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Abstract. If f is an autohomeomorphism of some space X, then βf denotes its Stone-Čech
extension to βX. For each n ≤ ω, we give an example of a first countable, strongly zero-
dimensional, subparacompact X and a map f such that every point of X has an orbit of size n
under f and βf has a fixed point. We give an example of a normal, zero-dimensional X such
that f is fixed-point-free but βf is not. We note that it is impossible for every point of X to
have an orbit of size 3 and βX to have a point with orbit of size 2.

For every Tychonoff space X there is a unique compact, Hausdorff space βX, the Stone-
Čech compactification of X, which contains X as a dense subspace and has the property
that every autohomeomorphism and every continuous R-valued map f on X can be uniquely
extended to one on βX, denoted βf (see, for example, [E]). Even if an autohomeomorphism
f has no fixed points, βf may do. Such induced fixed points can be regarded as ideal and,
following work by van Douwen and Watson, we describe examples of spaces with fixed-point-
free autohomeomorphisms which nevertheless have ideal fixed points. For each n ≤ ω, we
give an example of a first countable, strongly zero-dimensional, subparacompact X and a
map f such that every point of X has an orbit of size n under f and βf has a fixed point.
Since neither these examples, nor those described by Watson in [W], are normal, we also
give an example of a normal, zero-dimensional X such that f is fixed-point-free but βf is
not. This example is based on the space described in [D]. Answering a question from [W],
we note that it is impossible for every point of X to have an orbit of size 3 and βX to
have a point with orbit of size 2. We also show that a set can be topologized so that a
fixed-point-free permutation is an autohomeomorphism with an ideal fixed point if and only
if the set is uncountable.

1. Preliminaries.
We are interested here in autohomeomorphisms of Tychonoff spaces and their Stone-Čech

extensions so all spaces are Tychonoff.
We use Greek (π) to denote a permutation on a set and Roman (f) when the set is

topologized and the permutation is an autohomeomorphism. If A is a subset of some set X,
we denote the image of A under a map π by π“ A. As usual, we regard natural numbers as
ordinals and an ordinal as the set of all smaller ordinals. The set of all natural numbers is
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written ω and the set of all countable ordinals is written ω1. If j divides n then we write
j | n.

For any permutation π of X and x in X, we denote the orbit {πn(x) : n ∈ Z} of x by
orbπ(x) or simply orb(x) if π is clear. If | orb(x)| = n for any n ≤ ω, then we say that
x has order n and that orb(x) is an n-cycle. We can assign a sequence of cardinals σ(π)
to π, describing its cycle structure: σ(π) = (κn)n∈ω, where κ0 is the number of ω-cycles
and, if 0 < n, κn the number of n-cycles. We call π a rotation of period n, if all entries in
the sequence σ(π) are zero except κn. Watson [W] calls a rotation of period 2 a reflection,
and a rotation of period ω a translation. If π is a permutation of a set X and P is some
topological property (or space), then we say that π is P -realizable if there is a topology on
X having the property P (or so that X is homeomorphic to P ) with respect to which π is
an autohomeomorphism of X.

The Stone-Čech extension of a map f is written βf . In keeping with Watson [W], we
shall say that a Tychonoff space X is FAE (fixed-point-free autohomeomorphisms extend)
if βf is fixed-point-free whenever f is fixed-point-free autohomeomorphism of X.

Our basic set-theoretic reference is [K]. Undefined topological terms may be found in [E].

2. Autohomeomorphic rotations with ideal fixed points.
In [BK], Blaszczyk and Kim prove that every strongly zero-dimensional, paracompact

space is FAE and, in [D], van Douwen proves that every paracompact space of finite Lebesgue
covering dimension (dim) is FAE, and gives an example of a locally compact, separable,
metric (hence paracompact) space which is not FAE (see Section 3). This leaves open
the general situation in finite dimensional, particularly (strongly) zero-dimensional, spaces.
(Two sets are completely separated if there is a continuous f : X → [0, 1] such that f“ A =
{0} and f“B = {1}. A space is zero-dimensional if it has a neighbourhood base at each point
consisting of clopen sets, and strongly zero-dimensional if for every two completely separated
sets A and B there is a clopen set U containing A but disjoint from B.) Watson [W] has
described two first countable, zero-dimensional spaces, one with a reflection witnessing that
it is not FAE, the other with a translation. In 2.3 we describe first countable, strongly
zero-dimensional, subparacompact (Moore) examples with rotational autohomeomorphisms
of arbitrary order witnessing non-FAE. These spaces have cardinality ω1, which allows us to
completely determine when a permutation of a set X can be (Tychonoff, not FAE)-realized.

