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A topological space is said to be Lindelöf, or have the Lindelöf property,
if every open cover of X has a countable subcover. The Lindelöf property was
introduced by Alexandroff and Urysohn in 1929, the term ‘Lindelöf’ referring
back to Lindelöf’s result that any family of open subsets of Euclidean space has
a countable sub-family with the same union. Clearly, a space is compact if and
only if it is both Lindelöf and countably compact, though weaker properties, for
example pseudocompactness, imply compactness in the presence of the Lindelöf
property. The real line is a Lindelöf space that is not compact and the space
of all countable ordinals ω1 with the order topology is a countably compact
space that is not Lindelöf. It should be noted that some authors require the
Hausdorff or regular (which we take to include T1) separation axioms as part of
the definition of many open covering properties (c.f. [E]). For any unreferenced
results in this article we refer the reader to [E].

There are a number of equivalent formulations of the Lindelöf property: (a)
the space X is Lindelöf; (b) X is [ω1,∞]-compact (see the article by Vaughan
in this volume); (c) every open cover has a countable refinement ; (d) every
family of closed subspaces with the countable intersection property1 has
non-empty intersection; (e) (for regular spaces) every open cover of X has a
countable subcover V such that {V : V ∈ V} covers X (where A denotes the
closure of A in X). In the class of locally compact spaces, a space is Lindelöf
if and only if it is σ-compact (i.e., is a countable union of compact spaces) if
and only if it can be written as an increasing union of countably many open
sets each of which has compact closure.

It is an important result that regular Lindelöf spaces are paracompact, from
which it follows that they are (collectionwise) normal. Conversely, every para-
compact space with a dense Lindelöf subspace is Lindelöf (in particular, every
separable paracompact space is Lindelöf) and every locally compact, paracom-
pact space is a disjoint sum of clopen Lindelöf subspaces. A related result is
that any locally finite family of subsets of a Lindelöf space is countable.

Closed subspaces and countable unions of Lindelöf spaces are Lindelöf. Con-
tinuous images of Lindelöf spaces are Lindelöf and inverse images of Lindelöf
spaces under perfect mappings, or even closed mappings with Lindelöf fibres,
are again Lindelöf. In general, the Lindelöf property is badly behaved on taking
either (Tychonoff) products or inverse limits.

The Tychonoff product of two Lindelöf spaces need not be Lindelöf or even
normal, although any product of a Lindelöf space and a compact space is Lin-
delöf and countable products of Lindelöf scattered spaces are Lindelöf [HvM,
Chapter 18, Theorem 9.33]. It is also true that both the class of Čech com-
plete Lindelöf and Lindelöf Σ-spaces are closed under countable products. The
Sorgenfrey line, which one obtains from the real line by declaring every in-
terval of the form (a, b] to be open, is a simple example of a Lindelöf space with
non-normal square. Even more pathological examples are possible: Michael
constructs a Lindelöf space, similar to the Michael line, which has non-normal
product with a subset of the real line and, assuming the Continuum Hypothesis,

1A family of sets has the countable intersection property if every countable sub-family has
non-empty intersection.
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constructs a Lindelöf space whose product with the irrationals is non-normal.
Details and further results may be found in [KV, Chapter 18] and Section 9 of
[HvM, Chapter 18]. A space is said to be realcompact if it is homeomorphic
to a closed subspace of the Tychonoff product Rκ for some κ. Every regular
Lindelöf space is realcompact and, whilst the inverse limit of a sequence of
Lindelöf spaces need not be normal, both inverse limits and arbitrary products
of realcompact spaces are realcompact. Hence arbitrary products and inverse
limits of regular Lindelöf spaces are realcompact. In fact a space is realcompact
if and only if it is the inverse limit of a family of regular Lindelöf spaces.

Second countable spaces (i.e., spaces with a countable base to the topol-
ogy) are both Lindelöf and separable. The Sorgenfrey line is an example of a
separable, Lindelöf space that is not second countable. On the other hand, if X
is metrizable (or even pseudometrizable), then X is second countable if and only
if it is separable if and only if it has the countable chain condition if and only if
it is Lindelöf. By Urysohn’s Metrization Theorem, a space is second countable
and regular if and only if it is a Lindelöf metrizable space if and only if it can
be embedded as subspace of the Hilbert cube.

