). Since

Cij = ABr
mij
1 A,
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we have that for any integer m, CijB
m occurs infinitely often in I(c).

Hence BkABm occurs infinitely often in I(c) for all m. Thus the point y
is an element of ω(c). Again, since ω(c) is forward invariant, x ∈ ω(c).

Assume that x ∈ [0, 1] with I(x) = σj[BkCiB
∞] and i 6= 0. Since

0 ≤ j < 5 and k ≥ 1 we have that I(x) begins with one of

(1) BkABri
1A = (101)k1001(101)ri

11001 if k ≥ 1,

(2) σ[BkABri
1A] = 01(101)k−11001(101)ri

11001 if k > 1,

(3) σ2[BkABri
1A] = 1(101)k−11001(101)ri

11001 if k > 1,

(4) σ3[BkABri
1A] = (101)k−11001(101)ri

11001 if k > 1,

(5) σ4[BkABri
1A] = 01(101)k−21001(101)ri

11001 if k > 2,

(6) σ[BABri
1A] = 011001(101)ri

11001 = σ4[B2ABri
1A],

(7) σ2[BABri
1A] = 11001(101)ri

11001,

(8) σ3[BABri
1A] = 1001(101)ri

11001,

(9) σ4[BABri
1A] = 001(101)ri

11001,

Hence ri
1 is well-defined. Since the tail of I(x) is B∞, and ri

1 is well-
defined, Ci is also well-defined. Assume that I(x) begins with BkA.
Notice that each Ci occurs infinitely often in I(c), and each occurrence
of Ci in I(c) is preceded by B. Also notice that there is an infinite
subsequence, (Nui

)i∈N of A such that infinitely many occurrences of
Ci are followed by BNui , and for each m there is an occurrence of
the string CiB

Nm in I(c). Hence every initial segment of I(x) occurs
infinitely often in I(c) and we have shown that x ∈ ω(c). The other
cases are forward images of this case, and ω(c) is forward invariant.
This establishes one direction of the proposition.

Suppose that x ∈ ω(c) and consider I(x). Either I(x) contains a
string of the form A = 1001 or σ(A) = 001 or it does not. If it does
not contain such a string then I(x) = σ`(B∞) for some 0 ≤ ` < 3, and
we are finished. So suppose that I(x) contains A as a subword. If it
contains exactly one occurrence of A or σ(A) then there is a k ∈ N
and j < 5 such that I(x) = σj[BkAB∞] and we are finished. Suppose
that I(x) contains more than one occurrence of A. The word AA never
reoccurs in I(c), so I(x) = σj[BkABv1A · · · ] with 0 ≤ j < 5 and k ∈ N.
Since x ∈ ω(c), the word ABv1A or σ[ABv1A] occurs infinitely often
in I(c), so v1 = ri

1 for some, not necessarily unique, i. Continuing we
can write I(x) = σj[BkABv1ABv2 · · ·ABvn · · · ]. By the construction
of I(c) and the fact that x ∈ ω(c), the sequence (v1, v2, . . . vn . . . ) must
be in Γ. Since T is well-founded, this sequence must be finite. Hence
there is some ri such that ri = (v1, v2, . . . vmi

). The only possible tail
for I(x) is B∞, since every time the word A occurs in I(x) it does not
occur more than twice. This establishes the proposition. ¤
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Proposition 6.3. Let x ∈ ω(c) with I(x) = σj[BkCiB
∞] for some

0 ≤ j < 5 and k, i ∈ N. Then lt(x) = htT [φ(ri
mi

)].

Proof. Let x ∈ ω(c) with I(x) = σj[BkCiB
∞] for some 0 ≤ j < 5 and

k, n ∈ N. Assume that htT [φ(ri
mi

)] = 0. Then there is no ` such that r`

contains ri
mi

as anything but the last entry. Hence for every N , there
is an integer M such that if Ci v σn[I(c)] then CiB

M v σn[I(c)] for all
n > N . Thus by Lemma ?? x is isolated in ω(c) and lt(x) = 0.

