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Abstract. Assuming ♦∗, we construct first countable, locally compact examples of
a Dowker space, an anti-Dowker space containing a Dowker space, and a countably
paracompact space with Dowker square. We embed each of these into manifolds,
which again satisfy the above properties.

Introduction.
All spaces are Hausdorff. A space is normal if every pair of disjoint closed

sets can be separated, binormal if its product with the closed unit interval I is
normal, and countably paracompact if every countable open cover has a locally
finite open refinement. Dowker proves that a normal space is binormal if and only
if it is countably paracompact [Do]. A Dowker space is a normal space that is not
countably paracompact.

There are essentially two Dowker spaces that do not require extra set-theoretic
assumptions ([Ru1], [Bg2]). Neither of these is first countable or locally compact.
Of course, given set-theoretic assumptions beyond ZFC, there are also small Dowker
spaces—see [Ru2]. Here we construct a simple (and typical) small Dowker space
assuming ♦∗

An anti-Dowker space is a countably paracompact, (regular) space that is not
normal. Unlike Dowker spaces, there are many examples of such spaces that require
no special set-theoretic assumptions—again, see [Ru2]. The (lighthearted) anti-
Dowker space constructed here uses ♦∗, since it contains a small Dowker subspace.

Rudin and Starbird [RS] have shown that, for normal, countably paracompact
X and metrizable M , X × M is normal iff it is countably paracompact. They
asked whether a product of two normal, countably paracompact spaces could be
could be a Dowker space. (Any normal first countable space with Dowker square is
countably paracompact.) Bešlagić [Bs1] constructs a countably paracompact space
with Dowker square assuming ♦. He constructs such a space assuming CH [Bs2]
and a perfectly normal example, again assuming ♦ [Bs3]. We construct a slight
modification of Bešlagić’s space in [Bs1] assuming ♦∗.
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Our aim is to construct various Dowker manifolds. Unlike [N3], we are interested
primarily in the Dowker pathology and therefore take a hands on approach to the
constructions. Each of the topologies constructed in Section 2 refines the usual
order topology on ω1 (or two disjoint copies in the case of the Dowker product),
this makes them particularly suitable for embedding into the product of the long
line and the open unit interval. We use the Prüfer technique, rather than the
tangent bundles of [N3], and, since the technique is well-known (see for example
[N2]), our discussion is quite informal. The first construction of a Dowker manifold,
assuming ♦∗, was published by Nyikos (see [N3]) and in [N3] a construction is given
using the weaker ♦. We use ♦∗ and none of our constructions works if we assume
MA+¬CH. Rudin [Ru3] has described a Dowker manifold (with a countable point
separating open cover) assuming CH.

1. Notation and combinatorics.
Notation and terminology are standard (see [E], [Ku], or [KV]). We regard an

ordinal as the set of its predecessors, use the term club set to denote a closed,
unbounded subset of an ordinal, and, following [Bs1], we say that a subset A of ω2

1

is 2-unbounded if for no α ∈ ω1 is A a subset of (α×ω1)∪(ω1×α). For a function f :
A → B, we denote the image of a subset C of A by f“C, and for a subset A of α×β,
we denote the set of first coordinates by dom A, and the set of second coordinates
by ran A. Recall that a space X is countably metacompact (paracompact) if and
only if for every decreasing sequence {Dn}n∈ω of closed subsets of X with empty
intersection, there is a sequence {Un}n∈ω of open sets, Un containing Dn, which
also has empty intersection (whose closures have empty intersection). The two
notions coincide in the class of normal spaces. A manifold for our purposes is a
locally Euclidean, connected, Hausdorff space.

We use the Ostaszewski technique [O] for constructing locally countable, locally
compact spaces. In order to facilitate the construction of the manifolds, the spaces
described in Section 2 will have point set ω1. To move between disjoint stationary
sets, we use the club sets chosen by the axiom ♣∗, which is derived from ♦∗. ♦∗ is
true if V = L. It follows from results in [Bg1] that these constructions do not work
if we assume MA + ¬CH.

Recall that ♦∗ is the assertion that, for every α ∈ ω1, there is a countable family
Sα of subsets of α such that {α ∈ ω1 : X ∩ α ∈ Sα} contains a club set, whenever
X is a subset of ω1. The collection {Sα : α ∈ ω1} is called a ♦∗-sequence.

We shall let ♣∗ be the assertion that, for every limit ordinal α ∈ ω1, there is
a sequence Rα, cofinal in α, such that {α ∈ ω1 : X ∩ Rα is cofinal in α} contains
a club set, whenever X is an uncountable subset of ω1. The collection {Rα : α ∈
ω1 and lim(α)} is called a ♣∗-sequence.

Simple modification of the proof of ♣ from ♦ shows that ♣∗ follows from ♦∗.
(Pick Rα so that Rα ∩ S is cofinal in α whenever S ∈ Sα is cofinal in α.)

