
CHARACTERIZATIONS OF ω-LIMIT SETS IN TOPOLOGICALLY

HYPERBOLIC SYSTEMS

ANDREW D. BARWELL, CHRIS GOOD, PIOTR OPROCHA, AND BRIAN E. RAINES

Abstract. It is well known that ω-limit sets are internally chain transitive
and have weak incompressibility; the converse is not generally true, in either
case. However, it has been shown that a set is weakly incompressible if and
only if it is an abstract ω-limit set, and separately that in shifts of finite type, a
set is internally chain transitive if and only if it is a (regular) ω-limit set. In this
paper we generalise these and other results, proving that the characterization
for shifts of finite type holds in a variety of topologically hyperbolic systems
(defined in terms of expansive and shadowing properties), and also show that
the notions of internal chain transitivity and weak incompressibility coincide
in compact metric spaces.

1. Introduction

Let X be a compact metric space and f : X → X be a continuous map. The
ω-limit set of a point x ∈ X is the closed, (strongly) invariant set ω(x, f) =
⋂∞

k=0 {f
n(x) : n ≥ k}. Such sets have been studied by many authors, and much

is now known about their structure, particularly for maps of the interval. In [1] it
is shown that every closed nowhere dense subset and every finite union of closed
subintervals of the unit interval can occur as an ω-limit set for some continuous
map. For a given map of the interval, on the other hand, the ω-limit sets are char-
acterized in both [3] and in [7] in terms of topological and dynamical properties.
The topological structure of ω-limit sets is discussed in [2, 6] and for specific maps
in [9, 14, 15].

Internal chain transitivity and internal chain recurrence have applications in
the study of economics, epidemiology, game theory, and mathematical biology (see
the references and citations of [16] for numerous examples). In [16], Hirsch et al
study internal chain transitivity in relation to repellors and uniform persistence.
They prove that (compact) ω-limit sets are internally chain transitive and that the
Butler-McGehee Lemma holds for internally chain transitive sets. This allows them
to extend various results, which use this lemma, in the study of uniform persistence.
The Butler-McGehee Lemma states that whenever an isolated, invariant set M is a
proper subset of an ω-limit set L there are points u, v ⊆ L for which ω(u), α(v) ∈ M .
It is interesting to note that Butler-McGehee type properties have been used in the
characterization of ω-limit sets appearing in [1, 3].

Another property well known to hold in ω-limit sets is weak incompressibility.
This was first observed in [30] by Šarkovs’kĭı, who gave a proof in [29]. A proof
also appears in [6] and weak incompressibility has been mentioned in both [3] and
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[7] in connection with characterizations of ω-limit sets. In [8] it is shown that a
homeomorphism f : X → X of a compact metric space is topologically conjugate
to the action of a homeomorphism g : Y → Y on one of its w-limit sets (f is an
abstract ω-limit set) if and only if X has weak incompressibility. In fact, as we show
in Section 2, weak incompressibility and internal chain transitivity are equivalent
in compact metric spaces.

In [5], symbolic dynamics are used to show that in shifts of finite type the ω-limit
sets are precisely the internally chain transitive sets. In [4], these symbolic argu-
ments are extended to prove similar results for certain interval maps, in particular
that for piecewise linear interval maps with gradient greater than 1, sets which do
not contain the image of the critical point are ω-limit sets if and only if they are
internally chain transitive. In the current paper, we use analytical arguments to
isolate relevant properties of shifts of finite type, allowing us to generalise these
results in the following theorem, which characterizes ω-limit sets of topologically
hyperbolic maps (also known as topologically Anosov maps), expanding maps, and
maps with two types of pseudo-orbit shadowing:

Theorem 1.1. Assume that (X, d) is a compact metric space, Λ ⊆ X is closed and
that f : X → X is continuous. Assume also that one of the following properties
hold:

(1) f has limit shadowing on Λ;
(2) f is topologically hyperbolic;
(3) f is expanding on Λ and open on Λ;
(4) f has h-shadowing on Λ and is open on a neighbourhood of Λ.