Let ζ < γ and assume the theorem is true for all β < ζ. Also
assume that htT [φ(ri

mi
)] = ζ. We first consider the case of ζ a limit

ordinal. Let (ζq)q∈N be a sequence of ordinals converging to ζ, and
for a fixed q and for each positive integer v, let rjq,v be defined so

that htT [φ(r
jq,v
mjq,v

)] = ζq and r
jq,v

mjq,v−1 = ri
mi

. By the construction of T ,

such a rjq,v can be defined for each q, v ∈ N. We also know, by the

construction of T , r
jq,v
mjq,v

→∞ as v →∞. Hence the points yq,v ∈ ω(c)

with I(yq,v) = σj[BkCjq,vB
∞] have lt[yq,v] = ζq and since r

jq,v
mjq,v

→ ∞
we have that yq,v → x as v → ∞. Thus lt(x) > ζq. Since this is true
for each q, lt(x) ≥ ζ. A similar argument can be provided to show that
lt(x) ≥ ζ in the case that ζ is a successor ordinal.

To prove that lt(x) = ζ, let z ∈ ω(c), z 6= x such that I(z) =
σt[BuCvB

∞] where t < 5, u, v ∈ N and htT [φ(rv
mv

)] = ζ. Then lt(z) ≥
ζ. Clearly there exists a positive number, δ1, so that if Cv has a different
number of occurrences of A than Ci does, then z 6∈ Bδ0(x). So assume
that Cv has the same number of occurrences of A that Ci has. This is
the same as assuming that rv has the same number of terms as ri. Let
δ1 be small enough so that if y ∈ Bδ1(x) then I(y) agrees with I(x)
past the occurrence of Ci in I(x). This implies that z 6∈ Bδ(x) where
δ = min{δ0, δ1}. Since this is true for any z 6= x with lt(z) ≥ ζ, we
have that x is not the limit of points of limit type ζ. Thus lt(x) ≤ ζ,
and combining this with the previous we see that lt(x) = ζ. ¤

Proposition 6.4. Let x ∈ ω(c) with I(x) = σj[BkAB∞] with 0 ≤ j <
5 and k ∈ N. Then lt[x] = γ.

Proof. Let x ∈ ω(c) be such that I(x) = σj[BkAB∞] for some 0 ≤ j < 5
and k ∈ N. Let β < γ. We will show that lt(x) > β. Let (ri)i∈N be
a sequence such that htT [φ(ri

mi
)] = β for all i ∈ N and ri

1 6= r`
1 for

all `, i ∈ N. The existence of such a sequence is guaranteed by the
construction of T , and it is easy to see that r`

1 → ∞ as ` → ∞. Let
yi ∈ ω(c) be the point such that I(yi) = σj[BkCiB

∞] for the same j
and k specified earlier. Then lt(yi) = β for all i and yi → x as i →∞.
Thus lt(x) > β for all β < γ. Hence lt(x) ≥ γ.
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Since each point y ∈ ω(c) with I(y) = σt[BuCvB
∞] for 0 ≤ t < 5,

u, v ∈ N has lt(y) < γ, the only points in ω(c) with limit type greater
than or equal to γ are points, z ∈ ω(c), with I(z) = σt[BuAB∞] or
I(z) = σ`[B∞] where 0 ≤ t < 5, u ∈ N and 0 ≤ ` < 3. Clearly there
is a positive number ε such that no such z 6= x is in Bε(x). Hence x is
not a limit of points with limit type γ, so lt(x) ≤ γ. Combining this
with the previous we have that lt(x) = γ. ¤
Proposition 6.5. Let x` ∈ ω(c) with I(x`) = σ`[B∞] with 0 ≤ ` < 3.
Then lt[x`] = γ + 1.

Proof. Let x` ∈ ω(c) with I(x`) = σ`[B∞] for ` < 3. Let (ki)i∈N be
an increasing sequence of integers. Let zi ∈ ω(c) such that I(zi) =
σ`[BkiAB∞]. By Proposition ??, lt(zi) = γ and clearly zi → x` as
i → ∞. Thus lt(x`) ≥ γ + 1. There are only three possible points,
x0, x1, x2, with limit type greater than γ +1. Hence there are no points
in ω(c) with limit type γ + 2. Thus lt(x`) = γ + 1. ¤
Corollary 6.6. Lt[ω(c)] = γ + 2.

Proof. This follows immediately from the previous propositions. ¤
As a result of this construction we have the following theorem.

Theorem 6.7. Let γ be a countable ordinal and let n ∈ N. Then there
is a tent map core, f : [0, 1] → [0, 1], with critical point c such that

(1) Lt[ω(c)] = γ + 2 and

(2) |Lω(c)
γ+1| = n.

