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2 CHARACTERIZING CONTINUOUS FUNCTIONS ON COMPACT SPACES

Abstract We consider the following problem: given a set X and a function
T : X → X, does there exist a compact Hausdorff topology on X which
makes T continuous? We characterize such functions in terms of their orbit
structure. Given the generality of the problem, the characterization turns
out to be surprisingly simple and elegant. Amongst other results, we also
characterize homeomorphisms on compact metric spaces. 3

1. Introduction

We prove the following two theorems (see Section 2 for terminology).

Theorem 2.3. Let T : X → X. There is a compact, Hausdorff topology on
X with respect to which T is continuous if and only if T

(⋂
m∈N T

m(X)
)

=⋂
m∈N T

m(X) 6= ∅ and either:
(1) T has, in total, at least continuum many Z-orbits or cycles; or
(2) T has both a Z-orbit and a cycle; or
(3) T has an ni-cycle, for each i ≤ k, with the property that whenever

T has an n-cycle, then n is divisible by ni, for some i ≤ k; or
(4) the restriction of T to

⋂
m∈N T

m(X) is not one-to-one.

Theorem 2.9. Let T : X → X be a bijection. There is a compact metrizable
topology on X with respect to which T is a homeomorphism iff one of the
following hold.

(1) X is finite.
(2) X is countably infinite and either:

(a) T has both a Z-orbit and a cycle; or
(b) T has an ni-cycle, for each i ≤ k, with the property that when-

ever T has an n-cycle, then n is divisible by ni, for some i ≤ k.
(3) X has the cardinality of the continuum and the number of Z-orbits

and the number of n-cycles, for each n ∈ N, is finite, countably
infinite, or has the cardinality of the continuum.

Let T : X → X. Ellis [1] asked whether there is a non-discrete topology on
X with respect to which T is continuous. Both Ellis and Powderly and Tong
[8] make some contributions to the question, though their topologies are not
in general T1. De Groot and de Vries [3] solve the question, proving that, if
X is infinite, there is always a non-discrete metrizable topology on X with
respect to which T is continuous. They go on to prove that, provided X has
at most c many elements, X may be identified with a subset of the Cantor set
and that if T is one-to-one, then it it may be taken to be a homeomorphism.
They mention that, even assuming appropriate cardinality restrictions, it
is impossible in general to make X compact, metric, though de Vries [10]
proves that, if T is a bijection, the Continuum Hypothesis is equivalent to

3Mathematics Subject Classification: Primary 54A10, 54B99, 54C05, 54D30, 54H20
Keywords and Phrases: compact Hausdorff, compact metric, topologize, compactify,
continuous
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the statement that there is a compact, metric topology on X with respect
to which T is a homeomorphism provided X has cardinality c.

The Banach Fixed Point Theorem implies that if X is a compact metric
space and T : X → X is a contraction, then

⋂
n∈ω T

n(X) = {x} for some
unique fixed point x of T . In a question related to Ellis’s, de Groot asked
whether there is a converse in the following sense: if T : X → X, |X| = c
and

⋂
n∈ω T

n(X) = {x} for some x, is there a compact, metric topology on
X with respect to which T is continuous? In general the compact metric
case is impossible, however Janos [7] proves that there is a totally bounded
metric topology on X with respect to which T is a contraction mapping
and Iwanik, Janos and Smith [6] prove that there is a compact, Hausdorff
topology on X with respect to which T is continuous, even without the
restriction on the cardinality of X.

This suggests a fundamental and natural question. If T is an arbitrary
self-map T on the set X and P is some topological property, when can one
endow X with a topology that satisfies P and with respect to which T is
continuous? Iwanik [4] characterizes the situation when T is a bijection and
there is a compact, Hausdorff topology with respect to which T is continuous
(hence a homeomorphism). What about the general case? Under what
conditions is there a compact, Hausdorff topology on X with respect to
which an arbitrary self-map T is continuous?

Let us say that a function T : X → X is compactifiable if there exists a
compact Hausdorff topology on X with respect to which T is a continuous
function. In this paper we characterize (Theorem 2.3) those functions on a
set that are compactifiable. The proof of 2.3 provides most of the ingredi-
ents for the proof of Theorem 2.9, in which we extend de Vries’s result by
characterizing those bijections on a set which are continuous (hence homeo-
morphisms) with respect to a compact metrizable topology on the set. Both
characterizations are naturally stated in terms of the orbit structure of the
map concerned.

The paper is structured as follows: In Section 2, we introduce enough
terminology to state our main results, Theorem 2.3 and Theorem 2.9 in a
more convenient form. In this section we also state a number of other re-
lated results. Although a number of the results in subsequent sections are
of independent interest, the remainder of the paper is largely devoted to
the various results required in the proofs of 2.3 and 2.9. In Section 3, we
introduce some further terminology, which will be useful in clarifying what
follows, and prove a number of lemmas of a technical but non-specific na-
ture. Necessary conditions on the orbit structure of a continuous self-map
of a compact, Hausdorff space are discussed in Section 4. In the remainder
of the paper we show that a compact, Hausdorff topology may be imposed
on a set with self-map T with an appropriate orbit structure. Section 5
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discusses the notion of the resolution of a space by a family of spaces, reso-
lutions being our main tool for combining the various constructions in the se-
quel. Although, in general, resolutions do not combine well with continuity,
Theorem 5.4 provides us with natural conditions allowing us to glue orbits
together, whilst preserving continuity. Section 6 concentrates on defining
topologies on individual orbits that are compatible enough with T that T
is continuous on the whole of X. In Section 7 we compactify various maps
T , where T is (or is almost) a bijection. N-orbits seem to require slightly
different arguments and we present these in Section 8: essentially we treat
them as virtual Z-orbits. These various results are brought together in the
final short Section 9 completing the proofs of Theorems 2.3 and 2.9 and
Corollary 2.10.

Aside from introduced notions, our notation and terminology are stan-
dard, as found in the book by Engelking [2]. In particular an ordinal is the
set of its predecessors so that for example 2 = {0, 1}. The cardinality of the
continuum is denoted by c and we use ω to denote both ℵ0 and the set of
natural numbers, N. We denote the closure of a set A by A.

2. The Main Theorem

Let T : X → X be a function. The relation ∼ on X, defined by x ∼ y
if and only if there exist m,n ∈ ω with Tm(x) = Tn(y), is an equivalence
relation, whose equivalence classes are the orbits of T , or T -orbits.

Definition 2.1. Let T : X → X and O be an orbit of T .
(1) O is an n-cycle, for some n ∈ ω, if there are distinct points x0, · · · , xn−1

in O such that T (xj−1) = xj , where j is taken modulo n.
(2) O is a Z-orbit if there are distinct points {xj : j ∈ Z} ⊆ O such that

T (xj−1) = xj for all j ∈ Z.
(3) O is an N-orbit if it is not a Z-orbit and there are distinct points
{xj : j ∈ ω} ⊆ O such that T (xj) = xj+1 for all j ∈ ω.

If the set S = {xj : j ∈ M} witnesses that O is an n-cycle, Z-orbit or N-
orbit, where M is an appropriate indexing set, then we say that S is a spine
for O.

Definition 2.2. Let T : X → X. The orbit spectrum of T is the sequence

σ(T ) = (ν, ζ, σ1, σ2, σ3, . . . )

of cardinals, where ν is the number of N-orbits, ζ the number of Z-orbits
and σn is the number of n-cycles.

We shall say that a subset N of ω is finitely generated if k > 0 and
n1, n2, . . . , nk ∈ N such that for every j ∈ N there is some i ≤ k with ni | j.
The orbit spectrum σ(T ) is said to be finitely based if {n ∈ ω : σn 6= 0 } is
finitely generated.

The notion of finitely based was first introduced by Iwanik, Janos and
Kowalski [5], who also proved Theorem 4.13.
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For A ⊆ X we denote
⋂
n∈ω T

n(A) by Tω(A) and T (Tω(A)) by Tω+1(A).
Using this terminology we can restate the Main Theorem as follows:

Theorem 2.3. Let X be an infinite set and T : X → X have orbit spectrum

σ(T ) = (ν, ζ, σ1, σ2, σ3, . . . ).

T is compactifiable if and only if Tω+1(X) = Tω(X) 6= ∅ and one of the
following holds:

(1) ζ +
∑

n∈ω σn ≥ c; or
(2) both ζ 6= 0 and

∑
n∈ω σn 6= 0; or

(3) ζ = 0 and either
(a) σ(T ) is finitely based, or
(b) T � Tω(X) is not 1-1.

If T is onto, then clearly Tω+1(X) = Tω(X) (and T has no N-orbits), so
the following corollary is immediate.

Corollary 2.4. Let X be an infinite set and let T : X → X be a surjection
with orbit spectrum σ(T ) = (0, ζ, σ1, σ2, σ3, . . . ). T is compactifiable if and
only if either:

(1) ζ +
∑

n∈ω σn ≥ c; or
(2) both ζ 6= 0 and

∑
n∈ω σn 6= 0; or

(3) ζ = 0 and either σ(T ) is finitely based, or T is not 1-1.

If T has a fixed point, then σ(T ) is finitely based, and if Tω(X) = {x},
then x is a fixed point. So we have the following two corollaries of the Main
Theorem.

Corollary 2.5. If Tω+1(X) = Tω(X) and T has a fixed point, then T can
be compactified.

Theorem 2.6 (Iwanik, Janos, Smith). If T : X → X is such that Tω(X) =
{x} for some x, then T can be compactified.

Iwanik’s characterization for bijections also follows.

Theorem 2.7 (Iwanik). Suppose that T : X → X is a bijection. T can be
compactified iff neither of the following hold:

(1) |X| < c and all orbits are infinite; nor
(2) |X| < c, all orbits are finite but the orbit spectrum is not finitely

based.

If T is finite-to-one, in particular one-to-one, then orbits are countable
and it is not hard to see that Tω+1(X) = Tω(X). Hence Theorem 2.7 holds
for injections as well as bijections, and can be generalized to the following
corollary of Theorem 2.3.

Corollary 2.8. Let X be an infinite set and T : X → X a finite-to-one
map. T is compactifiable if and only if one of the following holds:
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(1) |Tω(X)| ≥ c; or
(2) T has a Z-orbit and an n-cycle for some n ∈ N; or
(3) T has an n-cycle, for some n ∈ N, and T � Tω(X) is not 1-1; or
(4) T has an n-cycle, for some n ∈ N, and σ(T ) is finitely based.

The methods used in the proof of Theorem 2.3 also allow us to prove this
extension of de Vries’s theorem.

Theorem 2.9. Suppose that T : X → X is a bijection. There is a compact
metric topology on X with respect to which T is a homeomorphism iff ζ and
each σn, n ∈ ω is either countable or has cardinality c, and either:

(1) |X| = c; or
(2) ζ 6= 0 and

∑
n∈ω σn 6= 0; or

(3) σ(T ) is finitely based.

Corollary 2.10. The Continuum Hypothesis is equivalent to the statement
If T : X → X is a continuous bijection on the first countable,
compact Hausdorff space X, then there is a (possibly differ-
ent) compact metrizable topology on X with respect to which
T is a homeomorphism.

3. Preliminaries

In this section we introduce some terms and prove some technical, but
non-specific, lemmas that will be useful in the sequel.

Definition 3.1. Let T : X → X and O be an orbit of T . If T � O is
one-to-one, so that O consists only of a spine, then we say that O is a simple
orbit. A semi-simple n-cycle is an orbit O = {xj : 0 ≤ j < n} ∪ {yi : i ∈ ω}
such that T (xj) = xj+1 for j < n, T (xn−1) = x0, T (yi) = yi−1, i 6= 0 and
T (y0) = x0.

Definition 3.2. Given a sequence of cardinals s = (ν, ζ, σ1, σ2, σ3, . . . ), the
(unique) canonical representation of s is the map T : X → X with σ(T ) = s,
each of whose orbits is simple. A semi-canonical representation of s is a map
T : X → X with σ(T ) = s, each of whose orbits is simple except for one
semi-simple n-cycle.

The proof of the following lemma is routine.

Lemma 3.3. Let X be a topological space and T : X → X be continuous.
Let A ⊆ X.

(1) If A is closed under the action of T , then A is also closed under the
action of T .

(2) Y = X r
⋃
n∈ω T

−n(A) is closed under the action of T .

Lemma 3.4. Let T : X → X be a function and let Y ⊆ X be closed under
T . Then A is an orbit of T � Y if and only if A 6= ∅ and A = Y ∩ O for
some orbit O of T .