Then for any closed subset A ⊂ Λ the following are equivalent:

(a) A has weak incompressibility;
(b) A is internally chain transitive;
(c) A = ω(xA, f) for some xA ∈ X.

Theorem 1.1 is proved in Section 4 and generalizes results of [4] and [5], as is
shown in the following corollary:

Corollary 1.2. Suppose that f : X → X, that Λ is a closed subset of X and that
either:

(1) f is a uniformly piecewise linear interval map on [0, 1], that takes values 0
or 1 at local extrema;

(2) f is a piecewise linear interval map on [0, 1] with gradient modulus greater
than 1 on each subinterval, and Λ does not contain the image of any critical
point;

(3) f is a shift of finite type.

For any closed subset Y ⊆ Λ the following are equivalent:

(a) Y has weak incompressibility;
(b) Y is internally chain transitive;
(c) Y = ω(xY , f) for some xY ∈ X.

Note that (2) applies to tent maps with slope λ ∈ (1, 2), and (1) applies to the
tent map with slope 2. Furthermore, using results in [4] and [24], we show that
Corollary 1.2 applies to certain classes of smooth, piecewise monotone interval maps
(see Remarks 4.5 and 4.6).
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Much of the work in this paper relates to shadowing of pseudo-orbits, a notion
used by Bowen [8] to study ω-limit sets of a class of diffeomorphism, whilst Coven,
Kan and Yorke [12] show that shadowing is present in certain maps with specific
expansive properties. Similar properties are also at the heart of characterizations
of ω-limit sets for interval maps found in [7] and [3]. Unsurprisingly, it turns out
that there is a strong link between pseudo-orbit shadowing and maps for which
internal chain transitivity characterizes ω-limit sets; points in an internally chain
transitive set Λ can be linked by pseudo-orbits contained in Λ and certain shadowing
properties allow us to find an actual orbit that shadows these pseudo-orbits closely
enough for its ω-limit set to be Λ. In Section 3, we discuss the various notions of
shadowing that we use in Theorem 1.1 to make this idea precise. We also consider
analytic and topological notions of expansivity that impact on, and in certain cases
imply, shadowing properties. In Section 2, we introduce some basic definitions and
results which relate to ω-limit sets, and in Section 4 we prove Theorem 1.1, ending
with some examples that illustrate the theory.

2. Weak Incompressibility, Internal Chain Transitivity and

Attractors

In this paper, unless stated otherwise, X is a compact metric space and f : X →
X is continuous. Recall that if {xn : n ≥ 0} is a sequence of points in X , the
ω-limit set of {xn : 0 ≤ n} is the set

ω({xn}n≥0) =

∞
⋂

k=0

{xn : n ≥ k}.

In particular, the ω-limit set of a point x ∈ X is the set ω(x, f) = ω({fn(x)}n≥0).
We often write ω(x) for ω(x, f) if the context is clear.

The (finite or infinite) sequence {x0, x1, . . .} ⊆ X is an ε-pseudo-orbit, for some
ε > 0, if and only if d(f(xn), xn+1) < ε, for all n ≥ 0. The (infinite) sequence is
an asymptotic pseudo-orbit if d(f(xn), xn+1) → 0 as n → ∞ and is an asymptotic
ε-pseudo-orbit if both conditions hold.

In this section we investigate the following two dynamical properties of ω-limit
sets, and show that under certain conditions they describe identical behaviour.