A space X is said to be hereditarily Lindelöf if every subspace of X
is Lindelöf. Since any space can be embedded as a dense subspace of a (not
necessarily Hausdorff) compact space, not every Lindelöf space is hereditarily
Lindelöf. However, a space is hereditarily Lindelöf if and only if every open
subspace is Lindelöf if and only if every uncountable subspace Y of X contains
a point y whose every neighbourhood contains uncountably many points of Y .
A regular Lindelöf space is hereditarily Lindelöf if and only of it is perfect and
hereditarily Lindelöf spaces have the countable chain condition but need not be
separable.

In fact, for regular spaces there is a complex and subtle relationship between
the hereditary Lindelöf property and hereditary separability2 (both of which
follow from second countability). An hereditarily Lindelöf regular space that is
not (hereditarily) separable is called an L-space; an hereditarily separable regu-
lar space that is not (hereditarily) Lindelöf is called an S-space. The existence
of S- and L-spaces is, to a certain extent, dual and depends strongly on the
model of set theory. For example, the existence of a Souslin line implies the
existence of both S- and L-spaces, MA + ¬CH is consistent with the existence
of S- and L-spaces but implies that neither compact S- nor compact L-spaces
exist. However, the duality is not total: Todorčević [11] has shown that it is
consistent with MA that there are no S-spaces but that there exists an L-space,
i.e., that every regular hereditarily separable space is hereditarily Lindeöf but
that there is a non-separable, hereditarily Lindelöf regular space. It is currently
an open question whether it is consistent that there are no L-spaces. For further
details about S and L see Roitman’s article [KV, Chapter 7], or indeed [11]. It
is fair to say that the S/L pathology, along with Souslin’s Hypothesis and the
Normal Moore Space Conjecture, has been one of the key motivating questions
of set-theoretic topology and it crops up frequently in relation to other prob-
lems in general topology, such as: the metrizability of perfectly normal manifolds
[10]; Ostaszewski’s construction of a countably compact, perfectly normal non-
compact space [9]; and the existence of a counter-example to Katětov’s problem
‘if X is compact and X2 is hereditarily normal, is X metrizable?’ [5].

2A space is hereditarily separable if each of its subspaces is separable.
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The Lindelöf degree or number, L(X), of a space X is the smallest in-
finite cardinal κ for which every open cover has a subcover of cardinality at
most κ. The hereditary Lindelöf degree, hL(X), of X is the supremum of
the cardinals L(Y ) ranging over subspaces Y of X. The Lindelöf degree of a
space is one of a number of cardinal invariants or cardinal functions one might
assign to a space. Cardinal functions are discussed in the article by Tamano in
this volume, however, one result due to Arkhangel′skĭı [1] is worth particular
mention here. The character χ(x, X) of a point x in the space X is smallest
cardinality of a local base at x and the character χ(X) of the space X is the
supremum sup{χ(x, X) : x ∈ X}. A space with countable character is said
to be first-countable. Arkhangel′skĭı’s result says that the cardinality of a
Hausdorff space X is at most 2L(X).χ(X). In the countable case this theorem
tells us that the cardinality of a first-countable, Lindelöf Hausdorff space is
at most the continuum, 2ℵ0 , and that, in particular, the cardinality of a first-
countable, compact Hausdorff space is at most the continuum.3 This impressive
result solved a problem posed thirty years earlier by Alexandroff and Urysohn
(whether a first-countable compact space could have cardinality greater than
that of the continuum), but was, moreover, a model for many other results in
the field. The theorem does not remain true if we weaken first-countability,
since it is consistent that the cardinality of a regular, (zero-dimensional even)
Lindelöf Hausdorff space with countable pseudo-character can be greater than
that of the continuum [12], and Lindelöf spaces can have arbitrary cardinality.
However, de Groot has shown that the cardinality of a Hausdorff space X is at
most 2hL(X) [KV, Chapter 1, Cor. 4.10]. For a much more modern proof of
Arkhangel′skĭı’s theorem than the ones given in [1] or [KV, Chapter 1], we refer
the reader to Theorem 4.1.8 of the article by Watson in [HvM].