We use the following two consequences of ♣∗ to construct the space Z of Exam-
ple 2.7:
♣∗ω1×ω1

is the assertion that, for every limit ordinal α ∈ ω1, there is a sequence
Tα, cofinal in α×α, such that {α ∈ ω1 : X ∩Tα is cofinal in α×α} contains a club
set, whenever X is a 2-unbounded subset of ω1×ω1. Notice that {domTα∪ran Tα :
α ∈ ω1 and lim(α)} is a ♣∗-sequence, if {Tα : α ∈ ω1 and lim(α)} is a ♣∗ω1×ω1

-
sequence.
♣∗2 is the assertion that there are two ♣∗-sequences {Rα,0 : α ∈ ω1 and lim(α)}
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and {Rα,1 : α ∈ ω1 and lim(α)} such that Rα,0 and Rα,1 are disjoint for each α.
It is easy to prove that ♦∗ implies ♣∗2. To see that ♣∗ implies ♣∗ω1×ω1

let
f : ω1 → ω1 × ω1 be any bijection and let Tα = f“Rα.

2. Dowker spaces, anti-Dowker spaces, and Dowker products.
In this section the constructions follow the same pattern: we inductively define

a local base at each point α of ω1, which then generates a topology on the point
set ω1. To standardize the discussion, we shall use the following terminology:
Suppose that we have defined a local base Bγ at each γ < α, which refines the
usual neighbourhood topology at γ ∈ ω1. Let {αj} and {βk} be sequences cofinal
in α, with {αj} a subsequence of {βk}. For each αj let β(αj) be the predecessor of
αj in {βk}. Choose a neighbourhood B(αj) from Bαj such that B(αj) is a subset
of the interval (β(αj), αj ]. We shall then say that α is a rigid limit of {αj} with
respect to {βk} if the neighbourhood base at α is defined to be the collection

Bα =



{α} ∪

⋃

j≥n

B(αj) : n ∈ ω



 .

It is not hard to see that any topology defined in this way on ω1 will be Hausdorff,
first countable, locally countable, locally compact, locally metrizable, and zero-
dimensional. Moreover, since the topology refines the usual order topology on
ω1, such a space will be pseudo-normal (two disjoint closed sets can be separated
provided one is countable).

2.1 The Dowker space X. (♣∗) There is a first countable, strongly zero-dimen-
sional, locally countable, locally compact, ω1-compact, strongly collectionwise nor-
mal Dowker space, which has scattered length ω and is hence σ-discrete and weakly
θ-refinable.

Proof. The point set for the space X is ω1. Partition X into ω disjoint stationary
sets Sn, n ∈ ω. We think of Sn as the nth level of X. Let {Rα}lim(α) be a ♣∗-
sequence. For each α in Sn+1, let Tα = Rα ∩ Sn if this is cofinal in α, otherwise
let Tα be undefined. If α is in S0, or if α is a successor, or if Tα is undefined, then
declare α to be isolated with neighbourhood base Bα = {{α}}. If Tα is defined and
α is in Sn+1, then we declare α to be the rigid limit of the sequence Tα with respect
to Tα. Let T be the topology generated by the neighbourhood bases so defined.

As mentioned above, (X, T ) is Hausdorff, locally compact, locally countable,
first countable, regular, pseudo-normal, zero-dimensional space. Furthermore, X
has scattered height ω and so is σ-discrete and, hence, weakly θ-refinable by a result
of [N1]. (X fails to have stronger covering properties: if ω1, with a topology refining
the usual order topology, is θ-refinable, then it is perfect [G3].)

If A0 and A1 are any uncountable subsets of Sn, then for i ∈ 2, {α : Ai ∩ Sn ∩
Rα is cofinal in α} contains a club by ♣∗. Hence A0 and A1 have uncountably
many common limit points in Sn+1 and

Fact 2.2. X is ω1-compact and has no two disjoint uncountable closed subsets.

Pseudo-normality is now enough to give normality. Since X is ω1-compact,
discrete collections of sets are countable and X is also strongly collectionwise normal
(discrete collections of closed sets can be separated by discrete collections of open



4 CHRIS GOOD

sets). Moreover, closed initial segments are clopen and countable, and, since zero-
dimensional, Lindelöf spaces are strongly zero-dimensional (see [E 6.2.7]), X is
strongly zero-dimensional (i.e. any two functionally separated sets can be separated
by disjoint clopen sets).

To show that X is not countably metacompact, let Dn =
⋃

j≥n Sj and let Un

be any open set containing Dn. {Dn}n∈ω is a decreasing sequence of closed sub-
sets with empty intersection, X − Un and Dn are disjoint closed sets, and Dn is
uncountable. By Fact 2.2, each X − Un is countable and so

⋂
Un non-empty. ¤

If C is any functionally closed and X − C is uncountable, then there is some
f : X → [0, 1] such that C = f−1“{0} and some n ∈ ω for which D = f−1“[1/n, 1]
is uncountable. As both C and D are closed, Fact 2.2 implies

Fact 2.3. Every functionally closed subset of X is either countable or co-countable.