The set Λ ⊆ X is internally chain transitive (or alternatively f is internally chain
transitive on Λ) if for every pair of points x, y ∈ Λ and every ε > 0 there is an ε-
pseudo-orbit {x0 = x, x1, . . . , xm = y} ⊆ Λ between x and y of length m + 1 > 1.
In the special case Λ = X , we say that f (or X) is chain transitive. If the above
only holds whenever x = y (and m > 0), we say that Λ (or f) is internally chain
recurrent. A set Λ ⊆ X is weakly incompressible (or has weak incompressibility) if

M ∩ f(Λ \M) 6= ∅ whenever M is a nonempty, closed, proper subset of Λ.

Clearly Λ is weakly incompressible if and only if f(U)∩(Λ\U) 6= ∅ for any proper,
nonempty subset U ⊆ Λ which is open in Λ. Šarkovs’kĭı states in [30] that ω-limit
sets have weak incompressibility (without naming the property). This is probably
where this property appears for the first time (see also [7]). Bowen [8] proves that
any weakly incompressible set for a homeomorphism is always the ω-limit set of
some conjugate map, and a proof that ω-limit sets are weakly incompressible for
all maps on compact spaces appears in Chapter VI (Lemma 3) of [6] (the converse
of this is false, as we will see below). We adopt the name weak incompressibility
from [3].
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We say that Λ is invariant provided f(Λ) = Λ (some authors use the term
strongly invariant). The following condition is well known to be true for chain-
recurrent sets [6]; the proof in our context is very similar, and is omitted.

Proposition 2.1. Let (X, d) be a compact metric space, and f : X → X be
continuous. If Λ is a closed, internally chain transitive subset of X, then Λ is
invariant.

Hirsch et al [16] show that ω-limit sets are internally chain transitive. In the
next result we show that, for compact sets, weak incompressibility is equivalent to
internal chain transitivity.

Theorem 2.2. Let (X, d) be a compact metric space, f : X → X be continuous
and let Λ be a closed, nonempty subset of X. The following are equivalent:

(1) Λ is internally chain transitive,
(2) Λ is weakly incompressible.

Proof. To see that (2) implies (1), let Λ be weakly incompressible. If U is a proper

nonempty open subset of Λ, let F (U) = f(U) ∩ (Λ \ U). Since Λ is weakly incom-
pressible, F (U) is always nonempty.

Suppose that x and y are in Λ and that ε > 0. Let C be a finite cover of Λ by
ε/2-neighbourhoods of points in Λ with no proper subcover, and let B = {C ∩ Λ :
C ∈ C}.

If B1 ∈ B, then unless B1 = Λ, F (B1) 6= ∅, and there is some B2 ∈ B such that

B2 ∩ f(B1) 6= ∅, hence B2 ∩ f(B1) 6= ∅. Suppose that we have chosen Bj ∈ B,
j ≤ k, so that for each j there is some i < j such that Bj ∩ f(Bi) 6= ∅. Unless
B1 ∪ . . . ∪ Bk = Λ, F (B1 ∪ . . . ∪ Bk) 6= ∅, so there is some Bk+1 ∈ B such that
Bk+1 ∩ f(B1 ∪ . . .∪Bk) 6= ∅, from which it follows that Bk+1 ∩ f(Bj) 6= ∅ for some
j < k + 1. Since B is a minimal finite cover, it follows that for any B,B′ ∈ B we
can construct a sequence B = B1, B2, . . . , Bn = B′ such that Bj+1 ∩ f(Bj) 6= ∅ for
each j < n.

Now suppose that x = x0, f(x) ∈ B and y ∈ B′ for some B, B′ ∈ B. Then we
can construct a sequence B1 = B, . . . , Bn = B′ as above. For j = 1, . . . , n−1 choose
any xj ∈ Bj ∩ f−1(Bj+1), and put xn = y. Then x0, . . . , xn is an ε-pseudo-orbit
from x to y.