CHARACTERIZING CONTINUOUS FUNCTIONS ON COMPACT SPACES 7

Proof. Note that since Y is closed under T , if x, y ∈ Y then Tm(x) and
Tn(y) are both also in Y for all m and n, so asking whether x ∼ y with
respect to T or to T � Y gives the same answer. �

Lemma 3.5. Let X be a Hausdorff space and T : X → X continuous. The
set ∼ = {(x, y) : x ∼ y} is an Fσ subset of X2.

Proof. Let ∆ = {(x, x) : x ∈ X} denote the diagonal in X2. For each
m,n ∈ ω, let x ∼m,n y if and only if Tn(x) = Tm(y). Since T is continuous,
∼m,n = {(x, y) : x ∼m,n y} =

(
Tn × Tm

)−1∆ is a closed subset of X2. But
then ∼ = {(x, y) : x ∼ y} =

⋃
m,n∈ω ∼m,n is an Fσ subset of X2. �

Lemma 3.6. Suppose that N ⊂ ω is not finitely generated. Then there is
an infinite subset M of N with the property that no infinite subset of M
is finitely generated and whenever n ∈ N , n divides at most finitely many
elements of M .

Proof. We define M inductively as follows. Suppose have chosen finitely
many elements m0, . . . ,mk. Since N is not finitely generated, there are
infinitely many elements of N which are not divisible by any mi, i ≤ k. Let
mk+1 be the least such element and let M = {mk : k ∈ ω}. Clearly M is
not finitely generated. Moreover, if n ∈ N divides infinitely many elements
of M then n /∈ M , so n was not chosen for inclusion in M , which implies
there is some m < n in M which divides n. But then m divides infinitely
many elements of M , a contradiction. �

Lemma 3.7. Let N be an infinite subset of ω and let 0 6= k ∈ N .
(1) If k divides each n ∈ N and n = kkn, then (kn − 1)/n → 1/k as

n→∞.
(2) N can be partitioned into finitely many sets N0, Nr,p, for each 0 <

r < k, 0 ≤ p < 2r, and N ′ such that:
(a) N ′ is finite;
(b) k divides each n ∈ N0;
(c) each Nr,p is either infinite or empty and if n ∈ Nr,p, then there

are qn, an ∈ ω with n = kqn + r and qn = 2anr + p.

Proof. The proof of the first statement is routine. To see (2), we know that
each n ∈ N can be written n = kqn + rn where 0 ≤ rn < k. Likewise, qn
can be written qn = 2anrn + pn for some 0 ≤ pn < 2rn. Since 0 ≤ rn < k
and 0 ≤ pn < 2rn, there are at most finitely many possible values for the
pair (rn, pn). If there are infinitely many n such that rn = r and pn = p,
let Nr,p = {n : rn = r, pn = p}, otherwise let Nr,p = ∅. Then N partitions
into the sets N0 = {n : rn = 0 } = {n ∈ N : k | n }; Nr,p, where 0 < r < k,
0 ≤ p < 2r; and the finite set N ′ = N r

(
N0 ∪

⋃
r,pNr,p

)
. �

Lemma 3.8. Let k, r, p ∈ ω, with 0 ≤ r < k and 0 ≤ p < 2r, and N ⊆ ω
be such that, if n ∈ N , then there are qn, an ∈ ω with n = kqn + r and
qn = 2anr+p. Then there are natural numbers un,t, vn,t and wn,t such that:
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(1) n =
∑

0≤t<r
[
k(un,t + vn,t) + 1

]
and n =

∑
0≤t<r(kwn,t + 1);

(2) if m,n ∈ N with m < n and 0 ≤ t, t′ < r then um,t ≤ un,t′, vm,t ≤
vn,t′ and wm,t ≤ wn,t′;

(3) for all n ∈ N and 0 ≤ t < r, un,t ≤ vn,t ≤ un,t + 1; and
(4) for any l ∈ ω there is an m ∈ ω such that if n ∈ N with n ≥ m then

un,t, vn,t, wm,t ≥ l.
Proof. We know that n = kqn+r and that qn = 2anr+p. For each 0 ≤ t < r,
let it = 1 if t < (p − 1)/2 and it = 0 otherwise, and jt = 1 if t < p/2 and
jt = 0 otherwise. Then

∑
0≤t<r(it+jt) = p. Put un,t = an+it, vn,t = an+jt

and wn,t = un,t + vn,t. It is easy to verify that the numbers un,t, vn,t and
wn,t have the properties claimed. �

Lemma 3.9. If C is a simple m-cycle of T , n does not divide m, and A ⊆ C
with A 6= ∅ and Tn(A) = A then |A| ≥ 2m/n.

Proof. Fix some x0 ∈ A. Restricting to the set {Tnj(x0) : j ∈ ω } if
necessary we may assume that A is a k-cycle of Tn. Then we have Tnk(x0) =
x0, so we must have nk = mj for some j. Since n does not divide m, we
must have j ≥ 2, so k = mj/n ≥ 2m/n. �

4. Necessary conditions

Our first key observation is the following:

Theorem 4.1. Let T : X → X be a continuous map on the infinite compact,
Hausdorff space X. Then Tω+1(X) = Tω(X) 6= ∅ and T � Tω(X) is onto
and has no N-orbits.

Proof. Clearly ∅ 6= Tn+1(X) ⊆ Tn(X) so {Tn(X)}n∈ω is a decreasing se-
quence of compact, closed subsets of X. Hence Tω(X) 6= ∅.

Certainly Tω+1(X) ⊆ Tω(X), so suppose that x ∈ Tω(X). Let C0 =
T−1(x) and, for n ∈ ω, let Cn = T−n(C0) and Dn = Tn(Cn). Since {x0}
is closed, each Cn is closed, hence compact, and since x ∈ Tω(X) each Cn
is non-empty. Thus {Dn}n∈ω is a decreasing sequence of compact, closed
non-empty subsets of the compact set C0 and has non-empty intersection.
But then if y ∈

⋂
n∈ωDn, y ∈ Tω(X), so x = T (y) ∈ Tω+1(X), as required.

Finally note that, by definition, a map cannot be onto if it has an N-orbit,
so T � Tω(X) does not have any N-orbits. �

Corollary 4.2. If T : X → X is compactifiable, then T � Tω(X) is com-
pactifiable and has no N-orbits.

The following example shows that it is possible for an arbitrary function
to have an N-orbit N such that Tω(N) 6= ∅.

Example 4.3. Let X = ω ∪ { (m,n) : n ≤ m ∈ ω } ∪ {∞}. For m,n ∈ ω
with n > 0, let T (m) = m + 1, T (m,n) = (m,n − 1), T (m, 0) = 0, and
T (∞) = ∞. Then T has exactly one fixed point, ∞, and one N-orbit N
such that Tω(N) 6= ∅, so that Tω(X) 6= Tω+1(X). By Corollary 4.2, T is
not compactifiable.
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The following lemma says that when Tω+1(X) = Tω(X), each point has
a predecessor which has as many predecessors as possible.

Lemma 4.4. Let T : X → X and suppose that Tω+1(X) = Tω(X). There is
a function pr : T (X)→ X such that for every x ∈ T (X), T

(
(pr(x)

)
= x and

for every y ∈ T−1(x) and every k ∈ ω, if T−k(y) 6= ∅ then T−k
(

pr(x)
)
6= ∅.

In particular, if xi = pr(xi+1) for 0 ≤ i < k, and x0 /∈ T (X), then
T−(k+1)(xk) = ∅.

Proof. Note that x ∈ Tω(X) if and only if {n ∈ ω : x ∈ Tn(X) } is un-
bounded in ω. Define the function F : X → ω + 1 by

F (x) =

{
max{n ∈ ω : x ∈ Tn(X) } if x /∈ Tω(X)
ω if x ∈ Tω(X).

Suppose y ∈ T−1(x) with F (y) < ω. Then x = T (y) ∈ TF (y)+1(X), so
F (x) ≥ F (y) + 1.

Let x ∈ T (X) with F (x) = k for some 0 < k < ω. Then x ∈ T k(X), so
x = T k(z) for some zx ∈ X. Put pr(x) = T k−1(zx). Then pr(x) ∈ T k−1(X),
so F (pr(x)) ≥ k − 1. On the other hand, x = T

(
pr(x)

)
so by the previous

observation we have F (x) ≥ F (pr(x)) + 1. So F (pr(x)) = k − 1 ≥ F (y) for
all y ∈ T−1(x).

Now let x ∈ X with F (x) = ω. Then, since Tω(X) = Tω+1(X), there is
some yx ∈ T−1(x)∩Tω(X). In this case put pr(x) = yx. Then T−k(pr(x)) 6=
∅ for all k ∈ ω.

Finally, note that if xi = pr(xi+1) for 0 ≤ i < k, and x0 /∈ T (X) then, by
induction, we can show that T−(i+1)(xi) = ∅ for all 0 ≤ i ≤ k. �

Lemma 4.5. Let T : X → X and suppose that Tω+1(X) = Tω(X). If the
only orbits of T are cycles and T � Tω(X) is not one-to-one, then there is a
subset C ′ of some n-cycle such that C ′ is a semi-simple n-cycle of T � C ′.

Proof. Let C be an n-cycle of T � Tω(X) on which T is not one-to-one. Let
{xj : 0 ≤ j < n} be the spine of C. Without loss of generality, there is some
y0 ∈ T−1(x0) r {xk−1}. Let pr : T (X)→ X be as in Lemma 4.4, and define
yi+1 = pr(yi) for each i ∈ ω. Let C ′ = {xj : 0 ≤ j < n} ∪ {yi : i ∈ ω}. Then
C ′ is a semi-simple n-cycle as required. �

A space is scattered if every non-empty subspace has at least one isolated
point. Given a space X, if Sα denotes the isolated points of X r

⋃
β<α Sβ,

then the Cantor–Bendixson rank or scattered rank rkX(x) of x in X is the
ordinal α such that x ∈ Sα, so that a space is scattered if and only if every
point has a scattered rank. If Uα =

⋃
β<α Sβ and Cα = X r Uα, then each

Uα is open in X. The Cantor-Bendixson or scattered height of X is the least
α such that Cα = ∅. The sets Cα form a strictly decreasing sequence of
closed sets so, if X is compact T1, the scattered height of X is a successor
ordinal β + 1 for some β, and Cβ is closed and discrete, hence finite.
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The significance of the cardinal c in the characterization is clear in the
scattered case.

Theorem 4.6. Suppose that X is a non-empty compact, scattered Hausdorff
space and that T : X → X is continuous. Then T has a cycle.

Proof. Suppose that X is a non-empty compact, scattered Hausdorff space.
We prove by induction on the scattered height α+1 of X that any continuous
T : X → X has a cycle.

The base case, α = 0, is trivial since a compact scattered space of height
1 is discrete, hence X is finite and T has a cycle. So assume that the
result holds for all β < α and suppose for a contradiction that T : X → X
is continuous and has no cycle. We will show that there is a closed non-
empty subset Y of X of height less than α + 1 such that T (Y ) ⊆ Y . Let
Uβ = {x ∈ X : rkX(x) < β } and Cβ = X r Uβ. Let x0 ∈ Cα and define
xn+1 = T (xn) for each n ∈ ω. Choose some xn such that rkX(xn) = γ =
min{ rkX(xn) : n ∈ ω } and let V = {xn} ∪ Uγ . If Y0 = X r

⋃
n∈ω T

−n(V ),
then Y0 is closed (since V is open) and by Lemma 3.3 T (Y0) ⊆ Y0. We must
show that Y0 6= ∅. Indeed, we have {xk : k > n } ⊆ Y0. Suppose that this
were not true, in other words that for some k > n we have xk ∈ T−j(V )
for some j ∈ ω, so T j(xk) ∈ V . Thus xk+j ∈ V . Since we also have
rkX(xk+j) ≥ γ, we have xk+j = xn. But then T k+j−n(xn) = xn, and T has
a cycle, which is a contradiction.

Since X is compact, Cα is finite having m points say. But now rkY0(y) ≤
rkX(y) for every y ∈ Y0 and since x0 /∈ Y0 we know that Y0 has at most
m − 1 points of rank α. Repeating this process at most m times we will
produce an example with height less than α+ 1, contradicting our inductive
hypothesis. �

Since every compact Hausdorff space of cardinality strictly less than c is
scattered we have the following.

Corollary 4.7. If |X| < c and T : X → X has no cycles, then T is not
compactifiable.

In fact the cardinality of X is not particularly relevant to our problem
and it is obviously possible for |X| ≥ c and T : X → X to have fewer than
c orbits (the constant function 1 on the reals is a trivial example).