A space is realcompact if it can be embedded as a closed subset of Rκ for some
κ and a Tychonoff space is compact iff it is pseudocompact and realcompact (see
[E]). There are examples of realcompact Dowker spaces (see [R2]), however, X is
not realcompact:

Let Fλ = {x ∈ X : x > λ}. Since X − Fλ is countable, Fλ is a Gδ. Since X is
normal, Fλ is functionally closed. Let F be the set of all functionally closed sets,
and let G be the filter of F generated by the collection of all Fλs. By Fact 2.3,
every element of G is co-countable and G is an ultrafilter of F with the countable
intersection property. Tychonoff space is realcompact if and only if no ultrafilter
of F with the countable intersection property is free ([E 3.11.11]), however, G is
clearly free.

X also fails to be hereditarily normal: Consider the subspace Y = S0 ∪ S1 and
let H and K be uncountable disjoint subsets of S1. If we assume MA + ¬CH,
then the subspace Y is a normal (non-metrizable Moore) space ([DS] and [Bg1]),
however, assuming V = L, no such Dowker space can be hereditarily normal (see
[G2]). Balogh’s Dowker space [Bg2] is hereditarily normal. We do not know whether
there is an hereditarilly normal Dowker manifold.

Pseudocompact spaces are never Dowker, however,the following lemma says that
every continuous, R-valued function on X is eventually constant.

2.4 Lemma. If f : X → R is any continuous function, then there is some γ ∈ ω1

such that f is constant on X − γ.

Proof. For each n ∈ ω, let An be the set f−1“[n, n + 1]. Pick some n for which
An∩S0 has size ω1. By Fact 2.3, An is co-countable. Inductively define subsets Bk

of An such that: B0 is An, if Bk is the set f−1“[bk, bk + 1/2k], then Bk+1 is either
the set f−1“[bk, bk +1/2k+1] or the interval f−1“[bk +1/2k+1, bk +1/2k], and Bk is
co-countable. Let

⋂
[bk, bk + 1/2k] = {r}. For each n ∈ ω, let Cn be the closed set

f−1“[r− 1/n, r + 1/n]. Clearly, each Cn is co-countable, from which it follows that
the pre-image of r is co-countable completting the proof. (I would like to thank the
referee for suggesting this much simpler proof.) ¤

Incidentally, this provides us with an alternative proof that X is not countably
paracompact: A space is both normal and countably paracompact if and only if,
for every g lower and h upper, semicontinuous R-valued functions on X such that
h < g, there is a continuous R-valued function f such that h < f < g. The constant
zero valued function O on X is (upper semi)continuous and the function g : X → R
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defined by g(x) = 1/n iff x ∈ Sn is lower semicontinuous and greater than O. Any
continuous R-valued function on X is eventually constant. If O ≤ f ≤ g, then
eventually f = O.

The next example is a locally compact anti-Dowker space. We prevent normality
using two stationary sets H and K, each containing a Dowker subspace (c.f. the
argument that the space X above is not hereditarily normal). To achieve countable
paracompactness, we use♣∗ to cap the two Dowker subspaces in such a way that the
intersection of countably many uncountable closed subsets is again an uncountable
closed subset.

2.5 The anti-Dowker space Y . (♣∗) There is a first countable, locally compact,
ω1-compact, strongly zero-dimensional, pseudo-normal, δ-normal, strongly collec-
tionwise Hausdorff anti-Dowker space, containing a Dowker subspace, which satis-
fies all of the properties of the space X.

Proof. The point set for the space Y is ω1. Let D be the set of all successors in
ω1. Divide ω1−D into two disjoint stationary subsets, H and K, and partion each
into ω many disjoint stationary sets, Hn and Kn, 1 ≤ n ≤ ω. To simplify notation
let D = H0 = K0, and denote x in Y by a pair x = (α, `n), where α is the actual
element of Y = ω1 that is x, and ` is either H (if α ∈ Hn) or K (if α ∈ Kn), and
`0 = D (if α is a successor).

For each limit ordinal α, let Rα be the cofinal sequence in α furnished by ♣∗. Let
x = (α, `n). Suppose that 1 ≤ n = m + 1 < ω. If Rα ∩ `m is cofinal in α, then let
Tα = Rα∩`m, otherwise let Tα be undefined. Suppose that n = ω. If Rα∩

⋃
m≤ω `m

is cofinal in α, then let Tα = Rα ∩
⋃

m≤ω `m, otherwise let Tα be undefined. Let
Tx denote the sequence Tα. If x = (α, `n) and either α is a successor (i.e n = 0),
or Tx is undefined, then let x be isolated. If otherwise, let x be a rigid limit of
Tx with respect to Tx. Let T be the topology generated by

⋃
x∈Y Bx. As above,

(Y, T ) is Hausdorff, locally compact, regular, pseudo-normal, first countable, locally
countable, zero-dimensional and locally metrizable. Furthermore Y has scattered
height ω1.