To prove that (1) implies (2), assume that Λ is internally chain transitive, and
suppose that M is a proper, nonempty closed subset of Λ. Pick y ∈ M and
x ∈ Λ \ M . For each n ∈ N, there is a 1/2n-pseudo-orbit from x to y. Some
zn ∈ Λ \M is the last point in the pseudo-orbit that is not in M , and thus is such
that d(f(zn),M) < 1/2n. Since Λ is compact, without loss of generality we may

assume that zn → z which implies that f(z) ∈ M ∩ f(Λ \M) 6= ∅. �

Hirsch et al also characterize internal chain transitivity in terms of attractors
and in terms of asymptotic pseudo-orbits. The definition they use is that the closed,
nonempty invariant set Λ is an attractor provided there exists an open set U ⊃ Λ
such that limn→∞ supx∈U d(fn(x),Λ) = 0. This is easily be shown to be equivalent
to the following notion, which is closely related to weak incompressibility: the
closed, nonempty invariant set Λ is said to be an attractor if and only if there is an
open set U ⊃ Λ such that

(1) f(U) ⊆ U ,
(2) ω(x, f) ⊆ Λ for every x ∈ U .
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Such sets are also said to be asymptotically stable in the sense of Lyapunov [6, 21]
(we note that there are also a number of other concepts which reflect the idea of
attraction).

It is an immediate consequence of Proposition 2.1 and Theorem 2.2 that closed,
weakly incompressible sets are invariant, so that together with [16, Lemmas 2.3,
3.1 & 3.2], we have the following.

Corollary 2.3. Let (X, d) be a compact metric space, f : X → X be continuous
and let Λ be a closed, nonempty subset of X. The following are equivalent:

(1) Λ is internally chain transitive;
(2) Λ is weakly incompressible;
(3) Λ is invariant and no proper subset of A is an attractor for f↾Λ;
(4) Λ is the ω-limit set of some asymptotic pseudo-orbit of f in X.

3. Shadowing and Expansivity

In light of Corollary 2.3 we would like to have a similar characterization of
internally chain transitive sets in terms of ω-limit sets of real orbits, as opposed
to pseudo-orbits. To this end we discuss in this section various notions of pseudo-
orbit tracing, or shadowing, which allow us to guarantee the existence of a real
orbit in the neighbourhood of a pseudo-orbit. Shadowing properties are not easy
to check in general, thus we also explore notions of expansivity which imply certain
shadowing properties. In what follows, we consider versions of known shadowing
and expansivity properties and versions restricted to proper subsets of the space.

Let ε > 0, and let K be either N or {0, 1, . . . , k − 1} for some k ∈ N. The
sequence {yn}n∈K ε-shadows the sequence {xn}n∈K if and only if for every n ∈ K,
d(yn, xn) < ε. Furthermore, we say that the sequence {yn}n∈N asymptotically shad-
ows the sequence {xn}n∈N if and only if limn→∞ d(xn, yn) = 0. If both conditions
hold simultaneously, we say that {yn}n∈N asymptotically ε-shadows the sequence
{xn}n∈N. If yn = fn(y) for every n ∈ N then we say that the point y shadows (in
whichever sense is appropriate) the sequence {xn}n∈N.

The standard version of pseudo-orbit tracing (below) appeared in [8], where it
was used by Bowen in the study of ω-limit sets of Axiom A diffeomorphisms.

Let Λ be a subset of X . We say that f has the pseudo-orbit tracing property on
Λ (or shadowing on Λ) if for every ε > 0 there is δ > 0 such that every infinite
δ-pseudo-orbit in Λ is ε-shadowed by a point y ∈ X . If this property holds on
Λ = X , we simply say that f has shadowing.

Remark 3.1. It is easy to see that f has shadowing if and only if for every ε > 0
there is a δ > 0 such that every finite δ-pseudo-orbit is ε-shadowed by the finite
orbit of some point.