Proof. By the examples constructed earlier in this section, for any
countable ordinal, γ, there is a tent map core, f , such that Lt[ω(c)] =
γ + 2. Moreover, given n ∈ N, we could have chosen a different finite
word B, corresponding to a period n orbit and also a word A = 10j1
that would guarantee that the sequence built is primary and shift max-
imal. ¤

7. Folding points in inverse limit spaces

In this section we use the collection of examples constructed in the
previous section to show that there is a non-hyperbolic invariant set, X,
with a countable collection of inhomogeneities of X, In(X), displaying
any topological structure not precluded by Corollary ??. The spaces
we build are just the inverse limits of the various tent map cores, fq,
constructed in the previous section. We will denote the inverse limit of
f by Xf and the inverse limit of fq by Xq. Since these spaces are inverse
limits of continuous maps on intervals, they are chainable continua, and
so In(Xq) = Fd(Xq). In [?] we prove the following theorem:
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Theorem 7.1. Let f : [0, 1] → [0, 1] be unimodal and l.e.o. with critical
point c. Let x ∈ Xf . Then x ∈ Fd[Xf ] if, and only if, for every n ∈ N ,
πn(x) ∈ ω(c).

We extend that theorem to the following corollary that allows us to

analyze the structure of the sets L
In[Xf ]
α = L

Fd[Xf ]
α .

Corollary 7.2. Let f : [0, 1] → [0, 1] be unimodal with critical point c
such that f is l.e.o. Let x ∈ Xf . If α is the least ordinal such that for

infinitely many n ∈ N , πn(x) ∈ L
ω(c)
α then lt(x) ≥ α.

Proof. Let x ∈ Fd[Xf ]. For each n, let βn be an ordinal such that

πn(x) = xn ∈ L
ω(c)
βn

. Then (βn)n∈N is a non-increasing sequence of ordi-
nals. Hence it only contains finitely many ordinals. Let γ be the least.
Since the sequence is non-increasing, there exists an integer m such
that βi = γ for all i ≥ m. So the ordinal mentioned in the statement
of the corollary is well-defined for any point in Fd[Xf ]. Moreover, if α

is the least ordinal β such that xn ∈ L
ω(c)
β for infinitely many n, then

in fact α is the only ordinal β such that xn ∈ L
ω(c)
β for infinitely many

n.
The case of α = 0 is obvious. We proceed inductively. Let α > 0

be an ordinal and assume the corollary is true for all β < α. Let
x ∈ Xf with x ∈ Fd[Xf ] such that α is the ordinal such that for all

n > M xn ∈ L
ω(c)
α , for some m ∈ N. Then clearly for any β < α

any neighborhood containing x will contain points y with the property

that yn ∈ L
ω(c)
β for infinitely many n. Hence any neighborhood of

x will contain points, y, with lt(y) ≥ β. Thus x ∈ Fd[Xf ]
(ζ), the ζth

iterated Cantor-Bendixson derivative of Fd[Xf ], for some ζ ≥ α. Hence
lt(x) ≥ α. ¤

In order to strengthen the statement of Corollary ??, we will use the
precise structure of the well-founded tent map cores to show that for
the point x mentioned in Corollary ?? we have lt(x) = α. To that end
we prove the following lemmas.

Lemma 7.3. Let f be a well-founded tent map core with critical point
c. Let q ∈ M . There is a finite sequence of allowable words, ri ∈ Γ
such that ri

mi
= q. Moreover, for any pair of such allowable words, r,

s, either r is a tail of s or s is a tail of r.

Proof. Recall that a word, v = (v1, v2, . . . vm), is allowable provided
that φ(vi)l φ(vi−1). By the construction of T , given any d ∈ N′ there
is exactly one d−1 ∈ N′ such that φ(d) l φ(d−1). This fact combined
with the fact that T is well-founded proves the lemma. ¤
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Let x0 ∈ ω(c). Call an infinite sequence, (x0, x−1, x−2 . . . ) permitted
provided f(x−i) = x−(i−1) and x−i ∈ ω(c) for each i ∈ N. Assume α <

ω1 and that x0 ∈ L
ω(c)
α . Call a permitted sequence, (x0, x−1, x−2 . . . ),

α-permitted provided that x−i ∈ L
ω(c)
α for all i ∈ N.