Theorem 4.8. Suppose T : X → X has only countably many orbits and no
cycles. Then T is not compactifiable.

Proof. Suppose, for a contradiction, that T is compactifiable. We will con-
struct a strictly decreasing sequence of subsets Xα of X which are both
topologically closed and closed under T .

Put X0 = X. Suppose that, for all β < α we have defined a closed subset
Xβ of X which is closed under T . If α is a limit, put Xα =

⋂
β<αXβ: this

is non-empty by compactness of X. If α = β + 1, let the orbits of T � Xβ

be {Ok : k ∈ ω }. For each k, choose xk ∈ Xβ ∩ Ok, and for m,n ∈ ω put
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Cm,n,k = T−m({Tn(xk)}). Then Cm,n,k is closed, Ok =
⋃
m,nCm,n,k and

Xβ =
⋃
m,n,k Cm,n,k, so by the Baire Category Theorem at least one of the

sets Cm,n,k has non-empty interior in Xβ. Put V =
⋃
r∈ω T

−r intXβ (Cm,n,k).
Then V is open in Xβ, so Xα = Xβ r V is both topologically closed and
closed under T . Moreover, Xα 6= ∅ since it contains Tn+1(xk).

Now, putting κ = |X|+, the sequence {Xα}α∈κ is a strictly decreasing
sequence of non-empty subsets of X, which is impossible. So T cannot be
compactified.

�

Clearly under Martin’s Axiom, the above proof extends to “fewer than c
many orbits”. However to deal in general with the case when the number of
orbits lies strictly between ω and c we need a different argument.

Recall that a space is Tychonoff if and only if it is T1 and completely
regular, that is for every closed set C and point x /∈ C there is a continuous
f : X → [0, 1] such that f(x) = 0 and f � C = 1. A space X is Čech
complete if and only if there is a sequence of open covers {Un}n∈ω of X
such that whenever C is a family of closed sets with the finite intersection
property and, for each n, there is some C ∈ C and U ∈ Un such that C ⊆ U ,
then

⋂
c∈C C 6= ∅ (see [2, Theorem 3.9.2]). We denote the set of functions

from ω to 2 by ω2, the set of functions from n to 2 by n2 and
⋃
n∈ω

n2 by
<ω2.

Theorem 4.9. Let X be an infinite Čech-complete, Tychonoff space and
ρ be an Fσ equivalence relation on X. If there are infinitely many dense
equivalence classes in X, then ρ has at least c many equivalence classes.

Proof. Let {Un}n∈ω be a sequence of open covers guaranteeing that X is
Čech complete. Since ρ is an Fσ relation on X, the relation ρ =

⋃
k∈ω Fk,

where each Fk is a closed subset of X2. Without loss of generality we have
∆ ⊆ Fk ⊆ Fk+1 for all k.

Claim 4.9.1. There is a collection, {Vf : f ∈ <ω2}, of non-empty, open
subsets of X such that:

(1) if f extends g then Vf ⊆ Vg;
(2) for each n ∈ ω and f, g ∈ n2 with f 6= g, Vf ∩ Vg = ∅;
(3) for each n ∈ ω and f, g ∈ n2 with f 6= g, if v ∈ Vf and v′ ∈ Vg, then

(v, v′) /∈ Fn; and
(4) for each n ∈ ω and f ∈ n2, Vf ⊆ U for some U ∈ Un.

Proof. Suppose that the collection {Vf : f ∈ n2 } has been chosen. Since
there are infinitely many dense equivalence classes, we can choose points vf
for f ∈ n+12 so that if f 6= g then (vf , vg) /∈ ρ, and vf ∈ Vf�n for each
f . For each f 6= g ∈ n+12 we have (vf , vg) /∈ Fn+1 and Fn+1 is closed so
there are disjoint open sets Uf,g and Wf,g such that (vf , vg) ∈ Uf,g ×Wf,g

and
(
Uf,g × Wf,g

)
∩ Fn+1 = ∅. Hence for all u ∈ Uf,g and w ∈ Wf,g,

(u,w) /∈ Fn+1. Moreover, by regularity, for each f ∈ n+12, there is an open
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set Wf such that vf ∈ Wf ⊆ Wf ⊆ Vf�n ∩ U , where U is some element
of Un+1 containing vf . Now choose by regularity an open set Vf such that
vf ∈ Vf ⊆ Vf ⊆Wf ∩

⋂
f 6=g(Uf,g ∩Wg,f ). �

Now, for any f ∈ ω2, {Vf�n : n ∈ ω} is a collection of closed subsets
with the finite intersection property such that, for each n ∈ ω, Vf�n is
a subset of some U ∈ Un. Hence, by Čech completeness, there is some
xf ∈

⋂
n∈ω Vf�n =

⋂
n∈ω Vf�n 6= ∅. If f 6= g, then (xf , xg) /∈ Fn for any n,

so that (xf , xg) /∈ ρ, so xf and xg are in different equivalence classes and we
see that there are at least c classes. �

Corollary 4.10 follows immediately from Theorem 4.9 and Lemma 3.5.

Corollary 4.10. Let X be an infinite Čech-complete, Tychonoff space and
T : X → X be a continuous map with infinitely many orbits. If infinitely
many T -orbits are dense in X, then T has at least c many orbits.

Corollary 4.11. If T : X → X has fewer than c many orbits and no cycles,
then T cannot be compactified.

Proof. By Corollary 4.2, we may assume without loss of generality that
X = Tω(X) and there are no N-orbits, so that all of the orbits are Z-orbits.
Let {Zα : α ∈ κ } index the orbits of T . Let λ = |X|. We will construct
closed subsets Yα,β for α < λ+, β < κ which are closed under T , with the
property that Yα′,β′ ⊆ Yα,β whenever α < α′ or α = α′ and β < β′.

Put Y0,0 = Z0 . This is closed under T by Lemma 3.3. If Yγ,β has been
defined for all γ < α and all β < κ, so that Yγ,β is closed, non-empty and
closed under T , then let Yα,0 = Xα,0 =

⋂
γ<α,β<κ Yγ,β. This is closed, non-

empty and closed under T . Now for a particular α, if Yα,γ has been defined
for all γ < β, put Xα,β =

⋂
γ<β Yα,γ . This is an intersection of closed

sets which are closed under T , hence is closed and closed under T , and by
compactness it is non-empty. Put

Yα,β =

{
Zβ ∩Xα,β if Zβ ∩Xα,β 6= ∅
Xα,β otherwise.

Again Yα,β is closed, non-empty and closed under T .
The sets Yα,0 for α < λ+ form a decreasing chain of non-empty closed sets

of cardinality at most λ. Thus there must be some α with Yα,0 = Yα+1,0.
Put Y = Yα,0. Then for every β we have Zβ ∩ Y = ∅ or Zβ ∩ Y = Y .
By Lemma 3.4, every orbit of T � Y is of the form Zα ∩ Y , so every orbit
of T � Y is dense in Y . If there are infinitely many such orbits, the result
follows by Corollary 4.10. If there are finitely many, the result follows by
Theorem 4.8. �

Suppose that T : X → X. It is easy to compactify T if its only orbits are
a simple k-cycle and an infinite collection of simple cycles Cα, α ∈ κ, whose
orders are all divisible by k. Simply pick some cycle of length k and list it
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{x0, · · · , xk−1} so that T (xi) = xi+1, where i+ 1 is taken modulo k. List all
other cycles Cα = {xα,i : 0 ≤ i < mα} so that T (xα,i) = xα,i+1, where i+ 1
is taken modulo mα. Then declare each xα,j to be isolated and let basic
neighbourhoods of each xi, 0 ≤ i < k, contain xi and all but finitely many
points of the form xα,j , where j ≡ i (mod k). If there are only countably
many orbits this construction clearly yields a compact metric space. Since
a finite union of compact spaces is again compact, it follows that T can
certainly be compactified if its spectrum σ(T ) = (0, 0, σ1, σ2, · · · ) is finitely
based and each σn ∈ 2 (see Case (3) of Theorem 7.4 for a proof of this).
If the spectrum of T is not finitely based the question as to whether T can
be compactified is more complicated. Theorem 4.13 provides part of the
answer.

Lemma 4.12. Let X be a Hausdorff space and T : X → X a continuous
self-map. Suppose that {Cα : α ∈ κ} is an infinite collection of simple T -
cycles such that the points of C =

⋃
αCα are isolated in Y = C and that S

is (the spine of) a cycle consisting of isolated points of Y r C.
If the order of S divides the order of at most finitely many Cα, then X is

not compact.

Proof. Assume for a contradiction that X is compact. By Lemma 3.3 (1),
we may assume without loss of generality that Y = X.

Let S = {x0, · · · , xn−1}. Since S is finite and open in Y rC, C ∪ {xi} is
open in Y for each i, so we can choose disjoint sets Ui for 0 ≤ i < n with
xi ∈ Ui ⊆ {xi} ∪C and Ui open in Y . By regularity, we can find Vi open in
Y with xi ∈ Vi ⊆ Vi ⊆ Ui. Note that since the points of C are isolated we
must have Vi = Vi. We may assume without loss of generality that n does
not divide the order of any cycle which meets any of the sets Vi.

Put W =
⋂
i<n T

−i(Vi). Then W is a neighbourhood of x0. Inductively
choose cycles Cαm for m ∈ ω so that Cαm meets W r

⋃
j<mCαj . Let nm be

the length of the cycle Cαm . Since Cαm meets each of the disjoint sets Vi,
there is some im < n such that 0 < |Vim ∩ Cαm | < nm/n. Without loss of
generality there is some i with im = i for all m.

Put Am = Vi ∩Cαm . By Lemma 3.9, Am is not fixed by Tn, and T−n(Vi)
contains the same number of elements of Cαm as Vi does, so there is some
point ym ∈ Am r T−n(Vi). But then Vi r T−n(Vi) is a clopen discrete set
containing an infinite subset { ym : m ∈ ω }, so Y is not compact. �

Theorem 4.13 (Iwanik, Janos, Kowalski [5]). Let T : X → X be a map
whose only orbits are < c many simple cycles. If σ(T ) is not finitely based,
then T is not compactifiable.

Proof. Suppose that there is a compact Hausdorff topology on X with re-
spect to which T is continuous. Since each orbit is finite, |X| < c and, hence,
X is scattered. Moreover, since each orbit is simple, T is an autohomeo-
morphism of X and therefore preserves the scattered rank of points and we



14 CHARACTERIZING CONTINUOUS FUNCTIONS ON COMPACT SPACES

may assign a well-defined scattered rank, rk(Cα), to each cycle according to
the rank of any of its points.

Let M be the infinite subset of {n ∈ ω : σn 6= 0} furnished by Lemma
3.6. For each m ∈M , choose a cycle Cαm of order m. Since M is countably
infinite, there is an subset M ′ of M such that rk(Cαm) ≤ rk(Cαn), whenever
m < n ∈ M ′. This implies that the subspace C =

⋃
m∈M ′ Cαm is discrete.

Hence, in the subspace C ⊆ X, points of C are isolated. Notice also that,
by Lemma 3.6, for any α, if Cα is a cycle of order n, then n divides at most
finitely many m ∈ M ′. Finally, since C is an infinite discrete set, it cannot
be closed and C r C 6= ∅. Moreover, as C is scattered there must be some
cycle S ⊆ C r C consisting of isolated points of C r C.

The result now follows by applying Theorem 4.12 to X, the collection
{Cαm : m ∈M ′}, Y = C and S as chosen above. �

5. Resolutions

In this section we discuss some general properties of resolutions, which
will be used in our later examples. First we recall the definition from [11].

Let Y be a T1 topological space and, for each y ∈ Y let Zy be a non-
empty topological space and fy : Y r {y} → Zy be a continuous function.
In the resolution X, each point y of Y is replaced by Zy. It is convenient
to think of fy(x) as indicating which point in Zy the point x is closest to.
A neighbourhood of z ∈ Zy consists of all points in Zy sufficiently close to
z, and the union of the spaces Zw for w sufficiently close to y and f(w)
sufficiently close to z. For notational convenience, we replace the point y
with {y}×Zy (rather than Zy). To be precise, we have X =

⋃
y∈Y {y}×Zy,

and we topologise X by declaring a basic neighbourhood of (y, z) to be of
the form

U ⊗ V =
(
{y} × V

)
∪
⋃{
{u} × Zu : u ∈ U r {y}, fy(u) ∈ V

}
where U is an open neighbourhood of y in Y and V is an open subset of Zy
containing z.