The subspace X ′ =
⋃

n∈ω Hn is a Dowker space, which shares all the same
properties as X, for the same reasons, and Y is not normal for exactly the same
reasons that the Dowker space above is not hereditarily normal; H and K are two
disjoint closed subsets which cannot be separated by disjoint open sets.

To show that Y is countably paracompact it is sufficient to show that each of
the subspaces H ∪D and K ∪D is countably paracompact. Let us consider H ∪D.
Let {Dj}j∈ω ⊆ H ∪ D be a decreasing sequence of closed subsets with empty
intersection. We need to find open sets Uj ⊇ Dj such that

⋂
j∈ω Uj = ∅.

Suppose that for all j there is an nj such that Dj ∩Hnj is uncountable. Then by
♣∗ and the definition of the Tx, there is a club set Cj , for all j, such that every x
in Cj ∩Hω is a limit point of Dj . Since Dj is closed, we have in particular Cj ∩Hω

is a subset of Dj for all j ∈ ω. But
⋂

j∈ω Cj is a club set so
⋂

j∈ω Dj contains⋂
j∈ω(Hω ∩ Cj) = Hω ∩

⋂
j∈ω Cj which is non-empty. Hence there must be some

j0 ∈ ω such that Dk∩Hn is countable for all k ≥ j0 and all n ≥ 0. Let α = sup{β ∈
Dk : k ≥ j0}, then Dk is a subset of {x ∈ Y : x = (β, Hn), 0 ≤ n ≤ ω, β ≤ α} is a
clopen, regular, countable and hence metrizable subspace of Y , containing Dk for
all k ≥ J0. Hence Y is countable paracompact. ¤

Y does have some separation: Reasoning as for X we see that Y is ω1-compact
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and therefore strongly collectionwise Hausdorff. Y is δ-normal since it is countably
paracompact. (A space is δ-normal if two closed sets can be separated whenever one
is a regular Gδ. Mack has shown that a countably paracompact space has countably
paracompact product with the closed unit interval if and only if it is δ-normal [M].)
To see that Y is strongly zero-dimensional, notice that no two uncountable closed
sets can be (functionally) separated so the argument used for X suffices.

Having constructed the space Y , we can go one step further, by building the
space Z, a Dowker space containing an anti-Dowker space which in turn contains
a Dowker space . . .

2.6 The space X ′. (♣∗) There is a first countable, locally compact, ω1-compact,
strongly zero-dimensional, strongly collectionwise normal Dowker space in W con-
taining an anti-Dowker subspace which satisfies all of the properties that Y does.

Proof. The point set for X ′ is, as always, ω1. Let D be the isolated points of ω1

and partition X ′ −D into disjoint stationary sets Hr, Kr, for 1 ≤ r ≤ ω, and Ss

for s < ω. Again, let H0 = K0 = D. Write H for
⋃{Hr : 1 ≤ r ≤ ω}, K for⋃{Kr : 1 ≤ r ≤ ω}, and denote x in X ′ by the pair x = (α, `) where α is the actual

element of X ′ = ω1, and ` is the level (D, Hr, Kr or Ss) containing x. For each
limit ordinal α, let Rα be the cofinal sequence in α given by ♣∗. Let x = (α, `n)
where ` is either the letter H or K and 0 < n ≤ ω, or the letter S and 0 ≤ n < ω.If

(1) n = m + 1, then let L = `m;
(2) n = ω (so ` is either H or K), then let L =

⋃
j≤ω `j ;

(3) n = 0 (so ` is S), α is a limit of Hω ∪Kω, then let L = Hω ∪Kω.
In each case, if Rα ∩ L is cofinal in α, then let Tα = Rα ∩ L, otherwise let Tα be
undefined. Let Tx denote the sequence Tα.

Topologize D∪H∪K ⊆ X ′ as for Y above. Let x = (α, Ss). If Tα is not defined,
then we declare x to be isolated. If s ≥ 0 and Tα is defined, then let x be the rigid
limit of Tx with respect to Tx. So level S0 provides the common limit points for H
and K and above S0 the topology is similar to that of the space X. That X ′ is a
Dowker space with all the required properties now follows by arguments similar to
those used for X and Y . ¤

(If we let Ω = ω1 be the union of disjoint stationary sets {Sα, Tα}0<α<ω, S0 = T0

and {Sα}ω≤α≤ω1 , and construct a topology in exactly the same way as above, except

that a point α in Sω1 is the limit of Tα∩
(⋃

β≤ω1
Sβ ∪

⋃
β<ω1

Tβ

)
, then the resulting

space is both normal and countably paracompact.)

2.7 The space Z. (♣∗) There is a first countable, locally countable, locally com-
pact, ω1-compact, strongly collectionwise normal, strongly zero-dimensional, count-
ably paracompact space Z whose Tychonoff square is a Dowker space. (In fact Z2

satisfies all of the listed properties that Z satisfies excepting, of course, that Z2 is
not countably paracompact.)