Lemma 7.4. Let x0 ∈ ω(c), and let (x0, x−1, x−2 . . . ) be a permitted
sequence. There is an ordinal α < ω1 and a positive integer j such that
the sequence (x−j, x−(j+1) . . . ) is an α-permitted sequence.

Proof. There is no infinite decreasing sequence of ordinals and lt(x) ≤
lt(f(x)). ¤

Lemma 7.5. Let α < ω1, and let z ∈ L
ω(c)
α . There at least one and no

more than finitely many α-permitted sequences, (x0, x−1, x−2 . . . ) with
x0 = z.

Proof. Since f(L
ω(c)
α ) ⊇ L

ω(c)
α , given such a point z there is an α-

permitted sequence, (x0, x−1, x−2 . . . ) with x0 = z. Let (y0, y−1, y−2 . . . )
be some α-permitted sequence.

By Proposition ??,

I(z) =

{
σj[BkCiB

∞] for some 0 ≤ j < 5, k ∈ N, i ∈ N ∪ {0},
σ`[B∞] for 0 ≤ ` < 3.

We handle the first case first. Assume that I(z) = σj[BkCiB
∞] for

some 0 ≤ j < 5 and k, i ∈ N. Then α = lt(z) = htT [φ(ri
mi

)], by
Proposition ??. By Lemma ?? there are only finitely many possible
words, Cu, with ru

mu
= ri

mi
. For each of these strings, Cu, longer than

Ci, there is a point y ∈ L
ω(c)
α such that fn(y) = z for some n ∈ N with

I(y) = σs[BtCuB
∞] for some 0 ≤ s < 5, and t ∈ N. Also, if w ∈ L

ω(c)
α

such that fn(w) = z for some n ∈ N, then I(w) = σs[BtCuB
∞] for

some 0 ≤ s < 5, t ∈ N, and for one of the finitely many u’s. Thus
for each of the finitely many u’s there is a single α-permitted sequence,
(y0, y−1, y−2 . . . ) with y0 = z and for some fixed positive integer, Mu,
all m ≥ Mu have I(y−m) = σs[BtCuB

∞]. Thus proving the lemma for
this first case.

If instead I(z) = σ`[B∞], for some 0 ≤ ` < 3 then lt(z) = γ + 2 and
there are exactly three (or n if we constructed the kneading sequence
of f with a different word B) points with that limit type. So there are
only three (γ + 2)-permitted sequences. ¤
Lemma 7.6. Let x ∈ lim

←
{[0, 1], f} have πn(x) = xn ∈ ω(c) for all

n ∈ N. Let α < ω1 be such that xj ∈ L
ω(c)
α for all j ≥ J . Then there
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are finitely many points, z ∈ lim
←
{[0, 1], f}, such that zn ∈ ω(c) for all

n ∈ N and zJ = xJ and zj ∈ L
ω(c)
α for all j ≥ J .

Proof. This follows from the fact that each such z corresponds to an α-
permitted sequence, (y0, y−1, y−2 . . . ), with zJ = y0 = xJ . Since there
are only finitely many such sequences, there are only finitely many
points, z ∈ lim

←
{[0, 1], f}. ¤

Theorem 7.7. Let x ∈ lim
←
{[0, 1], f} have πn(x) = xn ∈ ω(c) for all

n ∈ N. Let α < ω1 be such that xj ∈ L
ω(c)
α for all j ≥ J . Then

x ∈ L
Fd[lim← {[0,1],f}]
α

Proof. By Proposition ?? we know that lt(x) ≥ α. By Lemma ??,

there are only finitely many points, z, with zJ = xJ and zj ∈ L
ω(c)
α for

all j ≥ J . Thus lt(x) = α. ¤
Proposition 7.8. Let f : [0, 1] → [0, 1] be a well-founded tent map core
with critical point c. Assume that Lt[ω(c)] = γ + 2 for some ordinal γ,

and let |Lω(c)
γ+1| = n. Then

(1) Lt[Fd(Xf )] = γ + 2 and

(2) |LFd(Xf )
γ+1 | = n and

(3) |LFd(Xf )

β | = ℵ0 for all β < γ + 1.