We do not need to use resolutions in their full generality in what follows.
In our examples, the functions fy will always be constant maps. When this
is the case, one may consider the resolution X of the space Y by the spaces
Zy, y ∈ Y , as the space X =

⋃
y∈Y Zy, where Y is a subset of X, the

collection {Zy : y ∈ Y } is pairwise disjoint and Y ∩ Zy = {y}. Each of the
sets Zy r {y} is open in X and basic neighbourhoods of a point y ∈ Y open
in X can be written in the form V ∪

(⋃
u∈Ur{y} Zu

)
, where U is some open

neighbourhood of y in the subspace Y and V is an open neighbourhood of y
in the subspace Zy. In practice, this often how we think about resolutions.
A set X might be a pairwise disjoint union of non-empty sets Zy, y ∈ Y ,
and it is only a slight abuse of terminology to refer to the topology obtained
on X from the resolution X via the natural identification (y, z) 7→ z ∈ Zy
as being a resolution.
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In this context resolutions are a fairly blunt tool. In a number of cases
here when we apply resolutions we end up with a compact Hausdorff space
when we could have ended up with, for example, a compact metric space. In
the general case, however, our spaces cannot be metrizable (this is the case
if, for example, the cardinality of X is > c) and we gain much in shortened,
concise proofs.

The key to the usefulness of resolutions is the following result (see [11,
Theorem 3.1.33]):

Proposition 5.1 (The Fundamental Theorem of Resolutions). The space
X is compact (respectively Hausdorff) if and only if Y and the spaces Zy
are all compact (respectively Hausdorff).

We will also use the following result of Richardson and Watson [9]. A
subset of a topological space is σ-closed discrete if it is a countable union
of closed discrete sets, in particular every countable subset of a Hausdorff
space is σ-closed-discrete.

Proposition 5.2. The space X is metrisable if Y and all the spaces Zy are
metrisable and the set { y ∈ Y : |Zy| > 1 } is σ-closed-discrete.

We define the projection map π : X → Y by π((y, z)) = y. It is trivial to
verify that this is a continuous function.

The following somewhat technical lemma is of interest in its own right,
giving sufficient conditions for a function on a resolution (defined in terms
of functions on the base space and resolved spaces) to be continuous.

Lemma 5.3. Let X be the resolution of Y at each y ∈ Y into the space Zy
by the map fy. Let g : Y → Y and, for each y ∈ Y , hy : Zy → Zg(y) be
continuous functions and let t : X → X be the function defined by t(y, z) =(
g(y), hy(z)). Suppose that:

(1) for every open V ⊆ Zg(y) there exists an open UV,y ⊆ Y containing
y such that hw(Zw) ⊆ V for all w ∈ g−1(g(y)) ∩ UV,y, w 6= y; and

(2) for each y ∈ Y there is an open Ny containing y such that the fol-
lowing diagram commutes.

Ny r g−1(g(y))
g−−−−→ Y r {g(y)}

fy

y yfg(y)
Zy −−−−→

hy
Zg(y)

Then t is continuous.

Proof. It is enough to show that if U ⊗ V be a basic open neighbourhood
of t(y, z), then t−1(U ⊗ V ) is a neighbourhood of (y, z). We claim that
(y, z) ∈ A⊗B ⊆ t−1(U⊗V ) where A = g−1(U)∩UV,y∩Ny and B = h−1

y (V ),
UV,y being the open set furnished by condition (1). To see this, suppose that
(u, v) ∈ A ⊗ B =

(
{y} × B

)
∪
⋃{
{w} × Zw : w ∈ A r {y}, fy(w) ∈ B

}
.
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We will show that t(u, v) = (g(u), hu(v)) ∈ U ⊗ V . There are three cases to
consider.

Case 1. If u = y, then g(u) = g(y) and v ∈ h−1
y (V ), so t(u, v) =

(g(y), hy(v)) ∈ {g(y)} × V ⊆ U ⊗ V .
Case 2. If u 6= y but g(u) = g(y), then u ∈ g−1

(
g(y)

)
∩ UV,y so that

hu(Zu) ⊆ V by condition (1). Hence (g(u), hu(v)) ∈ {g(u)} × hu(Zu) ⊆
{g(y)} × V ⊆ U ⊗ V .

Case 3. If g(u) 6= g(y), then u ∈ Ny r g−1(g(y)), g(u) ∈ U r {g(y)} and
fy(u) ∈ h−1

y (V ) so that hy(fy(u)) ∈ V . But by the commutative diagram,
hy(fy(u)) = fg(y)(g(u)) ∈ V , which implies that {g(u)}×Zg(u) ⊆ U ⊗V and
hence that (g(u), hu(v)) ∈ {g(u)} × hu(Zu) ⊆ U ⊗ V . �

We note in passing that that condition 1) of the Lemma 5.3 can be weak-
ened to the less elegant

(1′) for every open V ⊆ Zg(y) and z ∈ h−1
y (V ) there exists an open

UV,y ⊆ Y containing y and open VV,z ⊆ Zy containing z such that
hw(Zw) ⊆ V for all w 6= y, such that w ∈ g−1(g(y)) ∩ UV,y and
fy(w) ∈ VV,z.

Recall that a mapping f from a space X to a subset Y is a retraction if
f � Y is the identity map.

Theorem 5.4. Let Y be a subset of X and T : X → X. Suppose that there
is a topology τ on X, a topology σ on Y and a mapping π : X → Y such
that:

(1) π is a τ -continuous retraction;
(2) τ is a Hausdorff topology on X, Y is τ -discrete and each π−1(y) is

τ -compact;
(3) σ is a compact Hausdorff topology on Y ;
(4) T is τ -continuous, T (Y ) ⊆ Y and T � Y is σ-continuous;
(5) T is finite-to-one on Y ;
(6) the following diagram commutes.

X −−−−→
T

X

π

y yπ
Y

T �Y−−−−→ Y

Then there is a compact Hausdorff topology ρ on X with respect to which T
is continuous.

Suppose further that:

(7) π−1(y), for each y ∈ Y , and Y are metrizable;
(8) { y ∈ Y : |π−1(y)| > 1 } is σ-closed-discrete with respect to the

topology σ.

Then, the topology ρ on X may be taken to be metrizable.
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Proof. Apply Lemma 5.3: Let g = T � Y , Zy = π−1(y), hy = T � π−1(y)
and fy(z) = y for all y ∈ Y . Clearly g is σ-continuous. Since the diagram
commutes, if z ∈ π−1(y), π(T (z)) = T (π(z)) = T (y), so T (z) ∈ π−1(T (y))
and hy : Zy → Zg(y) is τ -continuous for each y ∈ Y . Identify X with the
resolution of (Y, σ) at each y into (Zy, τ � Zy) by the constant maps fy using
the identification (y, z) 7→ z. Condition (1) of the lemma is satisfied because
σ is Hausdorff and g = T � Y is finite-to-one, so UV,y may be chosen to
ensure that UV,y ∩ g−1(g(y)) = {y} for all y. Condition (2) holds since if
z ∈ Y r g−1(g(y)), then fg(y)(g(z)) = g(y) = T (y) = hy(fy(z)).

If, in addition, conditions (7) and (8) hold, then ρ is metrizable by Propo-
sition 5.2. �

6. Compactifying Collections of Orbits

In this section we reduce the problem of compactifying T : X → X,
without its N-orbits, to that of compactifying the restriction of T to the
spines of its cycles and Z-orbits. The somewhat separate problem of dealing
with N-orbits is left to Section 8.

Theorem 6.2 describes topologies on individual orbits. The key theorem
of this section, Theorem 6.3, then tells us that that these orbits may be
glued together to compactify T , provided that (roughly speaking) one can
compactify the restriction of T to the spines of its orbits. The difficulty here
is that for any x ∈ X and k ∈ ω, T−k(x) must be compact if T is to be
compactified. The predecessor function pr(x) defined in Lemma 4.4 deals
with this problem.

For each y ∈ X and k ∈ ω, let Cy,0 = {y}, Cy,k = T−k(y) and Dy,k =
Cy,k ∩ T (X), so that Dy,k is the set of points x in Cy,k for which T−1(x)
is non-empty and Cy,k+1 = T−1(Dy,k). If X is a compact T1 space and T
is continuous, then, for any point y in X and any k ∈ ω, both Cy,k and
Dy,k = T

(
T−1(Cy,k)

)
must be compact sets.

Lemma 6.1. Suppose that T : X → X and that Tω+1(X) = Tω(X). For
every y ∈ X and k ∈ ω, there is a compact, Hausdorff topology σy,k on Cy,k
such that

T � Cy,k+1 :
(
Cy,k+1, σy,k+1

)
→
(
Cy,k, σy,k

)
is continuous.

Proof. Let z ∈
⋃
k∈ω Cy,k and let pr(z) ∈ T−1(z) be the point furnished by

Lemma 4.4. Let ρz be the topology of one-point compactification on T−1(z)
with pr(z) the point at infinity and all other points isolated.

Let σy,0 be the unique topology on {y}. Let σy,1 = ρy. Suppose that
for each j ≤ k the topology σy,j on Cy,j has been defined so that Cy,j is
compact and Hausdorff, Dy,j is a closed subset and T � Cy,j is a continu-
ous map from Cy,j to Cy,j−1. Define the topology σy,k+1 on Cy,k+1 to be
the resolution of each z ∈ Dy,k into the compact space (T−1(z), ρz) by the
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constant maps fz(x) = pr(z), x ∈ Dy,kr{z}. That Cy,k+1 is compact, Haus-
dorff with respect to this topology follows from the Fundamental Theorem
of Resolutions.

If U is an open subset of Cy,k, then T−1(U) =
⋃
x∈U T

−1(x), which is
open in the resolved space Cy,k+1. Hence T maps Cy,k+1 continuously to
Cy,k.

It remains to show that Dy,k+1 is a closed subset of Cy,k+1 under the
topology σy,k+1. To this end let x be some point in Cy,k+1 rDy,k+1, so that
x /∈ T (X) and x ∈ T−1(x0), for some x0 ∈ Dy,k. Let x−1 = x and, for
each 0 < i ≤ k, let xi = T i(x0), so that xk = T k(x0) = y. If x 6= pr(x0),
then x is an isolated point of Cy,k+1. If x = pr(x0), then there is some
0 ≤ k′ ≤ k such that xi−1 = pr(xi) for each i ≤ k′ and, moreover, either
k′ = k and xk′−1 = pr(xk) = pr(y), or k′ < k and xk′−1 = pr(xk′), but
xk′ 6= pr(xk′+1). If k′ = k, then the second half of Lemma 4.4 implies that
Dy,k+1 is empty. Otherwise xk′ is an isolated point of T−k+k

′
(y) and the

open subset T−k
′−1(xk′) of Cy,k+1 contains x and is disjoint from T (X) and

hence from Dy,k+1. In any case, Dy,k+1 is closed. �

Using the topologies generated in Lemma 6.1, Theorem 6.2 implies that
there is a topology on each orbit O with the property that T−k(y) is compact
for each y ∈ O.

Theorem 6.2. Suppose that T : X → X has one orbit and that Tω+1(X) =
Tω(X) 6= ∅. Suppose further that S is either a spine of X or S is a semi-
simple cycle under the action of T � S. Then there is a Hausdorff topology
τ on X and a retraction π : X → S such that:

(1) T is τ -continuous;
(2) S is τ -discrete;
(3) π has compact open fibres; and
(4) the following diagram commutes.

X −−−−→
T

X

π

y yπ
S

T �S−−−−→ S

Proof. There are three cases to consider: when X is either an N -cycle or
a Z-orbit and S is a spine or when S is a semi-simple N -cycle. (The case
when X is an N-orbit is excluded since Tω(X) 6= ∅.)

We consider the first two cases together. Index S by {xn : n ∈M} where
M is such that S = {x0, · · · , xN−1}, or {xn : n ∈ Z} as appropriate. For
each xn ∈ S and k ∈ ω, let Cn,0 = {xn}, Cn,1 = T−1(xn) r {xn−1} and
Cn,k = T−k+1(Cn,1) = T−k(xn) r T−k+1(xn−1).

Claim 6.2.1. For every xn ∈ S, k ≥ 1 and non-empty Cn,k, there is a
topology τn,k on Cn,k such that:

(1) τn,k partitions Cn,k into a discrete collection of compact sets Cn,k;
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(2) T : (Cn,k, τn,k)→ (Cn,k−1, τn,k−1) is continuous; and
(3) for each y ∈ Cn,k and m ∈ ω, T−m(y) is a τn,k+m-compact subset of

Cn,k+m.