Proof. Our construction is similar to that used by Bešlagić in [Bs1]. We define three
normal topologies Ti, i ∈ 3, on the point set W = ω1. The topologies T0 and T1 both
refine T2, which is a Hausdorff topology, hence the diagonal ∆ of (W, T0)× (W, T1)
is a closed subspace of Z2, where Z is the disjoint topological sum of (W, T0) and
(W, T1). ♣∗ω1×ω1

helps to ensure that the product Z2 is normal, and that ∆ is a
Dowker space. Since ∆ is closed in Z2, Z2 is also a Dowker space. We use ♣∗2 to
ensure that (W, Ti), i ∈ 3 is countably paracompact.
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As for the space X, partition W into ω disjoint stationary sets Sn, n ∈ ω.
Let {Rα,i : α ∈ ω1 and lim(α)}, i ∈ 2, be ♣∗2-sequences, and let {Tα : α ∈
ω1 and lim(α)} be a ♣∗ω1×ω1

-sequence. Let F ′α = dom Tα ∪ ran Tα. Suppose that
α ∈ Sn. If n = m + 1 and F ′α ∩Sn is cofinal in α, then let Fα = F ′α ∩Sn, otherwise
let Fα be undefined. If n = 0 and Rα,i∩

⋃
n>0 Sn is cofinal in α for both i ∈ 2, then

let Gα,i = Rα,i ∩
⋃

n>0 Sn, otherwise let Gα,0 and Gα,1 be undefined. If both are
defined, then let Gα,2 be the sequence Gα,0∪Gα,1, otherwise let Gα,2 be undefined.

Again we define the topologies Ti by induction along ω1, defining at each α three
neighbourhood bases Bα,i = {Bα,i(k)}k∈ω, i ∈ 3. If α is a successor (or 0), or
α ∈ S0 and Gα,2 is undefined, or α ∈ Sm+1 and Fα is undefined, then let α be
isolated. If α is in S0 and Gα,2 is defined, then, for i ∈ 3, let α be the Ti-rigid limit
of Gα,i with respect to Gα,2, ensuring that Bα,0(k)∪Bα,1(k) is a subset of Bα,2(k)
for each k ∈ ω. Note that this means that, for all α in S0, Bα,0(0)∩Bα,1(0) = {α}.
If α is in Sm+1 and Fα is deined, then let α be the Ti rigid limit of Fα with respect
to Fα, again ensuring that Bα,0(k) ∪Bα,1(k) is a subset of Bα,2(k).

Clearly both T0 and T1 refine T2, and each (W, Ti) is regular, first countable,
locally countable, locally compact, zero-dimensional and locally metrizable.

Since {Fα : α ∈ ω1 and lim(α)} is ♣∗-sequence we have

Claim 2.8. For each i ∈ 3, (W, Ti) is ω1-compact and has no two disjoint uncount-
able closed subsets.

Since α + 1 is a clopen subset of (W, Ti) for all α ∈ ω1, strong collectionwise
normality, and strong zero-dimensionality all follow as for X.

Claim 2.9. (W, Ti) is countably paracompact for each i ∈ 3.

Proof. Fix i ∈ 3. Let {Dn}n∈ω be a decreasing sequence of closed subsets of (W, Ti)
that has empty intersection. Suppose that each Dn is uncountable. By Claim 2.8,
Dn ∩ (ω1 − S0) is uncountable for every n ∈ ω and therefore Cn = {α ∈ ω1 :
Gα,i ∩ Dn ∩ (ω1 − S0) is cofinal in α}, and hence C =

⋂
n∈ω Cn, contains a club.

But then C∩S0 is non-empty, and every α in C∩S0 is a limit of every Dn. Since the
Dn are all closed we have a contradiction. Therefore there is some n0 such that Dn

is countable whenever n > n0. W is now easily seen to be countably paracompact.

Claim 2.10. For i, j ∈ 2, (W, Ti)× (W, Tj) is normal

Proof. Let C and D be disjoint closed subsets of (W, Ti) × (W, Tj). If C is 2-
unbounded, then there is some n for which Cn = C ∩ (Sn × Sn) is 2-unbounded.
As {α : Tα ∩ Cn is cofinal in α × α} contains a club, Cn+1 is 2-unbounded. If
both C and D are 2-unbounded, then there is some n > 0 for which both Cn and
Dn are 2-unbounded. But then by ♣∗ω1×ω1

, E = {α : both Tα ∩ Cn and Tα ∩
Dn are cofinal in α} contains a club. Let α be an element of E ∩ Sn+1. By the
definition of the topologies Ti and Tj both Cn ∩ (Fα ×Fα) and Dn ∩ (Fα ×Fα) are
cofinal in α, and α is in C ∩D. Hence at least one of C and D is not 2-unbounded.

Let us suppose that C is a subset of A = (α × ω1) ∪ (ω1 × α) and that α is a
successor so that A is clopen in (W, Ti)× (W, Tj). Lemma 2.8 of [Bs1] tells us that,
if X is a normal, countably paracompact space and M is a countable metric space,
then X ×M is normal. It is easy to see, then, that A is normal. Since A is clopen,
(W, Ti)× (W, Tj) is now, itself, seen to be normal—proving the claim.