A point of βX can be seen as an ultrafilter of functionally closed sets of X. If f is a
fixed-point-free autohomeomorphism of X and p is some point of βX fixed by βf , then it
is easy to see that f does not fix every subset of X in p. One way, therefore, to find a
non-FAE is to restrict the (ultrafilters of) functionally closed sets. This idea is used in [BK]
where the space X = {−1, 0, 1}ω1 − ~0 is shown to be non-FAE (the map ”x 7→ −xg“ is
a witness to this, there being only one point in βX − X). Watson also uses this idea to
construct another space with a reflective autohomeomorphism witnessing non-FAE, basing
it on an example due to van Douwen, having two disjoint closed copies of ω1, which are not
separated by disjoint open sets. Here we construct our examples from a base space Z, which
has two disjoint closed (discrete) subsets which can not be functionally separated. Again,
Z relies on the properties of ω1. Z was used to different effect in [GT].

Without the requirement of first countablity, the problem is easy:
Two simple examples 2.1: Let (ω1 + 1)2 have the usual product topology. Using the
pressing down lemma, it is easy to show (and is indeed well known) that ω1×{ω1} and the
diagonal can not be separated by disjoint open sets in the subspace W = (ω+1)2−{(ω1, ω1)}.
Let M ′ be the space W × 2 and let f ′ be the autohomeomorphism taking the point (α, β, i)
of M ′ to (β, α, j), i 6= j ∈ 2. Let q be the quotient map identifying (α, ω1, i) with (ω1, α, j),
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let M be the quotient space q“ M ′, and let f = q ◦ f ′. The map f is an autohomeomorphic
reflection.

Let N have point set ω1 × (ω1 + 1) × 2. Let points of ω1 × ω1 × 2 be isolated. If (β, α]
is a neighbourhood of α ∈ ω1 with its usual topology, then let Aδ,β(α, ↑) be the subset⋃

δ<γ<α((β, α]×{γ}) of ω2
1 where δ < α, and let Aδ,β(α, ↓) be the subset

⋃
δ<γ((β, α]×{γ})

where δ > α. For β, δ < α < γ and i 6= j ∈ 2, let Bγ,δ,β(α, i) be the set ((β, α] × {ω1} ×
{i})∪ (Aδ,β(α, ↑)×{i})∪ (Aγ,β(α, ↓)×{j}). Let T be the topology on N generated by the
collections {{α, β} : α, β ∈ ω1} and {Bγ,δ,β(α, i) : β, δ < α, i ∈ 2}. By the pressing down
lemma, (α, ω1)×{ω1}×{0} and (β, ω1)×{ω1}×{1} can not be separated by disjoint open
sets for any α and β in ω1. The map f : (α, β, i) 7→ (α, β, j), where α < ωi, β ≤ ω1, and
i 6= j ∈ 2, defines an autohomeomorphic reflection of N .

In both cases βf has a fixed point: for example, in M if p is in the closure of ω1×ω1×{0}
and βfp is distinct from p, then disjoint open neighbourhoods of p and βfp in βM trace to
disjoint open neighbourhoods of (most of) ω1 × ω1 × {0} and ω1 × ω1 × {1}. ¤
The space Z 2.2: Let W = ω1 × (ω + 1). Let W0 = ω1 × ω and W1 = ω1 × {ω}. For each
γ ∈ ω1, let W (γ) = (γ, ω1)×(ω+1) and W1(γ) = W1∩W (γ). For each α in ω1, let {αn}n∈ω

be an increasing sequence cofinal in α (if α is a successor then let each αn be α − 1). Let
each point of W0 be isolated and let a basic open neighbourhood of a point (α, ω) in W1

take the form Bn(α) = {(α, ω)} ∪⋃
n≤m(αm, α]× {m}.

With this topology W is the basic Reed space over ω1 (see [R]) and is therefore a zero-
dimensional Moore space. The following claim is proved in [GT]. It is a simple modification
of the proof that every real-valued continuous function on ω1 is eventually constant.