Proof. Fix xn ∈ S. Using the notation of Lemma 6.1, we see that Cn,k =⋃
y∈Cn,1 Cy,k−1, where each Cy,k−1 has a compact Hausdorff topology σy,k−1.

Let Cn,k = {Cy,k−1 : y ∈ Cn,1} and let τn,k be the topology on the free union
of the spaces in Cn,k generated by the topologies σy,k−1. It is clear T � Cn,k
is continuous. �

If X consists of a single N -cycle, then, for each 0 ≤ n < N , let Pn =
{(m, k) : 0 ≤ k ∈ ω, m ≡ n+k (mod N)}. If X consists of a single Z-orbit,
then, for each n ∈ Z, let Pn = {(n + k, k) : 0 ≤ k ∈ ω}. In either case,
(n, 0) ∈ Pn, Pn ∩ Pn′ = ∅ whenever n 6= n′, X =

⋃
n∈M

⋃
(m,k)∈Pn Cm,k and

(m, k − 1) ∈ Pn+1, whenever (m, k) ∈ Pn.
Now, by Claim 6.2.1, under the topology τm,k, each Cm,k is the closed

discrete union of the family of compact sets Cm,k. Let τ be the topology
on X generated by declaring τ � Cm,k = τm,k with each C ∈ Cm,k compact
and clopen under τ , and basic neighbourhoods of xn ∈ S to have the form
{xn}∪

⋃
{C ∈ Cm,k : (m, k) ∈ Pn, C /∈ F} for some finite F ⊆

⋃
(m,k)∈Pn Cm,k.

Let π : X → S be defined so that π(x) = xn if and only if x ∈ C ∈ Cm,k
for some (m, k) ∈ Pn. Clearly π has compact fibres and S is τ -discrete.
Since (m, k− 1) ∈ Pn+1, whenever (m, k) ∈ Pn, and the conditions of Claim
6.2.1 hold, it is simple to verify that T is τ -continuous and that T and π
commute.

The case when S is a semi-simple N -cycle is a combination of the previous
two cases. Index S by {xn : 0 ≤ n < N}∪{yi : i ∈ ω} so that T (xn) = xn+1

for n < N , T (xN−1) = T (y0) = x0 and T (yi) = yi−1, i 6= 0. As before,
for each 0 < n < N and k ∈ ω, let Cn,0 = {xn}, Cn,1 = T−1(xn) r {xn−1}
and Cn,k = T−k+1(Cn,1) = T−k(xn) r T−k+1(xn−1). Let C0,0 = {x0},
C0,1 = T−1(x0) r {xN−1, y0} and C0,k = T−k+1(C0,1), for 1 < k. For each
i ∈ ω, let Di,0 = {yi}, Di,1 = T−1(yi) r {xi+1} and Di,k = T−k+1(Di,1). For
each 0 ≤ n < N , let Pn = {(m, k) : 0 ≤ k ∈ ω, m ≡ n + k (mod N)} and
for each i ∈ ω let Qi = {(i− k, k) : 0 ≤ k ≤ i}.

Just as in Claim 6.2.1, for each xn, k ≥ 1, and non-empty Cn,k there is a
topology τn,k on Cn,k that satisfies conditions (1), (2), and (3) of the claim.
Similarly for each yi, k ≤ i and non-empty Di,k there is a topology θi,k on
Di,k such that

(1) θi,k partitions Di,k into a discrete collection of compact sets Di,k;
(2) T : (Di,k, θi,k)→ (Di,k−1, θi,k−1) is continuous; and
(3) for each z ∈ Di,k and m ∈ ω, T−m(z) is a θi,k+m-compact subset of

Di,k+m.
Let τ be the topology on X generated by declaring:
(1) τ � Cm,k = τm,k with each C ∈ Cm,k compact and clopen under τ ;
(2) τ � Dj,k = θj,k with each D ∈ Dj,k compact and clopen under τ ;
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(3) basic neighbourhoods of xn to have the form {xn} ∪
⋃
{C ∈ Cm,k :

(m, k) ∈ Pn, C /∈ F} for some finite F ⊆
⋃

(m,k)∈Pn Cm,k;
(4) basic neighbourhoods of yi to have the form {yi} ∪

⋃
{D ∈ Dj,k :

(j, k) ∈ Qi, D /∈ F} for some finite F ⊆
⋃

(j,k)∈Qi Dj,k.
Define π : X → S by

π(x) =

{
xn if x ∈ C ∈ Cm,k for some (m, k) ∈ Pn
yi if x ∈ D ∈ Dj,k for some (j, k) ∈ Qi.

Again it is routine to verify that the conclusions of the theorem hold. �

The key theorem of this section now follows easily. Essentially it tells us
that if T : X → X and Y is the union of the spines of the orbits of T , then
T can be compactified if T � Y can be compactified.

Theorem 6.3. Suppose that T : X → X has orbit spectrum σ(T ) and no
N-orbits and that Tω+1(X) = Tω(X) 6= ∅. Let Y be a subset of X such
that:

(1) Y is closed under T ;
(2) every orbit of T has a spine that is a subset of Y ; and
(3) every orbit of T � Y is simple except, possibly for one semi-simple

n-cycle.
Then T � Y : Y → Y is a canonical or semi-canonical representation of
σ(T ). Moreover, if T � Y can be compactified, then so can T .

Proof. The first conclusion is obvious. For the second statement, Let O
be the collection of all orbits of T . For each O ∈ O, let τO and πO be
the topology and map defined in Theorem 6.2 applied to T � O and S =
O∩Y . Let τ be the topology on the whole of X generated by the collection
O ∪

⋃
O∈O τO so that each orbit is an open set. Let π : X → Y be the

map defined by π(x) = πO(x) for each x ∈ O ∈ O. Let σ be a compact,
Hausdorff topology on Y with respect to which T � Y is continuous. T is
then compactifiable by applying Theorem 5.4 to the topologies τ and σ and
the map π. �

We end this section with four lemmas that allow us to deduce that a
map is compactifiable given that a related map is. The first, 6.4, implies
that simple n-cycles consisting of isolated points can be replaced by simple
nmn-cycles. Lemma 6.5 implies that T can be compactified provided its
restriction to each of finitely many subsets with common intersections can
be compactified. Lemma 6.6 implies that any number of simple orbits (of
any type) may be added to a space, provided there is already an orbit of
that type. Lemma 6.7 tells us that, under certain circumstances, we can
add more orbits and still retain a compact metrizable topology on X.

Lemma 6.4. Let S : X ′ → X ′, T : X → X, and R = X ∩X ′. Let M ⊆ ω
and for each n ∈M , let kn ∈ ω and mn ∈ ω. Suppose that:
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(1) S � R = T � R;
(2) X ′ rR =

⋃
n∈M C ′n, where each C ′n is a simple kn-cycle; and

(3) X rR =
⋃
n∈M Cn, where each Cn is a simple knmn-cycle.

If S can be compactified so that each point of
⋃
n∈M C ′n is isolated, then T

can be compactified so that each point of
⋃
n∈M Cn is isolated.

Proof. For each n ∈ M , index the cycle C ′n as {xn,i : 0 ≤ i < kn} so that
S(xn,i) = xn,i+1 where i + 1 is taken modulo kn. Index the cycle Cn as
{yn,i,j : 0 ≤ i < kn, 0 ≤ j < mn} so that

T (yn,i,j) =


yn,i+1,j i 6= kn − 1,
yn,0,j+1 i = kn − 1, j 6= mn − 1,
yn,0,0 i = kn + 1, j = mn − 1.

For each n ∈ M and i < n, resolve xn,i into the compact discrete space
{yn,i,j : 0 ≤ j < mn} by the constant map taking X ′ r {xn,i} to yn,i,0 and
resolve each y ∈ R = X ′ r

⋃
n<M C ′n into the space Zy = {y}.

Now apply Lemma 5.3 with g = S and t realized as T . If y ∈
⋃
n∈M C ′n (so

that y is isolated) then we can let Ny = UV,y = {y}. Otherwise Zy = {y}.
In either case the conditions of Lemma 5.3 are satisfied so that T : X → X
is compactifiable. �

Lemma 6.5. Let T : X → X and X =
⋃
j<kXj for some k ∈ ω. Suppose

that:
(1) Xj is closed under T , for each j < k;
(2) T � Xj is continuous with respect to the compact, Hausdorff topology

τj on Xj, for each j < k;
(3) Xi ∩Xj = R and τi � R = τj � R for all i 6= j;
(4) R is τj-closed for each j < k; and
(5) R is either a union of complete T -orbits or a union of spines of

Z-orbits and cycles.
Then T is compactifiable.

Proof. For each j < k, there is a compact, Hausdorff topology on Xj with
respect to which T � Xj is continuous. Let X have the quotient topology,
τ , formed by identifying the corresponding points of R in each Xj . Under
τ , X is compact and, since R is τj-closed, is Hausdorff. Suppose that U is
an open subset of X. Then there are τj-open subsets, Uj , of each Xj such
that U is the quotient of

⋃
j<k Uj . Since T−1(Uj) is an open subset of Xj for

each j, T−1(U) is a τ -open subset of X. It follows that T is continuous. �

Lemma 6.6. Let T : X → X and let Y be a subset of X. Suppose that:
(1) Y is a union of complete T -orbits;
(2) every T -orbit of X r Y is simple;
(3) σ(T � Y ) = (ν, ζ, σ1, σ2, σ3, . . . ) and

σ(T � (X r Y )) = (ν ′, ζ ′, σ′1, σ
′
2, σ
′
3, . . . ), where ν ′, ζ ′, σ′n = 0 when-

ever, respectively, ν, ζ, σn = 0.
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If T � Y is compactifiable then T is compactifiable.

Proof. Choose, if there is one, in Y , an N-orbit with spine {wi : i ∈ ω}, a Z-
orbit with spine {zi : i ∈ Z} and an n-cycle with spine {xn,i : 0 ≤ i < n} for
each n ∈ ω. Index the orbits of X r Y : {wα,i : i ∈ ω}, α ∈ ν ′; {zα,i : i ∈ Z},
α ∈ ζ ′; {xα,n,i : 0 ≤ i < n}, α ∈ σ′n, n ∈ ω. We assume that these orbits
are appropriately indexed so that wα,i 7→ wα,i+1 and so on. Topologize each
of the sets Wi = {wi} ∪ {wα,i : α ∈ ν ′}, Zi = {zi} ∪ {zα,i : α ∈ ζ ′}, and
Xi = {xn,i}∪{xα,n,i : α ∈ σ′n} so that they are compact, Hausdorff and each
of the maps T � Wi → Wi+1, T � Zi → Zi+1, T � Xi → Xi+1 (i + 1 taken
mod n) is a continuous bijection. (The one point compactification of the
discrete space {wα,i : α ∈ σ′n} by the point wi, for example, will work.) A
simple application of Theorem 5.4 completes the proof. �

Lemma 6.7. Let T : X → X be bijection and let σ(T ) = (0, ζ, σ1, σ2, · · · ).
Let Y be a subset of X. Suppose that:

(1) for all k ∈ ω, ζ and σk take the values 0 ≤ N ∈ ω, ω or c;
(2) T (Y ) = Y ;
(3) σ(T � Y ) = (0, ζ ′, σ′1, σ

′
2 · · · ) where:

(a) for all k ∈ ω, ζ ′ and σ′k take the values 0, 1 or c;
(b) for all k ∈ ω, ζ ′ = 0 if and only if ζ = 0 and σ′k = 0 if and only

if σk = 0;
(c) if ζ ′ = c, then ζ = c and every Z-orbit of X is contained in Y ;
(d) if σ′n = c, for any n ∈ ω, then σn = c and every n-cycle of X is

contained in Y .

If there is a compact metric topology on Y with respect to which T � Y is
continuous, then there is a compact metric topology on X with respect to
which T is continuous.

Proof. Let σ be a compact, metrizable topology on Y with respect to which
S = T � Y is continuous. Let I = [0, 1], W = {0} ∪ {1/n : n ∈ ω} and
N = {0, 1, · · · , N − 1} have the compact metric topology inherited from R.

Let Jζ (respectively, Jk) be either N , W or I according to whether T
has N ∈ ω many, countably infinitely many or continuum many Z-orbits
(respectively, k-cycles).

If ζ ′ = ζ = c, then let Z be the union of all Z-orbits of X and let τZ be
the discrete topology on Z. Otherwise, let τZ = ∅.