Notice that for each α in S0, (α, α) is isolated as a point of ∆, so that ∆
is homeomorphic to a copy of the space X of 2.1, built using the ♣∗-sequence
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{Fα : α ∈ ω1 ∩ lim}, and is closed in (W, T0) × (W, T1) since T0 and T1 both
refine the Hausdorff topology T2. Hence the subspace ∆ = {(α, α) : α ∈ ω1} of
(W, T0)× (W, T1) is closed and not countably metacompact and we are done. ¤

3. Manifolds.

Let us embed the spaces X, Y and Z into manifolds:

Let L∗ be the set ω1 × [0, 1) with the topology induced by the lexicographic
order and let L be the subspace L∗−{0, 0} (the long line). Let M∗ be the manifold
L∗ × (0, 1) and M = L × (0, 1). Let Iα be a copy of [0, 1) for each α ∈ ω1. Let
P ∗ = M∗ ∪⋃

0<α Iα and P = M ∪⋃
0<α Iα.

We shall refer to elements of M as pairs (l, r) where l is in L and r is in (0, 1). Let
Mα be the set {(l, r) ∈ M : l < α} and M(γ, ε) = {(l, r) ∈ M : γ < l ∈ L and r ∈
(0, 1 − ε)}. We shall say that a set A is bounded in M if A is a subset of some
Mα. Both M and hence M(γ, ε) are collectionwise normal, and Mα is metrizable,
indeed homeomorphic to R = (−1, 1)× (0, 1).

We will refer to a point of Iα as xα where x is the corresponding point of [0, 1).
Let Oα = Mα∪

⋃
β<α Iβ , Pα = Mα+1∪

⋃
β≤α Iβ and Qα = Pα−Iα. A subset of P is

said to be bounded in P if it is a subset of some Pα. If x is in P , we shall let α, s 4 x
mean that either x is an element of

⋃
α≤β Iβ , or x = (l, r) is an element of M ⊆ P

and α ≤ l and s ≤ r, we also let α, s Â x mean that α, s 64 x. We shall say that a
set A is 2-unbounded in M2 if for no α ∈ ω1 is A a subset of (Mα×M)∪ (M×Mα).

The following fact is essentially Lemma 3.4 of [N2].

Fact 3.1. Every closed non-metrizable subspace of M contains a closed copy of ω1.
For every copy K of either ω1 or L in M , there is an α ∈ ω1 and an r in (0, 1)
such that K −Mα is a subset of L× {r}. ¤

Fact 3.2 has a similar proof, bearing in mind the comments of 3.5 [N2].

Fact 3.2. If A is a closed 2-unbounded subset of M2, then there are α ∈ ω1, and
r, s in (0, 1) such that {((γ, r), (γ, s)) : α ≤ γ ∈ L} is a subset of A. ¤

To define a locally Euclidean topology on P we use the Prüfer construction,
illustrated in Figure 1. In the diagram we use broken lines to enclose open sets and
solid lines to enclose closed sets.
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Figure 1.

R is a copy of the Euclidean space (−1, 1) × (0, 1), I is a copy of [0, 1). R is
given the normal Euclidean topology, and the topology about points of I is chosen
so that each of the maps θ, ψ and φ are homeomorphisms onto another copy of
the Euclidean space (−1, 1)× (0, 1). The collection {Tn}n∈ω is a decreasing, nested
sequence of closed triangles in R, each with a vertex at the point (0, 1). We can
define the homeomorphisms φ, ψ and θ in such a way that we may take the nth

basic compact neighbourhood about the point 0 in I to be the set Tn ∪ [0, 1/n].
(For details see [N2].)

Again, the three constructions are very similar. M is given its usual topology, and
we use the Prüfer technique inductively to define the topology at points of Iα: Let T
be a 0-dimensional, locally countable, locally compact topology on ω1, which refines
the usual order topology. Suppose we have defined the topology on Oα in such a
way that Oα is homeomorphic to (0, 1)2, and so that the subspace {0β : β < α} is
homeomorphic to the subspace α of (ω1, T ). Clearly, there is a homeomorphism µα

from Qα to R such that µα“Oα is (−1, 0)×(0, 1) and µα“({α}×(0, 1)) is {0}×(0, 1).
Let χα : Pα → R ∪ I be such that χα ¹ Qα = µα and χα ¹ Iα : Iα → I is the
identity. Let Pα have the topology Tα defined so that χα is a homeomorphism when
R ∪ I is given the Prüfer topology.

For α ∈ ω1, we shall say that Iα is inserted into M with respect to T if the topol-
ogy of Pα is defined as above with the map µα satisfing the following conditions:

(1) for β ∈ α, µα“Iβ meets Tj iff β is in the jth neighbourhood Bα(j) of α;
(2) if α is the rigid limit of the sequence {αj}j∈ω, then µα“[0, 1 − 1/j]αj is a

subset of Tj ;
(3) Tj is a subset of µα“{(l, r) : l < α + 1 ∈ L and 1/j ≤ r}.