Claim 1. Every continuous R-valued function on W is eventually constant on W1, that is,
for any R-valued map f on W , there is some γ ∈ ω1 such that f is constant on W1(γ).

Now let Z∗ = Z∪{−∞,∞} be the two point compactification of the integers (so that Z∗
is homeomorphic to the subset {±1} ∪ {±1 ∓ 1/n : 0 < n} of R). Let Z ′′ = W × Z∗ have
the usual product topology, and Z ′ = Z ′′ − (W0 × {±∞}). Partition W1 into disjoint sets
S0 and S1 such that {α : (α, ω) ∈ Si} is stationary for each i ∈ 2. Let Z be the quotient
space formed by identifying the point (a, 2n) of Z ′ in S0 × {2n} with the point (a, 2n + 1)
of S0 × {2n + 1}, and the point (a, 2n + 1) of S1 × {2n + 1} with the point (a, 2n + 2)
of S1 × {2n + 2}, for every n in Z. Let q denote the quotient mapping defined by this
identification. It is not too hard to show that Z is a zero-dimensional (Moore) space.

Let W−
1 and W+

1 denote the closed, discrete subsets W1 × {−∞} and W1 × {∞} of Z.

Claim 2. For any R-valued function f : Z → [0, 1] there is some γ ∈ ω1 for which f is
constant on q“(W1(γ)×Z∗). Hence W−

1 (γ) and W+
1 (γ) are disjoint closed sets which cannot

be functionally separated.

Proof of Claim 2. Let f : Z → R be any continuous map. For any n in Z, f ¹W×{n}:
W × {n} → R is continuous, and by Claim 1 there is some γn ∈ ω1 such that f ¹q“ (W×{n})
is constant on q“ (W1(γn) × {n}). Let γ = sup γn. Because of the identification of points
in Z, f is constant on W1(γ) × Z. Hence there is some γ′ ≥ γ such that f is constant on
(W1(γ′)× {−∞}) ∪ (W1(γ′)× {∞}), proving the claim.

Since Z is a Moore space, it is subparacompact. (A space is subparacompact if every
open cover has a refinement of closed sets that is a countable union of locally finite col-
lections. In the class of collectionwise normal spaces subparacompactness coincides with
paracompactness.) To see that it is strongly zero-dimensional, let C and D be functionally
separated closed sets. By Claim 2, it is not possible for both C and D to have uncountable
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intersection with W1 × Z∗, so there is some successor α for which, say, C does not meet
W1(α) × Z∗. Since α is a successor, Z(α) = W (α) × Z∗ is a clopen subset of Z. The
clopen subset Z−Z(α) of Z is a countable, zero-dimensional space and is therefore strongly
zero-dimensional. Moreover, C ∩Z(α) is clopen since C is closed and every point of this set
is isolated in Z. Hence C and D can be separated by disjoint clopen subsets.

(It is also possible to give Z a coarser strongly zero-dimensional topology such that W+
1

and W−
1 are homeomorphic to ω1 and cannot be functionally separated.) ¤

Theorem 2.3. For every 0 < n ≤ ω, there is a first countable, strongly zero-dimensional,
subparacompact space X and a rotational autohomeomorphism f of X of order n which has
an ideal fixed point.

Proof. The result is trivial if n = 1, so suppose that 1 < n ≤ ω. If n is finite then
take all integers mod n. For each j ∈ n, let Z(j) be a (distinct) copy of Z, let idj be
the identity map from Z(j) to Z(j + 1), and for any subset A of Z let A(j) denote the
corresponding subset of Z(j). Let X be the space formed by identifying points of W+

1 (j)
with the corresponding points of W−

1 (j + 1) (i.e. identify (α, ω, +∞) and (α, ω,−∞)),
and let Wj denote the resulting set. Let Wj(α) denote the subset of Wj corresponding to
W+

1 (α)(j). The maps idj generate an obvious autohomeomorphism f ′ of
⋃

j∈n Z(j) and, if
f is the autohomeomorphism of X generated by f ′, then | orb(x)| = n for each x in X.