If ζ ′ = 1, let {Zr : r ∈ Jζ}, index the Z-orbits of T , so that Z0 is the
unique Z-orbit of S. For each r ∈ Jζ , enumerate Zr as {zr,i : i ∈ Z} so
that T (zr,i) = zr,i+1. For each i ∈ Z, let Jζ,i = {zr,i : r ∈ Jζ} and let τζ,i
be the topology inherited from Jζ , namely U ⊆ Jζ,i is open if and only if
{r ∈ Jζ : zr,i ∈ U} is open on Jζ . If ζ = 0, let τζ,i = ∅. Clearly, at most one
of τζ,i and τZ can be non-empty.

If σ′k = σk = c, for some k ∈ ω, let Xk be the union of all k-cycles of X
and let τk be the discrete topology on Xk. Otherwise, let τk = ∅.
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If σ′k = 1, let {Xk,r : r ∈ Jn} index the n-cycles of T , so that Xk,0 is
the single k-cycle of S. Enumerate Xk,r = {xk,r,i : 0 ≤ i < k} so that
T (xk,r,i) = xk,r,i+1, where i + 1 is taken modulo k. For each i < k, let
Jk,i = {xk,r,i : r ∈ Jk} and let τk,i be the topology on Jk,i inherited from Jk.
If σk = 0, let τk,i = ∅. At most one of τk,i and τk can be non-empty.

Let τ be the topology on X generated by

τZ ∪
⋃
k∈ω

τk ∪
⋃
i∈Z

τζ,i ∪
⋃
k∈ω

⋃
i<k

τk,i

and let π : X → Y be the map defined by

π(x) =


x if ζ ′ = c and x ∈ Z,
x if σ′k = c and x ∈ Xk,

z0,i if ζ ′ = 1 and x = zr,i for some i,
xk,0,i if σ′k = 1 and x = xk,r,i for some k, i.

Clearly τ is a Hausdorff topology on X with respect to which Y is a discrete
subspace, both T and π are continuous and each π−1(y) is both compact
and metrizable. It is easy to check that the diagram

X −−−−→
T

X

π

y yπ
Y

T �Y−−−−→ Y

commutes. S = T � Y is a continuous bijection with respect to σ. Moreover,
if |π−1(y)| > 1 and y is in a Z-orbit (respectively, k-cycle) of S, then ζ ′ = 1
(respectively σ′k=1), so that D = { y ∈ Y : |π−1(y)| > 1 } is a countable
subset of Y . But this implies that D is σ-closed-discrete with respect to the
topology σ. Hence, by Theorem 5.4, there is a compact metric topology on
X with respect to which T is continuous. �

7. Compactifying Canonical Representations

In this section we compactify various canonical and semi-canonical repre-
sentations of sequences. The constructions are brought together in the key
result of this section, Theorem 7.4.

Let T denote the unit circle {eiθ ∈ C : θ ∈ [0, 2π)}, let S = T × [−1, 1]
be parameterized by (θ, x), where θ ∈ [0, 2π) and x ∈ [−1, 1], and let Tx =
T×{x} for each x. A number of compactifications will be realised as subsets
of the cylinder S.

The proof of the following lemma is standard.
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Lemma 7.1. The maps tr : S→ S, r ∈ R, s : S→ S and uk : S→ S, k ∈ ω
defined by defined by

tr :
(
θ, x
)
7→
(
θ + 2πr, x/2

)
,

s :
(
θ, x
)
7→
(
θ + 2πx, x

)
and

uk :
(
θ, x
)
7→
(
θ + 2π/k, x

)
are continuous.

The orbits of s, each uk and each tr are simple. Moreover if p = (θ, x) ∈ S,
then the orbit of p under:

(1) tr is an N-orbit if x 6= 0, a Z-orbit if x = 0 and r is irrational and
an n-cycle if x = 0 and r = m/n is a rational expressed in lowest
terms;

(2) s is a Z-orbit if x is irrational and an n-cycle if x = m/n is a
rational expressed in lowest terms;

(3) uk is a k-cycle.

Theorem 4.13 implies that a map whose only orbits are < c many simple
cycles cannot be compactified unless its spectrum is finitely based. With a
Z-orbit or semi-simple k-cycle, for some k, this problem does not arise. Most
of the proof of this is contained in the next two lemmas, 7.2 dealing with
semi-simple k-orbits and 7.3 with Z-orbits. The remaining details are left
to Theorem 7.4. Iwanik [4] gives an alternative version of this construction.

Lemma 7.2. Let k, r, p ∈ ω, with 0 ≤ r < k and 0 ≤ p < 2r, and N ⊆ ω
be infinite with the property that for each n ∈ N there exist an, qn ∈ ω with
n = kqn + r and qn = 2anr + p. If σ = (0, 0, σ1, σ2, σ3, · · · ), where σn = 1
if n ∈ N ∪ {k} and 0 otherwise, then the semi-canonical representation
T : X → X of σ, with a single semi-simple k-cycle, Ck, is compactifiable in
such a way that the subset Ck closed.

Proof. Let the tailed k-cycle, Ck, be indexed {xj : 0 ≤ j < k} ∪ {zi,j : i ∈
ω, 0 ≤ j < k} ∪ {z0} so that T (xj) = xj+1 (where j + 1 is taken modulo k),
T (z0) = x0 and

T : zi,j 7→


zi,j+1 j 6= k − 1,
zi−1,0 j = k − 1, i 6= 0
z0 j = k − 1, i = 0

By Lemma 3.8, we can choose numbers wn,t for n ∈ N , 0 ≤ t < r so that
n =

∑
0≤t<r(kwn,t + 1) and, for every l, there is an m such that if n ≥ m

then wn,t ≥ l.
Let N ′ = {n ∈ N : wn,t = 0 for some t}. Notice that N ′ is finite and that,

hence, the discrete topology makes
⋃
n∈N ′ Cn compact and the restriction

of T continuous. Since the free union of two compact sets is compact and⋃
n∈NrN ′ Cn is closed under T , we may assume that N ′ = ∅.
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For each n =
∑

0≤t<r(kwn,t + 1) ∈ N such that no wn,t 6= 0, we can index
the simple n-cycle Cn as

Cn = {xn,i,j,t : 0 ≤ i < wn,t, 0 ≤ j < k, 0 ≤ t < r} ∪ {xn,t : 0 ≤ t < r}.
so that T (xn,t) = xn,wn,t−1,0,t, and

T : xn,i,j,t 7→


xn,i,j+1,t j 6= k − 1
xn,i−1,0,t j = m− 1, i 6= 0
xn,t+1 j = m− 1, i = 0, t 6= r − 1
xn,0 j = m− 1, i = 0, t = r − 1.

We will topologize X by identifying the points with a closed bounded subset
of C× [0, 1], which therefore gives us a compact Hausdorff topology. We will
then show that T is continuous with respect to this topology.

Fix two sequences of real numbers, (cn)n∈ω and (en)n∈ω with 0 < c0,
cn < cn+1 for all n, and limn→∞ cn = 1 and e0 = 1, en > en+1 for all n and
limn→∞ en = 0. We will identify points of the tailed k-cycle Ck with points
of C × {0}. The other n-cycles have been partitioned into r sets of size
kwn,t + 1: these points will be identified with points of C × {enr+t} which
are above the last kwn,t + 1 points of the tail of the k-cycle. To be precise,
we identify the point xj with the point (e2πij/k, 0) of C × {0}, the point
zi,j with the point (cie2πij/k, 0) of C× {0}, and the point z0 with the point
(0, 0) of C× {0}. We identify the point xn,i,j,t of the n-cycle with the point
(cie2πij/k, enr+t) of C× [0, 1], and the point xn,t with the point (0, enr+t) of
C× [0, 1].

This certainly gives us a compact Hausdorff topology on X with respect
to which Ck is a closed set. It remains only to show that T is continuous
with respect to this topology. The points of the n-cycles for n ∈ N are all
isolated, so we only need to consider the points of the tailed k-cycle. The
points zi,j have basic neighbourhoods of the form

B(i, j,m) = {zi,j} ∪ {xn,i,j,t : n ≥ m, 0 ≤ t < r, 0 ≤ i < wn,t }.
A basic neighbourhood of z0 is

B(0,m) = {z0} ∪ {xn,t : n ≥ m, 0 ≤ t < r }.
A basic neighbourhood of xj is

C(j, l,m) = {xj} ∪
⋃
i≥l
B(i, j,m).

Notice that for 0 ≤ j < k− 1, T maps B(i, j,m) into (indeed, onto) B(i, j+
1,m) and therefore maps C(j, l,m) into C(j + 1, l,m). Further, T maps
B(i, k − 1,m) into B(i − 1, 0,m) for i > 0 and maps B(0, k − 1,m) into
B(0,m). So the only possible discontinuities are at xk−1 and z0. Now, T
maps C(k − 1, l+ 1,m) into C(0, l,m), so there is no discontinuity at xk−1.
Finally consider z0: recall that T (z0) = x0, so given l and m we must find
m′ so that T maps B(0,m′) into C(0, l,m). In other words we need to find
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m′ large enough so that if n ≥ m′ then T (xn,t) = xn,wn,t−1,0,t ∈ C(0, l,m).
For this, we require n > m and wn,t − 1 ≥ l. Choose m′′ large enough to
ensure that if n > m′′ then wn,t ≥ l + 1, and put m′ = max{m,m′′}: then
m′ is as required. �

Lemma 7.3. Let k, r, p ∈ ω, with 0 ≤ r < k and 0 ≤ p < 2r, and N ⊆ ω
be infinite with the property that for each n ∈ N there exist an, qn ∈ ω with
n = kqn + r and qn = 2anr + p. If σ = (0, 1, σ1, σ2, σ3, · · · ), where σn = 1 if
n ∈ N ∪ {k} and 0 otherwise, then the canonical representation T : X → X
of σ is compactifiable.

Proof. By Lemma 3.8 we can find natural numbers un,t, vn,t for n ∈ N , t < r
such that n =

∑
0≤t<r

[
k(un,t+vn,t)+1

]
and, for any l ∈ ω there is an m ∈ ω

such that if n ∈ N with n ≥ m then un,t, vn,t ≥ l.
Let T : X → X be the canonical representation of σ and index X as

follows.
Index the k-cycle Ck as {xj : 0 ≤ j < k} so that T (xj) = xj+1, where

j + 1 is taken modulo k, and index the Z-orbit

Z = {z−(i, j) : i ∈ ω, 0 ≤ j < k} ∪ {z0} ∪ {z+(i, j) : i ∈ ω, 0 ≤ j < k},
so that

T : z−(i, j) 7→


z−(i, j + 1) j 6= k − 1,
z−(i− 1, 0) j = k − 1, i 6= 0,
z0 j = k − 1, i = 0,

T : z0 7→ z+(0, 0), and

T : z+(i, j) 7→

{
z+(i, j + 1) j 6= k − 1,
z+(i+ 1, 0) j = k − 1.

Index the n-cycle

Cn ={x−(n, i, j, t) : 0 ≤ i < un,t, 0 ≤ j < k, 0 ≤ t < r}
∪{x+(n, i, j, t) : 0 ≤ i < vn,t, 0 ≤ j < k, 0 ≤ t < r}
∪{x(n, t) : 0 ≤ t < r}

so that

T : x−(n, i, j, t) 7→


x−(n, i, j + 1, t) j 6= k − 1,
x−(n, i− 1, 0, t) j = k − 1, i 6= 0,
x(n, t+ 1) j = k − 1, i = 0, t 6= r − 1,
x(n, 0) j = k − 1, i = 0, t = r − 1,

T : x(n, t) 7→ x+(n, 0, 0, t) and

T : x+(n, i, j, t) 7→


x+(n, i, j + 1, t) j 6= k − 1,
x+(n, i+ 1, 0, t) j = k − 1, i 6= vn,t − 1,
x−(n, un,t − 1, 0, t) j = k − 1, i = vn,t − 1.
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We may associateX with a compact subset of C×[0, 1] in a similar manner
to the proof of Lemma 7.2: the points z−(i, j) spiral in to the centre in the
same way that the points zi,j did in that construction, and then the points
z+(i, j) spiral outwards in a similar manner. The points in the n-cycle Cn
are split into r subsets of size k(un,t + vn,t) + 1 which are placed above z0,
the first kvn,t points z+(i, j), and then the last kun,t points z−(i, t).

To be precise, we will specify basic neighbourhoods for each of the points.
The points in Cn for n ∈ N are all isolated. A basic neighbourhood of
z−(i, j) is

B−(i, j,m) = { z−(i, j)} ∪ {x−(n, i, j, t) : n ≥ m, 0 ≤ t < r, 0 ≤ i < un,t }
and a basic neighbourhood of z+(i, j) is

B+(i, j,m) = { z+(i, j)} ∪ {x+(n, i, j, t) : n ≥ m, 0 ≤ t < r, 0 ≤ i < vn,t }.
A basic neighbourhood of z0 is

B(0,m) = {z0} ∪ {x(n, t) : n ≥ m, 0 ≤ t < r }.
A basic neighbourhood of xj is

C(j, l,m) = {xj} ∪
⋃
i≥l
B−(i, j,m) ∪

⋃
i≥l
B+(i, j,m).