This is possible since (ω1, T ) is a 0-dimensional, locally countable, locally compact
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topology, the subspace α is homeomorphic to a subset of Q, and Qα is homeomor-
phic to (−1, 1)× (0, 1).

Since we have only redefined the topology at points of Iα, the induction continues
along ω1. Let P have the topology T ′ generated by

⋃
α∈ω1

Tα. Since an increasing
ω-sequence of spaces, each homeomorphic to R2, is again homeomorphic to R2 (see
[N2 p652]), (P, T ′) is a manifold. The subspace {0α : α ∈ ω1 = X} is homeomorphic
to the space (ω1, T ) and is a closed subset of (P, T ′).
3.3 Example. (♣∗) There is a Dowker manifold.

Proof. Let (X, T ) be the Dowker space constructed in Example 2.1. Give P the
topology T ′ generated as described above when the Iα are inserted inductively
along ω1 with respect to T . P is not countably metacompact since it contains X
as a closed subspace. To see that P is normal we use the following claim.

Claim 3.4. If C is an uncountable subset of X which meets uncountably many Iβ,
for β in some Sn, then C has uncountably many limit points 0α, for α in Sn+1. If
C and D are closed sets such that both C and D meet uncountably many of the Iα,
then C and D are not disjoint.

Proof of Claim. For some integers k and n in ω, there is an uncountable subset A
of Sk, the kth level of X, such that C ∩ [0, 1− 1/n]β is non-empty for each β in A.
♣∗ implies that for all but a non-stationary subset of Sk+1, A ∩ Tα is cofinal in α
(where Tα is as in 2.1). Hence, by 2) above, for all but a non-stationary subset of
Sk+1, 0α is in C. With C and D as in the statement of the claim, it quickly follows
that C and D are not disjoint. This proves the claim.

The following is immediate by Fact 3.1 and (3) above.

Fact 3.5. Let C be an unbounded subset of M in P . If C is closed and is disjoint
from

⋃
β<α Iα, then there is some ε > 0 and some γ in ω1 such that C is a subset

of M(γ, ε) ¤

Now let us prove that P is normal:
Let C and D be any two disjoint closed subsets of P . Either at least one of C

or D is bounded in P , or both are unbounded. Suppose that C is bounded and is
a subset of Pα. Pα+1 is homeomorphic to R and is therefore normal, so there are
disjoint open sets U and V in Pα+1 such that C is contained in U , U is a subset of
Pα, and D ∩ Pα+1 is contained in V . Then U and V ∪ (P − Pα) are disjoint open
sets containing C and D respectively.

Now suppose that both C and D are unbounded in P . By Claim 3.4, at least
one of C and D meets only countably many Iα, so we may assume that C does
not meet any Iβ for α < β. By the metrizability of Pα+2 there are disjoint open
sets U and V , such that U contains C ∩ Pα+1 and U is disjoint from D, and V
contains D ∩ Pα+1 and V is disjoint from C. If D meets only countably many Iβ ,
say Iβ ∩D is empty for all β < γ, then without loss of generality γ = α and, since
M is normal, there are disjoint open U ′ and V ′ containing C − Pα and D − Pα

respectively. If D meets uncountably many of the Iβ , then Fact 3.5 above implies
that there is some ε such that C is a subset of M(γ, ε). Again we may assume that
γ = α. M(0, ε) is an open, normal subspace of P , so there are open sets U ′ and W

containing C − Pα and (D − Pα) ∩M(α, ε). Let V ′ = P ∪ {p ∈ Pα : p /∈ M(0, ε)}.
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In either case (U ∪ U ′) − V and (V ∪ V ′) − U are disjoint open sets containing C
and D respectively. ¤
3.6 Example. (♣∗) There is an anti-Dowker manifold which contains a Dowker
manifold as a subspace.

Proof. Let (Y, T ) be the anti-Dowker space constructed in Section 2. Give P the
topology T ′ generated as described above when the Iα are inserted inductively along
ω1 with respect to T . Let Q denote this manifold. Since Y is a closed subspace of
Q, Q is not normal.