Proof. By Lemma ?? for all β < γ + 2, f [L
ω(c)
β ] ⊇ L

ω(c)
β . Hence for

each point in L
ω(c)
β , x0, we can build a sequence of preimages, (xi)i∈N

such that f(xi+1) = xi and xi ∈ L
ω(c)
β for all i. Thus the point x =

(x0, x1, x2 . . . ) ∈ Xf , and by Proposition ??, x ∈ L
Fd(Xf )

β because x

projects always into L
ω(c)
β . ¤

Since the top level of ω(c) in the Cantor-Bendixson decomposition
partitions into finitely many periodic orbits we have that for any well-
founded tent map there are a finite number of periodic points that
generate the points in the inverse limit space that have the most topo-
logically “complicated” neighborhoods.

Let X be a chainable continuum with Fd(X) countable. We define
the folding spectrum of X, FS(X), to be the ordered pair, (α, n), where

α = Lt[Fd(X)] and n = |LFd(X)
α−1 |. Note that FS(X) is topological. This

observation together with the examples of the well-founded tent map
cores constructed in the previous section leads to the following theorem.

Theorem 7.9. There are uncountably many nonhomeomorphic tent
map inverse limit spaces.



NON-HYPERBOLIC INVARIANT SETS 23

In fact we have shown that there are ω1 many nonhomeomorphic tent
map inverse limits. This theorem should be contrasted with [?, Corol-
lary 2] in which Barge and Diamond demonstrate there are uncount-
ably many, in fact c many, nonhomeomorphic inverse limits spaces of
unimodal maps. However, the maps they consider are infinitely renor-
malizable unimodal maps, such as logistic maps. The maps we consider
here are not infinitely renormalizable, being locally eventually onto.

8. Counting parameters

In this section we demonstrate that, although the construction in
§6 is quite delicate and particular, given a possible folding spectrum,
(α, n), the collection of parameters, s, corresponding to a well-founded
tent map core, fs, that generates an inverse limit with folding spectrum
precisely (α, n) is a dense subset of (

√
2, 2] and it has cardinality c.

We use two well-known facts regarding tent maps cf. [?] and [?, pages
235 & 238]. The first fact we will use is that the parameters, q ∈ (

√
2, 2],

that generate tent map cores, fq, with periodic, preperiodic, or prefixed

critical points are dense in (
√

2, 2]. We also use the fact that if ε > 0
and q ∈ (

√
2, 2] then there is a finite word, W < Kfq such that if

r ∈ (
√

2, 2] and Kfr is a kneading sequence such that W < Kfr then

r ∈ (q − ε, q + ε) ∩ (
√

2, 2].

Theorem 8.1. Let q ∈ (
√

2, 2] be such that fq be a well-founded tent
map core with FS[lim

←
{[0, 1], fq}] = (α, n) for some countable ordinal

α and positive integer n. The set {r ∈ (
√

2, 2] : FS[lim
←
{[0, 1], fr}] =

(α, n)} has cardinality c.

Proof. Let q ∈ (
√

2, 2] be such that fq is a well-founded tent map
core with FS[lim

←
{[0, 1], fq}] = (α, n) for some countable ordinal α and

positive integer n. Let K denote the kneading sequence of fq, and let
c denote the critical point of fq. Since ω(c) is countable, it contains
a periodic point and its orbit, {x0, x1, . . . xn−1}. Let B be a finite
word made up of symbols from {0, 1} such that Ifq(x0) = B∞. Since
every initial segment of Ifq occurs infinitely often in K, we have an
increasing sequence of positive integers, (ni)i∈N such that BniWi is an
initial segment of σki(K) for some positive integer ki and word Wi that
does not have B as an initial segment. The words Wi can be chosen in
such a way so that we can write K as:

K = W0B
n1W1B

n2W3B
n4 · · ·
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Let τ = (ti)i∈N be a sequence such that ti ∈ {0, 1} for all i ∈ N. Define
Kτ by

Kτ = W0B
n1+t1W1B

n2+t2W2B
n3+t3 · · ·

Clearly if we choose W0 to be long enough, Kτ will be primary and
shift maximal. So there is a number r ∈ (

√
2, 2] such that fr has

kneading sequence Kτ . It is easy to see that since ni → ∞ as i → ∞
the critical ω-limit set for fr is homeomorphic to the critical ω-limit
set for fq and fr is a well-founded tent map core. By Theorem ?? we
have that FS[lim

←
{[0, 1], fq}] = FS[lim

←
{[0, 1], fr}]. Notice that there are

c many possible choices for τ each resulting in a different Kτ and hence
a different parameter r. This establishes the theorem. ¤

Theorem 8.2. Let q ∈ (
√

2, 2] be such that fq is a well-founded tent
map core with FS[lim

←
{[0, 1], fq}] = (α, n) for some countable ordinal

α and positive integer n. The set {r ∈ (
√

2, 2] : FS[lim
←
{[0, 1], fr}] =

(α, n)} is dense in (
√

2, 2].