This is clearly a zero-dimensional topology on X which is countably com-
pact, hence compact. It remains only to show that T is continuous with
respect to this topology. As before, points of Cn for n ∈ N are isolated,
and a basic neighbourhood of z±(i, j) for j 6= k − 1 is mapped onto the
corresponding basic neighbourhood of z±(i, j + 1). Thus T is certainly
continuous at each z±(i, j) and at each xj for j 6= k. Also, B(0,m) is
mapped onto B(0, 0,m) so T is continuous at z0, and B−(i, k − 1,m) is
mapped onto B(i − 1, 0,m) if i > 0, or B(0,m) if i = 0, so T is also
continuous at z−(i, k − 1) for each i. Thus the only possible discontinuity
occurs at the points z+(i, k − 1) and at xk−1, and arises from the fact that
T (x+(n, i, k− 1, t) is either x+(n, i+ 1, 0, t) or x−(n, un,t− 1, 0, t) depending
on whether or not i = vn,t − 1. Let m ∈ ω. Choose m′ ≥ m large enough
to ensure that vn,t ≥ i whenever n ≥ m′. Then B(i, k − 1,m′) does not
contain any points of the form x+(n, vn,t − 1, k − 1, t), so B+(i, k − 1, l)
is mapped into B+(i + 1, 0,m). This leaves only the point xk−1 to con-
sider. Take a basic neighbourhood C(0, l,m) of x0. We must find l′ and m′

such that C(k − 1, l′,m′) is mapped into C(0, l,m). Choose m′ ≥ m large
enough that if n ≥ m′ then un,t, vn,t ≥ l + 1. Put l′ = l + 1. Now, any
element of C(k − 1, l′,m′) of the form z−(i, k − 1) has i ≥ l′, so i − 1 ≥ l,
so T (z−(i, k − 1) = z−(i − 1, 0) ∈ C(0, l,m). Similarly, any element of the
form z+(i, k − 1) has T (z+(i, k − 1)) = z+(i + 1, 0) ∈ C(0, l,m). Likewise,
any element of C(k − 1, l′,m′) of the form x−(n, i, k − 1, t) is mapped to
x−(n, i− 1, 0, t) ∈ C(0, l,m) since i− 1 ≥ l and n ≥ m′ ≥ m. Any element
of the form x+(n, i, k−1, t) with i < vn,t−1 is mapped to x+(n, i+1, 0, t) ∈
C(0, l,m). Finally, any element of the form x+(n, vn,t−1, k−1, t) is mapped
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to x−(n, un,t − 1, 0, t): since n ≥ m′, un,t − 1 ≥ l so x−(n, un,t − 1, 0, t) ∈
C(0, l,m) in this case also. Thus T maps C(k − 1, l′,m′) into C(0, l,m), as
required. �

We can now combine the previous constructions to produce a list of orbit
spectra whose canonical, or, in one case, semi-canonical representations may
be compactified.

Theorem 7.4. Let σ = (0, ζ, σ1, σ2, σ3, . . . ). The canonical representation
T : X → X of σ is compactifiable in each of the following cases:

(1) ζ = c and σn = 0 for all n ∈ ω;
(2) ζ = 0, σk = c for some k ∈ ω and σn ∈ 2 for all n ∈ ω r {k};
(3) ζ = 0,

∑
n∈ω σn 6= 0, σ is finitely based and σn ∈ 2 for each n ∈ ω;

and
(4) ζ = 1,

∑
n∈ω σn 6= 0, and σn ∈ 2 for each n ∈ ω.

Furthermore, the semi-canonical representation T : X → X of σ, with a
single semi-simple k-cycle, is compactifiable if

(5) ζ = 0, σk = 1, and σn ∈ 2 for all n ∈ ω.
In each case the (semi-)canonical representation is homeomorphic to a

subset of R3 with its usual topology so that each orbit is σ-closed-discrete.

Proof. Case (1): Let r be an irrational and X = T0 where tr is as defined
in Lemma 7.1. Notice that tr � X has c Z-orbits. Clearly, then, T can be
compactified.

Let N = {n : σn 6= 0}.

Case (2): Let s be the map defined in Lemma 7.1. For each n ∈ N r {k}
choose jn minimizing |1/k − jn/n| and some xn ∈ Tjn/n. Note that, if
N is infinite, then jn/n → 1/k as n → ∞, but that in any case Z =
T1/k ∪

⋃
n∈N{sj(xn) : 0 ≤ j < n} is a closed, bounded (hence compact)

subset of Y and that s � Z is a continuous bijection. Notice that s � Z has
c many k-cycles and an n/hn-cycle for each n, where hn is the h.c.f. of n
and jn. Let X and t be the space and map resulting from an application
of Corollary 6.4 to Z and s � Z with M = {n : hn 6= 1}, resolving each
n/hn-cycle of Z into an n-cycle. Since X is compact, Hausdorff, t : X → X
is continuous and has the same orbit spectrum as T , T can be compactified.

Case (3): Since σ is finitely based and a finite disjoint union of compact
spaces is again compact, we may assume without loss of generality that N
is infinite and that k divides n for all n ∈ N , where k is the least element
of N . The sequence (n− 1)/nk is strictly increasing and converges to 1/k.

Let uk be the map defined in Lemma 7.1. Let Z =
⋃
j<k u

j
k

({
(0, 1/k)

}
∪{

(0, (n− 1)/nk) : k 6= n ∈ N
})

, so that uk � Z is a continuous map on the

on the compact, Hausdorff Z, each orbit of which is a k-cycle. Let X and
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t be the space and map resulting from an application of Corollary 6.4 to Z
and uk � Z with M = N r {k}, resolving each k-cycle of Z into an n-cycle.
Since X is compact, Hausdorff, t : X → X is continuous and has the same
orbit spectrum as T , T can be compactified.

(4) For each n ∈ N , let Cn denote the n-cycle and let Z denote the Z-
orbit of the canonical representation T : X → X of σ. Choose some k ∈ N .
By (2) of Lemma 3.7, N partitions into sets N ′, N0 and Nr,p, 0 < r < k,
0 ≤ p < 2r, such that N ′ is finite, k divides each n ∈ N0, and for each
n ∈ Nr,p there exist an, qn ∈ ω with n = kqn + r and qn = 2anr + p.

Let X ′ =
⋃
n∈N ′ Cn, X0 = Ck∪

⋃
n∈N0

Cn and Xr,p = Ck∪Z∪
⋃
n∈Nr,p Cn.

X ′ is finite so compact with the discrete topology. By Case (3) and Lemma
7.3, there are compact, Hausdorff topologies on X0 and each Xr,p such that
T � X0 and T � Xr,p are continuous, X0∩Xr,p = Ck andXr′,p′∩Xr,p = Ck∪Z.
By Lemma 6.5, T �

⋃
r,pXr,p can be compactified, so by Lemma 6.5 again

T � X0 ∪
⋃
r,pXr,p and hence T can be compactified.

Case (5): Let Sk denote the spine of the semi-simple k-cycle Ck and,
for each n ∈ N r {k}, let Cn denote the the n-cycle of the semi-canonical
representation T of σ. By (3) of Lemma 3.7, N partitions into sets N ′, N0

and Nr,p, 0 < r < k, 0 ≤ p < 2r such that N ′ is finite, k divides each
n ∈ N0, and for each n ∈ Nr,p there exist an, qn ∈ ω with n = kqn + r and
qn = 2anr + p.

Let X ′ =
⋃
n∈N ′ Cn, X0 = Sk ∪

⋃
n∈N0

Cn and Xr,p = Ck ∪
⋃
n∈Nr,p Cn.

X ′ is finite so compact with the discrete topology. By Lemma 7.2, there
are compact Hausdorff topologies on each Xr,p all of which agree on Xr,p ∩
Xr′,p′ = Ck and with respect to which T � Xr,p is continuous and Ck is a
compact subset. Since Xr,p ∩ Xr′,p′ = Ck, Lemma 6.5 implies that there
is a compact, Hausdorff topology on X1 =

⋃
r,pXr,p with respect to which

T � X1 is continuous. Since Sk is a k-cycle under T , Case (3) implies that
T � X0 can compactified. But then T � X0 ∪ X1 (and hence T ) can be
compactified by Lemma 6.5 again, since X0 ∩X1 = Sk.

It is not hard to see that in each case these constructions are each home-
omorphic to subsets of R3 with its usual topology. �

8. Adding N-orbits

In this section we prove that an arbitrary number of N-orbits can be
added to a function with either continuum many Z-orbits or a cycle. The
definition of an N-orbit is negative, in the sense that an orbit is an N-orbit
if it is neither a Z-orbit nor a cycle, and it seems that slightly different
arguments are needed to deal with this case.

Lemma 8.1. Suppose that T : X → X, Tω+1(X) = Tω(X) and that X
forms a single N-orbit of T . Suppose further that {xm : m ∈ N} is a spine
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for X such that T−1(x0) = ∅ and that

Cm,k =


{xm} k = 0,
∅ m = 0, k = 1
T−1(xm) r {xm−1} m > 0, k = 1,
T−k+1(Cm,1) k > 1

There is a Hausdorff topology τ on X with respect to which:
(1) T is continuous; and
(2) for each m, k ∈ N, Cm,k is compact and open (or empty).

Proof. Let pr be the function furnished by Lemma 4.4. Fix m ≥ 0. Let
S be the restriction of T to Y = {xm′ : m′ ≥ m} ∪

⋃
k>0Cm,k. Note that

Sω+1(Y ) = Sω(Y ). Let prS : S(Y )→ Y be the function furnished by 4.4 as
applied to S. Clearly we may assume that prS agrees with pr on

⋃
k>0Cm,k

(although, of course, it may be that pr(xm) = xm−1 /∈ Cm,1 so that in
general pr 6= prS).

Claim 8.1.1. There is some km ≥ 0 and a sequence of points zm,k ∈ Cm,k,
0 ≤ k ≤ km, such that:

(1) zm,0 = xm:
(2) zm,k+1 = pr(zm,k) and T (zm,k+1) = zm,k, for each k > 0; and
(3) T−1(Cm,km) = ∅.

Proof. The fact that, for some km > 0, Cm,km 6= ∅ and Cm,km+1 = ∅ follows
from the fact that X is an N-orbit and Tω+1(X) = Tω(X) (see Lemma 4.4).
Let zm,0 = xm and zm,k+1 = prS(zm,k) for each k < km. �

Claim 8.1.2. For every k ∈ N and non-empty Cm,k, there is a topology τm,k
on Cm,k such that:

(1) Cm,k is τm,k-compact, Hausdorff; and
(2) T : (Cm,k, τm,k)→ (Cm,k−1, τm,k−1) is continuous.

Proof. Let τm,0 be the unique topology on Cm,0 = {xm}. By Lemma 6.1
applied to S and Y , for each k ≤ km there is a topology compact, Hausdorff
topology σxm,k on Cm,k with respect to which

S � Cm,k : (Cm,k, σxm,k)→ (Cm,k−1, σxm,k−1)

is continuous. But S � Cm,k = T � Cm,k. Let τm,k = σxm,k. �

Let τ be the topology on X generated by the collection
⋃
{τm,k : Cm,k 6=

∅}. It is clear that τ satisfies the conclusions of the lemma. �

Recall that T denotes the unit circle {eiθ : θ ∈ [0, 2π)} parameterized
by θ ∈ [0, 2π) and that, for any irrational r ∈ R, by Lemma 7.1, the map
tr : T→ T defined by tr(θ) = θ+ 2πr (mod 2π) is a homeomorphism of the
circle with c simple Z-orbits.
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Lemma 8.2. Suppose that T : X → X, Tω+1(X) = Tω(X) 6= ∅ and that
{Nα : α ∈ ν} enumerates the N-orbits of T . Let N =

⋃
α∈ν Nα and let r be

an irrational.
(1) If X r N consists of a single, simple n-cycle for some n ∈ N, then

T is compactifiable.
(2) If X r N consists of c simple Z-orbits, then T is compactifiable so

that X r N is homeomorphic to T and T � X r N is equivalent to
tr .