Let {Dn} be a decreasing sequence of closed sets with empty intersection. By
Claim 3.4, Fact 3.1 and the argument from 2.5 (with the appropriate notational
alterations) it is easy to see that, for some n, {α : Dn ∩ Iα 6= ∅} is bounded in ω1.
Hence, there is an n ∈ ω and α ∈ ω1 such that Dn is a subset of M ′ = M∪⋃

β<α Iβ .
Since M ′ is homeomorphic to M , which is countably paracompact, we see that Q
is countably paracompact. ¤

Example 3.8 describes a manifold Π with Dowker square. To simplify the proof
that Π2 is normal, we replace X × ω1 by X × L in Theorem 3.3 of [GNP] to get:

3.7 Theorem. Let X be a normal, countably paracompact, ω1-compact space of
countable tightness. X × L is normal.

The proof follows (modulo appropriate modifications) the proof of Theorem 3.3
[GNP] with the notions of ω1-continuous and ω1-continuous closure, introduced
there, replaced by: A collection of subsets H = {Ha : a ∈ A} of a space X, indexed
by a subset A of L, is said to be L-continuous if x is an element of Ha whenever
x ∈ ⋃{Hb : b ∈ (y, l + ε) ∩A} for all ε > 0 and y in L. For a collection of subsets
Z = {Za : a ∈ L} of X, if Z ′a is the set

⋂{⋃{Za : a ∈ (y, l + ε)} : y < l, ε > 0} for
all a ∈ L, then the collection {Z ′a : a ∈ L} is said to be the L-continuous closure of
Z.

3.8 Example. (♣∗) There is a countably paracompact manifold Π which has Dowker
square.

Proof. For i ∈ 3 let (W, Ti) be the spaces constructed in 2.7. Let P ∗i denote the
set P ∗ endowed with the topology T ′ generated as described above when the Iα

are inserted inductively along ω1 with respect to Ti. Let Π∗ be the disjoint sum
of P ∗0 and P ∗1 . Let Π be the manifold formed by identifying (pointwise) the subset
{0, 0}× (0, 1) of the subset M of P0 with the corresponding subset of the M of P1.
The quotient map ρ : Π∗ → Π is a closed map and induces a closed map from Π∗2

to Π2.
Since Z is a closed subspace of Π∗, Π2 is not countably paracompact. Since

normality is preserved by closed maps, it is enough now to show that each Pi is
countably paracompact and that, for i, j ∈ 2, Pi × Pj is normal.

For covenience, let us denote by Pα,i the subspace Pα of Pi.

Claim 3.9. Each Pi is countably paracompact.

Proof of Claim. Let {Dn} be a decresing sequence of closed subsets of Pi with empty
intersection. By Fact 3.5 and by Claim 2.9, there are n0 ∈ ω, α ∈ ω1 for which Dn

is a subset of M ′ = M ∪⋃
β<α Iβ) for all n ≥ n0. Since M ′ is an open, countably

paracompact subspace of Pi, we see that Pi is also countably paracompact.
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Claim 3.10. For any i, j ∈ 3, Pi × Pj is normal.

Proof of Claim. Let C and D be disjoint closed subsets of Pi × Pj . By Fact 3.2
there are α, β ∈ ω1 and ε, δ > 0 such that at most one of C and D meets

T = {(x, y) ∈ Pi × Pj : α, (1− ε) 4 x and β, (1− δ) 4 y}.

Since T is a closed subset of Pi × Pj , it is enough to show that the complement
of T is normal. The complement of T is the closed image of the disjoint union of
the spaces

A = {x ∈ Pi : α, (1− ε) Â x} × Pj and

B = Pi × {y ∈ Pj : β, (1− δ) Â y}.

It is enough to show that each of A and B is normal.
Let k ∈ 3. Since the subspace M ′ = M ∪ ⋃

β<α Iβ of Pk is homeomorphic to
M , A is homeomorphic to M × Pj and B to Pi ×M . By 4.13 of [Pr], Pk × (0, 1)
is normal (and hence countably paracompact by the result of Rudin and Starbird
mentioned in the introduction). By the proof of Claim 2.8, Pk is ω1-compact, so
Pk× (0, 1) is ω1-compact. Pk× (0, 1) is a mainfold so has countable tightness. Now
A and B are homeomorphic to Pk × (0, 1) × L (k = i, j) so it follows from from
Theorem 3.7 that they are both normal. ¤

Questions.
In [Bs3] Bešlagić constructs a perfectly normal space with Dowker square assum-

ing ♦. Rudin (see [N2]) has shown that perfectly normal manifolds are metrizable
assuming MA + ¬CH, and from 4.14 [N2] and 3.22 [Pr] we have the proposition:
(MA + ¬CH) If X is a locally compact, collectionwise Hausdorff, perfectly regular
space, then X2 is paracompact. Is there a perfectly normal manifold which has
Dowker square? If X is a normal, countably paracompact space and X2 is normal,
must X2 be countably paracompact assuming MA + ¬CH? What if X is also per-
fect? Does MA+¬CH imply the existence of a Dowker manifold? (or even a locally
compact Dowker space? The results of [Bg1] put severe restrictions on such spaces).
Does ♣ imply the existence of a Dowker manifold? Is there an hereditarily normal
Dowker manifold? Monotonically normal spaces are countably paracompact (see
[Ru2]). The Sorgenfrey line is a GO-space and is therefore monotonically normal,
but its square is not normal. (It is also Lindelöf.) Is there a monotonically normal
(or Lindelöf) space which has Dowker square? Is there a Dowker space X such that
X2 (or Xn for every n ∈ ω) is Dowker? (Such a space cannot contain a copy of a
convergent sequence.)
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