From Claim 2 it follows that, for any j, k < n, Wj and Wj+1, and hence Wj and Wk, are

not functionally separated in X. Let Cα be the set Wk(α)
βX

. Since {Cα : α ∈ ω1} has the
finite intersection property and βX is compact, there is some point p in

⋂
ω1

Cα. Suppose
that βf(p) 6= p. Then p and βf(p) are functionally separated by some R-valued function h.
By the definition of f , βf(p) is in Wk+1

βX −Wk+1. Since h ¹Z(k+1) is eventually constant,
it functionally separates (unbounded subsets of) W−

1 (γ)(k + 1) and W+
1 (γ)(k + 1) for some

γ, contradicting Claim 2. ¤

These spaces are not countably paracompact since Z is not (see [GT]). The space de-
scribed in 3 is countably paracompact and normal, but not subparacompact (since it contains
a copy of ω1) and not strongly zero-dimensional.

Corollary 2.4. A fixed-point-free permutation π of the set X can be (Tychonoff, not FAE)-
realized if and only if X is uncountable.

Proof. If X is countable then any Tychonoff topology on X will be strongly zero-dimensional
and paracompact, and hence FAE, by the result of van Douwen’s mentioned above. If X
is uncountable then Xn = {x ∈ X : x has order n} is uncountable for some n. Let Y be a
subset of Xn consisting of ω1 many complete cycles. Topologize Y so that it is homeomorphic
to the space of Proposition 2.2 and let every point of X − Y ′ be isolated. ¤

3. A normal, zero-dimensional space that is not FAE.
Neither the examples in [BK], [W] nor those of Section 2 are normal, so here we de-

scribe a normal (in fact collectionwise normal), zero-dimensional space that is not FAE. We
combine van Douwen’s example of a locally compact, separable, metrizable, non-FAE space
and Dowker’s construction of a normal, zero-dimensional space which fails to be strongly
zero-dimensional (see 6.2.20 [E])—so the space stands no chance of being strongly zero-
dimensional (in fact it is zero-dimensional but has infinte Lebesgue covering dimension).

For convenience we outline van Douwen’s description from [D]: Let Sn be the n-sphere
and an : Sn → Sn be the antipodal map “x 7→ −x”. If F is a closed cover of Sn such that F
and an“F are disjoint, then F has at least n+2 elements. Let M be the disjoint topological
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sum
⊕

0<n∈ω Sn and let h : M → M be the autohomeomorphism such that h ¹Sn= an.
Suppose that βM has no fixed points. Since βM is compact, it has a finite cover F of closed
sets F such that F and h“ F are disjoint. Let Fn = F ∩ Sn. If n is large enough, then
|Fn| ≤ |F| < n + 2, which is impossible.

Now, for each n ∈ ω, let {Sn
α : α ∈ ω1} be an increasing sequence of subsets of Sn such

that
(1) if β < α, then Sn

β is a subset of Sn
α;

(2) Sn
α is zero-dimensional subspace of Sn;

(3) an“ Sn
α = Sn

α, and;
(4)

⋃
α∈ω1

Sn
α = Sn.

Let Tn =
⋃

α∈ω1
Sn

α×{α} and T ∗n = Tn∪(Sn×{ω1}) be subspaces of the Tychonoff product
Sn × (ω1 + 1).

The proof that Tn is first countable, normal, zero-dimensional, but not strongly zero-
dimensional, that βTn is βT ∗n and that, in particular, Sn×{ω1} is a subset of βTn is, almost
verbatim, contained in Engelking’s description of Dowker’s space [E, 6.2.20].

Let T =
⋃

n∈ω Tn. T is zero-dimensional, first countable, and normal. Since there is a copy
of Sn in βTn and βTn is a subspace of βT, βT contains a copy of M . Moreover, by 3), the
fixed-point-free autohomeomorphism h of M induces a fixed-point-free autohomeomorphism
χ of T such that the restriction of βχ to M is h. Since βM is a subspace of βT and the
restriction of βχ to βM is βh, βχ has a fixed point.

Questions Notice that χ is a reflection and also that van Douwen’s example shows that
FAE is not preserved by infinite topological sums. One can ask whether it is preserved
by countable (or arbitrary) products or by open maps. Presumably it is not. It is not
peserved by perfect maps since the examples of 2.3 are perfect iamges of Z ′′. One might
also ask whether van Douwen’s result holds for finite dimensional, monotonically normal or
GO spaces, for completely metrizable spaces, or for paracompact spaces with finite small
inductive dimension. ¤
4. Ideal rotations.