Proof. For each α ∈ ν, let {xα,m : m ∈ N} be a spine for Nα such that
T−1(xα,0) = ∅ and, for each m, k ∈ N, let

Cα,m,k =


{xα,m} k = 0,
∅ m = 0, k = 1
T−1(xα,m) r {xα,m−1} m > 0, k = 1,
T−k+1(Cα,m,1) k > 1.

Let τα be the topology on Nα given by Lemma 8.1 applied to T � Nα. Let
C = {Cα,m,k : m, k ∈ N, α ∈ ν} and, for each m ∈ Z, let Cm = {Cα,m+k,k :
m+ k ≥ 0, k ∈ N, α ∈ ν}.

To see (1), let {zi : 0 ≤ i < n} enumerate the n-cycle of T so that
T (zi) = zi+1, where i + 1 is taken modulo n. For each i < n and finite
subset F of C, let

B(i, F ) = {zi} ∪
⋃
{C ∈ Cm : m ∈ Z, m = i (modn), C /∈ F}.

Let τ be the topology on X generated by the collection{
B(i, F ) : i < n, F ⊆ C, F finite

}
∪
⋃
α∈ν

τα.

Clearly, under this topology, X is Hausdorff and each Cα,m,k is both
compact and clopen. If Fi ⊆ C is finite for each i < n, then Xr

⋃
i<nB(i, Fi)

is a finite union of sets of the form Cα,m,k. Hence X is compact with respect
to τ

The restriction of τ to Nα is τα, so the restriction of T to Nα is contin-
uous. Moreover, for any m ∈ Z and non-empty Cα,m+k,k, T−1(Cα,m+k,k) =
Cα,(m−1)+(k+1),k+1 so that, for any finite F ⊆ C,

T−1
(
B(i, F )

)
= T−1

(
{zi} ∪

⋃
{C ∈ Cm : m = i (modn), C /∈ F}

)
= {zi−1} ∪

⋃
{T−1(C) : m = i (modn), C ∈ Cm r F}

= {zi−1} ∪
⋃
{C ∈ Cm : m = i− 1 (modn), C /∈ F ′}

for some finite F ′, which is τ -open. Hence, T is continuous with respect to
τ and T is compactifiable.
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For (2), fix an irrational r ∈ R. Without loss of generality, then, we may
assume that X rN = T and that the restriction of T to this set is the map
tr.

For each ϕ ∈ R, let ϕ ∈ [0, 2π) be such that ϕ = ϕ (mod 2π). Given
θ ∈ [0, 2π) and k ∈ N, let Iθ,k = {ϕ : ϕ ∈ (θ − 1/2k, θ + 1/2k)}, so that Iθ,k
is an open interval on the circle T.

Let {zm : m ∈ Z} enumerate the orbit of 0 under T so that z0 = 0 and
T (zm) = zm+1. For each θ ∈ [0, 2π), k ∈ N and finite F ⊆ C, let

Jθ,k,F = Iθ,k ∪ {C ∈ Cm : zm ∈ Iθ,k, C /∈ F}.
Let τ be the topology on X generated by the collection

{Jθ,k,F : θ ∈ [0, 2π), k ∈ N, F ⊆ C, F finite} ∪
⋃
α∈ν

τα.

Clearly in τ , each C ∈ C is a compact, Hausdorff open subset of X so
that X is also Hausdorff. Moreover, if U is a cover of X by basic open
sets, then there is a finite subcover {Ji : i ≤ l} of T from the subcollection
{U ∈ U : U = Jθ,k,F , some θ, k, F}. But then {Ji : i ≤ l} covers all of X
except for possibly finitely many C ∈ C. Hence X is compact under τ .

Since the restriction of τ to Nα is τα, the restriction of T to Nα is con-
tinuous. Moreover, for any θ ∈ [0, 2π), k ∈ N and finite subset F of C,
T−1(Jθ,k,F ) = Jt−1

r (θ),k,F ′ for some finite F ′ ⊆ C. Hence T is continuous on
X with respect to τ and T is compactifiable. �

Theorem 8.3. Suppose that T : X → X has orbit spectrum σ(T ) =
(ν, ζ, σ1, σ2, . . . ) and that Tω+1(X) = Tω(X) 6= ∅. Let N be the union
of all N-orbits and Y = X rN .

(1) If σn 6= 0, for some n ∈ N, and T � Y is compactifiable, then T is
compactifiable.

(2) Suppose that ζ ≥ c and that, for each α ∈ c, Zα is the spine of a
Z-orbit. If T � Y is compactifiable so that Z =

⋃
α∈c Zα is home-

omorphic to T and T � Z is an irrational rotation, then T is com-
pactifiable.

Proof. The result follows from Lemmas 6.5 and 8.2. �

9. The Proof of The Main Theorem

We are now finally in a position to prove the Main Theorem or, equiva-
lently, Theorem 2.3, namely that if T : X → X has orbit spectrum σ(T ) =
(ν, ζ, σ1, σ2, σ3, . . . ), then T is compactifiable if and only if Tω+1(X) =
Tω(X) 6= ∅ and one of the following holds:

(1) ζ +
∑

n∈ω σn ≥ c; or
(2) ζ 6= 0 and

∑
n∈ω σn 6= 0; or

(3) ζ = 0 and either
(a) σ(T ) is finitely based, or
(b) T � Tω(X) is not 1-1.
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Proof of Theorem 2.3. Let us first assume that T is compactifiable. By The-
orem 4.1, Tω+1(X) = Tω(X) 6= ∅. Suppose that ζ +

∑
n∈ω σn < c. By

Corollary 4.11, applied to Tω(X), if 0 6= ζ, then
∑

n∈ω σn > 0. If ζ = 0
and T � Tω(X) is one-to-one, then Tω(X) is a compact Hausdorff space
consisting entirely of simple cycles of T � Tω(X), so, by Theorem 4.13, σ(T )
is finitely based.

To prove the converse, first assume that T has no N-orbits and that
and σ(T ) = (0, ζ, σ1, σ2, · · · ). Since Tω+1(X) = Tω(X) 6= ∅, Theorem
6.3 implies that it is enough to prove that a canonical or semi-canonical
representation of σ(T ) can be compactified.

For any cardinal κ, let ικ = 0 if κ = 0 and ικ = 1 otherwise.
Suppose first that ζ+

∑
n∈ω σn ≥ c so that at least one of ζ or σn is greater

than or equal to the continuum. Suppose that ζ = c. By Theorem 7.4,
parts (1), (4) respectively, the canonical representations of (0, c, 0, 0, · · · ) and
(0, 1, ισ1 , ισ2 , · · · ) (provided at at least one ιk 6= 0) can be compactified. By
taking free unions of spaces that compactify the canonical representations of
such sequences, we see that the canonical representation of (0, c, ισ1 , ισ2 , · · · )
can be compactified. Similarly, if σn = c, Theorem 7.4, (2) and (4) imply
that the canonical representations of (0, 0, ισ1 , · · · , ισn−1 , c, ισn+1 , · · · ) and
(0, 1, δ1, δ2, · · · ), where, δn = 1 and δk = 0 for each n 6= k, can be compacti-
fied. Again, taking free unions, we see that the canonical representation of
(0, ιζ , ισ1 , · · · , ισn−1 , c, ισn+1 , · · · ) can be compactified. Lemma 6.6 allows us
to add any number of simple orbits of a type we already have so it follows
that the canonical representation of σ(T ) is compactifiable.

Now suppose that ζ +
∑

n∈ω σn < c. If ζ 6= 0, so that
∑

n∈ω σn 6=
0, or if ζ = 0 and σ(T ) is finitely based, the canonical representation of
(0, ιζ , ισ1 , · · · ) is compactifiable by 7.4 (3) and (4). If ζ = 0 and σ(T ) is not
finitely based, then T � Tω(X) is not one-to-one and, by Lemma 4.5, there is
a subset C of some k-cycle such that T � C is a semi-simple cycle, so by 7.4
(5), the semi-canonical representation of (0, 0, ισ1 , ισ2 , · · · ) in which ισk = 1
is represented by a semi-simple k-cycle, is compactifiable. Again it follows
by Lemma 6.6 that the canonical or, in the final case, a semi-canonical
representation of σ(T ) is compactifiable.

Finally, suppose that ν 6= 0. From the above, T is compactifiable and
either has an n-cycle or at least c many Z-orbits. In the second case, note
that T can be compactified so that the spines of c many Z-orbits are homeo-
morphic to T on which the action of T is an irrational rotation. Either way,
T is compactifiable by Theorem 8.3. �

We have to be a little bit more careful to prove Theorem 2.9, namely: if
T : X → X is a bijection, then there is a compact metric topology on X
with respect to which T is a homeomorphism iff ζ and each σn, n ∈ ω is
either countable or has cardinality c, and either:

(1) |X| = c; or
(2) ζ 6= 0 and

∑
n∈ω σn 6= 0; or
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(3) σ(T ) is finitely based.

Proof of Theorem 2.9. Since T is a bijection, Tω(X) = Tω+1(X) = X and
ν = 0.

Suppose that there is a compact metric topology on X with respect to
which T is continuous. For each n ∈ ω, let Xn be the union of all n-cycles
and let XZ be the union of all Z-orbits. For each k ∈ ω,

⋃
j|kXj is the set

of fixed points of the map T k, and is therefore closed. Hence XZ and each
Xn is a Borel set in the compact metric X and therefore is either countable
or of cardinality the continuum. The result then follows by Theorem 2.3.

Conversely, let σ(T ) = (0, ζ, σ1, σ2, · · · ). Since a continuous bijection from
a compact, Hausdorff space to itself is a homeomorphism, it suffices to find a
compact metric topology on X with respect to which T is continuous. Since
T is a bijection, T is, itself, a canonical representation of σ(T ), each orbit
is simple, T has no N-orbits and ζ +

∑
n∈ω σn = c if and only if at least one

of ζ = c or σn = c, for some n ∈ ω.
For any cardinal κ, let ικ = 0 if κ = 0 and ικ = 1 otherwise.
Arguing as in the proof of Theorem 2.3, the conditions of the theorem

imply that there are two distinct cases to consider:
(a) either ζ = c or σn = c, for some n ∈ ω;
(b) T has fewer than c orbits and either both 0 6= ζ and 0 6= σn, for

some n ∈ ω, or ζ = 0 and σ(T ) is finitely based.
In each of these cases, applying Theorem 7.4, as in the proof of 2.3 above,
the canonical representation, S : Y → Y , of the sequence (0, δζ , δ1, δ2, · · · )
can be compactified as subsets of R3, where either:

(a) either δζ = ζ = c and δk = ισk , for all k ∈ ω, or δζ = ιζ , δk = ισk ,
k 6= n, and δn = σn = c;

(b) δζ = ιζ and δk = ισk , for all k ∈ ω, where either both δζ = δn = 1 or
δζ = ιζ = 0 and the sequence is finitely based.

Now, for all k ∈ ω: δζ and δk take only the values 0, 1 or c; δζ = 0 if and
only if ζ = 0 and δk = 0 if and only if σk = 0; if δζ = c, then ζ = c; and if
δk = c, for any k ∈ ω, then σk = c. So we may assume that Y is a subset of
X, that T � Y = S and that the conditions of Lemma 6.7 are satisfied. But
this completes the proof. �

We conclude with a proof of Corollary 2.10: CH is equivalent to the
assertion that if T : X → X is a continuous bijection on the first countable,
compact Hausdorff space X, then there is a compact metrizable topology
on X with respect to which T is a homeomorphism.

Proof of Corollary 2.10. If CH holds, the result follows by Theorems 2.3 and
2.9 since every compact, first countable Hausdorff space is either countable
or has size c (see 3.1.29 [2]).

Conversely, suppose that CH fails. Let A be some subset of I = [0, 1] of
cardinality ω1, and let 3 = {0, 1, 2}. Let X = {(x, i) ∈ I × 3 : i = 0 or x ∈
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A}. Topologize X by declaring (x, i) to be isolated for each i = 1, 2 and basic
open sets about (x, 0) to take the form

(
(x−1/2n, x+1/2n)×3

)
r{(x, i) : i =

1, 2}. With this topology X is a first countable compact, Hausdorff space.
Let T : X → X be such that T � I × {0} is the identity, T (x, 1) = (x, 2)
and T (x, 2) = (x, 1). In any Hausdorff topology on X making T continuous,
I × {0} is the set of fixed points of T and is therefore closed. This implies
that {(x, i) : x ∈ A, i = 1, 2} is an open set. However, in a compact metric
topology, every open set is a countable union of closed sets and therefore is
either countable or has cardinality c. So T is not continuous with respect to
any compact metric topology on X, although |X| = c. �
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