Corollary 2.3 refers to asymptotic pseudo-orbits, so we also consider a modified
version of shadowing relating to such orbits, which comes from [25]. For Λ a subset
of X , we say that f has limit shadowing on Λ if for any asymptotic pseudo-orbit
{xn}n∈N

⊆ Λ there is a point y ∈ X which asymptotically shadows {xn}n∈N
. If

this property holds on Λ = X , then we say that f has limit shadowing.
Since there are many examples of systems possessing the limit shadowing prop-

erty but not possessing the shadowing property (see [18, 25]), the definition of limit
shadowing was extended in [20]. We state this version of strong shadowing in a
local form, consistent with our previous shadowing definition. We say that f has



6 A. D. BARWELL, C. GOOD, P. OPROCHA, AND B. E. RAINES

s-limit shadowing on Λ ⊆ X if for every ε > 0 there is δ > 0 such that the following
two conditions hold:

(1) for every δ-pseudo-orbit {xn}n∈N
⊆ Λ of f , there is y ∈ X such that y

ε-shadows {xn}n∈N, and
(2) for every asymptotic δ-pseudo-orbit {zn}n∈N

⊆ Λ of f , there is y ∈ X such
that y asymptotically ε-shadows {zn}n∈N.

In the special case Λ = X we say that f has s-limit shadowing.
The following lemma links limit shadowing to s-limit shadowing.

Lemma 3.2. Let (X, d) be a compact metric space, and f : X → X be continuous.
If Λ ⊆ f(Λ) ⊆ X and f has s-limit shadowing on Λ then f also has limit shadowing
on Λ. In particular, if f is surjective and has s-limit shadowing then f also has
limit shadowing.

Proof. Suppose that Λ ⊆ f(Λ) ⊆ X and that f has s-limit shadowing on Λ. Let
ε > 0, let δ be given for ε by s-limit shadowing and suppose that {xi}i≥0 ⊂ Λ is an
asymptotic pseudo-orbit. Then there is someN ∈ N such that {xi}i≥N is an asymp-
totic δ-pseudo-orbit, and since Λ ⊆ f(Λ) there is a point z ∈ Λ for which f i(z) ∈ Λ
for 0 ≤ i < N and fN(z) = xN . Thus {z, f(z), . . . , fN−1(z), xN , xN+1, . . .} is an
asymptotic δ-pseudo-orbit which is asymptotically ε-shadowed by a point y ∈ [0, 1],
which also asymptotically shadows {xi}i≥0. �

We introduce another form of shadowing, which we call shadowing with exact
hit, or h-shadowing. The definition is motivated by the fact that h-shadowing
characterizes shifts of finite type in the class of one-sided subshifts (see Remark
3.8).

Definition 3.3. Let (X, d) be a compact metric space, and f : X → X be contin-
uous. We say that f has h-shadowing on Λ ⊆ X if for every ε > 0 there is a δ > 0
such that for every finite δ-pseudo-orbit {x0, x1, . . . , xm} ⊆ Λ there is y ∈ X such
that d(f i(y), xi) < ε for every i < m and fm(y) = xm. If Λ = X then we simply
say that f has h-shadowing.

Clearly shadowing (and every variation thereof) is hereditary; if f has shadowing
on Λ then just by the definition f has shadowing on every set Λ′ ⊆ Λ.

In a forthcoming paper we explore to a greater extent the interdependencies
between the various notions of shadowing; for now we remark that h-shadowing and
shadowing are not equivalent in general, as is shown in Example 3.6. In Example
3.5 we show that the full tent map has h-shadowing; for this we need the following
lemma.

Lemma 3.4. Let T : [0, 1] → [0, 1] be the full tent map with slope 2. For every
δ > 0, every integer n > 0 and every x, y ∈ [0, 1] for which |T n(x) − y| < δ, there
is z such that |T i(x)− T i(z)| < δ for i = 0, 1, . . . , n and additionally T n(z) = y.