A space is compact if and only if every infinite subset has a complete accu-
mulation point if and only if every increasing open cover has a finite subcover
and a space is countably compact if and only if every countably infinite subset
has a complete accumulation point. However, the requirement that every un-
countable subset has a complete accumulation point is implied by, but does not
characterize the Lindelöf property. Spaces satisfying this property are called
linearly Lindelöf, since they turn out to be precisely those spaces in which
every open cover that is linearly ordered by inclusion has a countable subcover.
Surprisingly little is known about such spaces. There are (somewhat complex)
examples of regular linearly Lindelöf, non-Lindelöf spaces in ZFC, but there is,
at present, no known example of a normal linearly Lindelöf, non-Lindelöf spaces
under any set theory. Such a space would be highly pathological: the problem
intrinsically involves singular cardinals and any example is a Dowker space,
that is, a normal space which has non-normal product with the closed unit in-
terval [0, 1]. Nevertheless one can prove some interesting results about linearly
Lindelöf spaces, for example every first-countable, linearly Lindelöf Tychonoff
space has cardinality at most that of the continuum, generalizing the theorem
of Arhangel’ski’s result mentioned above. For more on linearly Lindelöf spaces
see the paper by Arkhangel′skĭı and Buzyakova [2].

One important sub-class of Lindelöf spaces, the Lindelöf Σ spaces, deserves
mention. The notion of a Σ-space was introduced by Nagami [8], primarily

3In fact it turns out that first-countable, compact Hausdorff spaces are either countable of
have cardinality exactly 2ℵ0 .
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to provide a class of space in which covering properties behave well on taking
products. It turns out that there are a number of characterizations of Lindelöf
Σ-spaces, two of which we mention here. A Tychonoff space is Lindelöf Σ if it
is the continuous image of the pre-image of a separable metric space under a
perfect map. An equivalent (categorical) definition is that the class of Lindelöf
Σ-spaces is the smallest class containing all compact spaces and all separable
metrizable spaces that is closed under countable products, closed subspaces and
continuous images. So, as mentioned above, countable products of Lindelöf Σ-
spaces are Lindelöf Σ. Every σ-compact space, and hence every locally compact
Lindelöf space, is a Lindelöf Σ-space. Lindelöf Σ-spaces play an important rôle
in the study of function spaces (with the topology of pointwise convergence).
For details, see the article on Cp-theory by Arkhangel′skĭı [HvM, Chapter 1].

There are several strengthenings and weakenings of the Lindelöf property
in the literature for example: almost Lindelöf, n-starLindelöf, totally Lindelöf,
strongly Lindelöf, Hurewicz, subbase Lindelöf. We mention one in passing. A
space is weakly Lindelöf if any open cover has a countable subfamily V such
that

⋃
{V : V ∈ V} is dense in X. Weakly Lindelöf spaces are of some interest in

Banach space theory [HvM, Chapter 16] and, assuming CH, the weakly Lindelöf
subspaces of βN are precisely those which are C∗-embedded into βN (1.5.3 of
[KV, Chapter 11]). Covering properties such as para- or metaLindelöf belong
more properly to a discussion of generalizations of paracompactness.

Finally, we list a number of interesting results concerning the Axiom of
Choice and the Lindelöf property. The Countable Axiom of Choice is strictly
stronger than either of the statements ‘Lindelöf metric spaces are second count-
able’ or ‘Lindelöf metric spaces are separable’ [7]. In Zermelo-Fraenkel set the-
ory (without choice) the following conditions are equivalent: (a) N is Lindelöf;
(b) R is Lindelöf; (c) every second countable space is Lindelöf; (d) R is heredi-
tarily separable; (e) f : R → R is continuous at x iff it is sequentially continuous
at x; and (f) the axiom of countable choice holds for subsets of R [6]. There
are models of ZF in which every Lindelöf T1-space is compact [3] and models in
which the space ω1 is Lindelöf but not countably compact [4].
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