Proof. Let q ∈ (
√

2, 2] be such that fq is a well-founded tent map core
with FS[lim

←
{[0, 1], fq}] = (α, n) for some countable ordinal α = β + 2

and positive integer n. Let z ∈ (
√

2, 2], and let ε > 0. It is well-known
that the set of parameters that give rise to tent maps with a preperiodic
critical point that gets mapped to a period n orbit is dense in (

√
2, 2],

see [?, Lemma 7.3]. Let q0 be such a parameter in Bε/2(z). Let B0 be
a word of length n in symbols 0, 1 such that the kneading sequence of
the map fq0 is Kfq0

= 10j1WB∞
0 where j is a positive integer and W

is a finite (or empty) word in 0, 1. We can choose a finite word, V ,
such that 10j1W v V < Kfq0

and if r ∈ (
√

2, 2] with V < Kfr then
r ∈ Bε/2(q0) ⊆ Bε(z).

We can construct a sequence, K, in the manner described in Sec-
tion ?? using a well-founded α − 2 = β tree, the word B0 in place
of B, 10j1 as A, but instead of K beginning with AA . . . it will be-
gin with the word V . Since Kq0 is shift-maximal and primary, we can
insure that K is also shift maximal and primary. Then there is an
r ∈ Bε/2(q0) ⊂ Bε(z) such that Kfr = K. Denote the critical point of
fr by cr. Then by our construction we have that Lt[ω(cr)] = α and

|Lω(cr)
α−1 | = n and fr is a well-founded tent map core. Hence, by Theorem

??, FS(lim
←
{[0, 1], fr}) = (α, n). ¤
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[16] W. T. Ingram and William S. Mahavier. Interesting dynamics and inverse

limits in a family of one-dimensional maps. Amer. Math. Monthly, 111(3):198–
215, 2004.

[17] Lois Kailhofer. A partial classification of inverse limit spaces of tent maps with
periodic critical points. Topology Appl., 123(2):235–265, 2002.

[18] Lois Kailhofer. A classification of inverse limit spaces of tent maps with periodic
critical points. Fund. Math., 177(2):95–120, 2003.

[19] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995.



26 C. GOOD, R. KNIGHT, AND B.E. RAINES

[20] Judy Kennedy and James T. Rogers, Jr. Orbits of the pseudocircle. Trans.
Amer. Math. Soc., 296(1):327–340, 1986.

[21] Brian Raines. One-dimensional dynamics and inverse limits. D. Phil. thesis,
Oxford University, 2002.

[22] Brian Raines. Inhomogeneities in non-hyperbolic one-dimensional invariant
sets. Fund. Math., to appear:1–37, 2004.

[23] Lorenzo Sadun and R. F. Williams. Tiling spaces are Cantor set fiber bundles.
Ergodic Theory Dynam. Systems, 23(1):307–316, 2003.

[24] R. F. Williams. One-dimensional non-wandering sets. Topology, 6:473–487,
1967.

[25] R. F. Williams. Expanding attractors. Inst. Hautes Études Sci. Publ. Math.,
(43):169–203, 1974.

[26] Inhyeop Yi. Canonical symbolic dynamics for one-dimensional generalized
solenoids. Trans. Amer. Math. Soc., 353(9):3741–3767 (electronic), 2001.

School of Mathematics and Statistics, University of Birmingham,
Birmingham, B15 2TT, UK

E-mail address: c.good@bham.ac.uk

Mathematical Institute, University of Oxford, Oxford OX1 3LB,
UK

E-mail address: knight@maths.ox.ac.uk

Department of Mathematics, Baylor University, Waco, TX 76798–
7328,USA

E-mail address: brian raines@baylor.edu