Proof. For each n ∈ N, T n has 2n maximal subintervals of monotonicity, each
mapped onto [0, 1] by T n. So given δ > 0 and x, y ∈ [0, 1] there is a subinterval
of monotonicity containing x, which also contains a point z for which T n(z) = y.
Since x and z are in the same subinterval of monotonicity for T n, if |T n(x)− y| < δ
then |T i(x) − T i(z)| < δ/2n−i for i = 0, 1, . . . , n. �



CHARACTERIZATIONS OF ω-LIMIT SETS IN TOPOLOGICALLY HYPERBOLIC SYSTEMS 7

Example 3.5. The tent map T with slope 2 has h-shadowing. Recall that

T (x) =

{

2x x ∈ [0, 1/2];

2(1− x) x ∈ [1/2, 1]

That T has h-shadowing follows immediately from the fact it has shadowing [12]
and Lemma 3.4.

�

Example 3.6. By Remark 3.1 we immediately see that every map with h-shadowing
has shadowing; the converse is not true however. To see this, consider a tent map
T with slope less than 2 and critical point c = 1/2, with shadowing (many such
maps exist – see [12]). Take any pre-image path {x0, x1, . . . , xm = T (c)} ending
at the image of the critical point. Let ε > 0, then for any 0 < δ < 1 − T (c) let
x′
m = T (c) + δ/2, and consider the δ-pseudo-orbit {x0, x1, . . . , x

′
m}; clearly there is

no point which ε-shadows this pseudo-orbit with exact hit.

�

In order to decide whether a map has any form of shadowing, we need to look at
various notions of expansion in maps. The idea of an expanding (or expansive map)
has been used in many contexts in connection with various dynamical properties
of maps, shadowing in particular. In [12], Coven, Kan and Yorke use one notion
to prove shadowing in tent maps; in [26], Przytycki and Urbański use a different
notion to prove shadowing in compact metric spaces. Many maps have expansive
properties on a proper subset of the whole space, but not on the space itself, and
this local type of expansivity is linked to local shadowing (shadowing on a given
subset) and ω-limit sets.

For a point x ∈ X , we say that f is open at x if for every neighbourhood U of
x, f(x) ∈ int(f(U)); for a subset Λ ⊆ X , we say that f is open on Λ if f is open at
x for every x ∈ Λ. Note that f is open on Λ if and only if for every x ∈ Λ there is
a neighborhood basis {Ui}i≥0 such that f(Ui) is open, for every i ≥ 0. This local
definition of openness is consistent with the standard definition of an open map,
since if f is open on X , then f(U) is open for every open set U .

The following properties have been studied extensively, and can be found in
many texts, including [2, 20, 26, 28, 31].

We say that f is positively expansive (with expansive constant b > 0) if for any
x, y ∈ X the condition

d(fn(x), fn(y)) < b for every 0 ≤ n ∈ Z

implies that x = y.
If f is a surjective map it is said to be c-expansive (with expansive constant

b′ > 0) if for any x, y ∈ X and any full orbits {xm}m∈Z
and {yn}n∈Z

through x and
y respectively the condition

d(xn, yn) < b′ for every n ∈ Z

implies that x = y.
Positively expansive maps are clearly c-expansive, but the converse is not true

in general (an example is the bi-infinite full shift, which is c-expansive but not
positively expansive).
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Theorem 3.7. Let (X, d) be a compact metric space and let f : X → X be contin-
uous.

(1) If f is positively expansive then f has shadowing if and only if f has h-
shadowing;

(2) If f is c-expansive then f has shadowing if and only if f has s-limit shad-
owing.

Proof. (1): If f has h-shadowing then f has shadowing (see Remark 3.1). So
suppose that f has shadowing, let ε < b and let δ > 0 be provided by shadowing for
ε. Fix any δ-pseudo-orbit {x0, x1, . . . , xm} and extend it to the infinite δ-pseudo-
orbit

x0, x1, . . . , xm, f(xm), f2(xm), . . .

If z is a point which ε-shadows the above pseudo-orbit, then d(f j+m(z), f j(xm)) < b
for all j ≥ 0 which implies that fm(z) = xm. Thus f has h-shadowing.