Extending the notion of an ideal fixed point, one might define an ideal n-cycle of a
map f to be an n-cycle of the map βf . In [W], Watson asks whether a rotational auto-
homeomorphism of order 3 can have an ideal 2-cycle, and for which sequences σ(π) is π
P -realizable when P is regular, compact, or metrizable, or R, Q, or P (the irrarionals).
We close by pointing out that the first question has a negative answer. (Along with other
results, we shall answer the second in a forthcoming paper, using a strengthening of 4.1 for
zero-dimensional, compact scattered spaces.) Watson also asks for which σ(π) and σ(φ) is
π (Tychonoff)-realizable with φ βπ-realizable. This question seems harder—for a start we
do not know of any results, other than obvious restrictions, relating |X| to |βX|.
Theorem 4.1. Let f be an autohomeomorphism of the Hausdorff space X and let 0 < k.
If x has finite order n ∈ ω (has order ω) then for any k ∈ ω there is an open neighbourhood
U of x such that every y in U has order greater than k or divisible by n (has order greater
than k).

For any finite collection of autohomeomorphisms {f1, . . . , fn} and 0 < k ∈ ω there is an
open neighbourhood U of x such that | orbfj x| divides | orbfj y| whenever orbfj x is finite, y
is in U and | orbfj y| < k

Proof. Let nrk be the least multiple of n greater than k. Since X is Hausdorff, one can
find an open neighbourhood W of x such that f i“ W ∩ f j“ W is empty whenever for
0 ≤ i, j ≤ nrk and i 6= j mod n). Let Uk be the set

⋂
0≤r≤rk

fnr“ W . The result for points
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of order ω follows similarly and the result for finite collections of autohomeomorphisms
follows immediately. ¤

It is clear from 4.1 that no rotational autohomeomorphism of order 3 has an ideal reflected
point in βX. In fact:

Corollary 4.2. There is a Tychonoff space Xn,m and a rotational autohomeomorphism
fn,m of order m which has an ideal n-cycle if and only if n | m or m = n = ω.

Proof. Necessecity is immediate by the lemma. For sufficiency, first suppose n = m = ω and
let Xn,m be Z and f be the shift, f(x) = x+1. By van Douwen’s result, Xn,m is FAE and we
are done. Now suppose that n is finite and m = nr for some r ≤ ω. Let X be any Tychonoff
space with a rotational autohomeomorphism f of order r with an ideal fixed point p. For each
j < n let Xj be a distinct copy of X, pj correspond to p, fj be the corresponding selfmap,
and let idj be the identity map from Xj to Xj+1. Let Xn,m be the disjoint topological sum
of the Xj and, for x in Xj define fn,m(x) = fj+1(idj(x)) = idj(fj(x)) (where j and j + 1
are taken mod n). ¤

If X is a P -space, i.e. countable intersections of open sets are open, then about each x
of finite order n there is an open neighbourhood U such that every point of U has either
infinite order or order divisible by n. The same is also true for zero-dimensional, compact,
scattered spaces but it is not true in general.

For each r > 2, let {xr,i : i < 2r + 1} be 2r + 1 distinct points. Let f(xr,i) = xr,i+1.
X = {w0, w1} ∪ {xr,i : i < 2r + 1, r ∈ ω} and define f(wi) = wj . Let each xr,i be isolated
and topologize X so that w0 is in the closure of {xr,i : i < 2r is even}, w1 is in the closure
of {xr,i : i is odd} and f is an autohomeorphism.

Let Y be Z × (ω + 1) with the usual product topology, so that Y is a locally compact,
countable metrizable space. Define f : Y → Y as follows: f((n, ω)) = (n + 1, ω) for all
n in Z, f((n, m)) is fixed if 0 < m < |n| or n = m = 0, f((n,m)) = f((−n,m)) for
n = m ∈ ω, and f((n, m)) = f((n + 1,m)) if |n| < m. Then f is an autohomeomorphism of
Y , | orb((n, ω))| = ω for every n in Z, but | orb((n,m))| < ω for every n in Z and m ∈ ω.
There is a similar autohomeomorphism on Q.
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