(2): We have to prove if f has shadowing then it has s-limit shadowing, since the
converse implication is trivial. Fix ε > 0 and assume that ε < b/2 where b is the
expansive constant. Let δ > 0 be a constant provided by the shadowing property
for ε. Shadowing implies that the first part of the definition of s-limit shadowing
holds. To prove the second part, let {xn}n∈N

be an asymptotic δ-pseudo-orbit that
is ε-shadowed by the point z.

Suppose, for a contradiction, that d(fn(z), xn) does not converge to 0 as n → ∞.
Since X is compact (so that every sequence has a convergent subsequence), there
are points p0 and q0 in X and an infinite subset N0 of N such that

(1) limn→∞,n∈N0
d
(

fn(z), xn

)

= η > 0,
(2) limn→∞,n∈N0

fn(z) = p0, and
(3) limn→∞,n∈N0

xn = q0.

By continuity,

lim
n→∞

n∈N0

fn+k(z) = pk = fk(p0)

for all k ≥ 0. Since

d
(

xn+1, f(q0)
)

≤ d
(

xn+1, f(xn)
)

+ d
(

f(xn), f(q0)
)

,

continuity and the fact that {xn} is an asymptotic pseudo-orbit imply that

lim
n→∞

n∈N0

xn+1 = q1 = f(q0).

Hence limn→∞,n∈N0
xn+k = qk = fk(q0) for all k ≥ 0.

Since X is compact, there are points p−1 and q−1 and an infinite subset N−1 of
N0 such that

lim
n→∞

n∈N−1

fn−1(z) = p−1 and lim
n→∞

n∈N−1

xn−1 = q−1.

Again, continuity and the fact that {xn} is an asymptotic pseudo-orbit imply
that f(p−1) = p0 and f(q−1) = q0. Repeating this argument we can find points
p−1, p−2, . . . , q−1, q−2, . . . , and infinite sets N−1 ⊇ N−2 ⊇ . . . , such that for all
0 < k ∈ N

(1) 0 ≤ n− k for all n ∈ N−k,
(2) limn→∞,n∈N−k

fn−k(z) = p−k and f(p−k) = p−k+1,
(3) limn→∞,n∈N−k

xn−k = q−k and f(q−k) = q−k+1.
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Now {pk}k∈Z and {qk}k∈Z are full orbits passing through p0 and q0 respectively.
Moreover

d(pk, qk) ≤

{

supn∈N0
d
(

fn+k(z), xn+k

)

, if k ≥ 0,

supn∈Nk
d
(

fn+k(z), xn+k

)

, if k < 0.

Since ε < b/2 and z ε-shadows {xn}, d(pk, qk) < b/2 for all k ∈ Z. It follows by
c-expansivity that

0 = d(p0, q0) = lim
n→∞

n∈N0

d(fn(z), xn) = η > 0,

which is the required contradiction. �

Notice that if f is a positively expansive surjection then the properties of shad-
owing, h-shadowing and s-limit shadowing are equivalent. Part (2) of the above
result is a natural generalization of the results of [20, 28].

Remark 3.8. The assumptions of Theorem 3.7 (1) are fulfilled by every open,
positively expansive map [28]; an example is a positively expansive homeomorphism,
however this case is trivial since the space must be finite [27]. A nontrivial class
of positively expansive open maps is the class of one-sided shifts of finite type [19].
Walters [31] showed that shift spaces have shadowing if and only if they are of
finite type. Since maps with h-shadowing have shadowing, and one-sided shifts of
finite type are positively expansive, we see that one-sided shifts of finite type are
characterized by h-shadowing in the class of shift spaces.

Definition 3.9. f is said to be topologically hyperbolic if it is both c-expansive and
has shadowing.

There is a large class of topologically hyperbolic maps. The classical example is
an Axiom A diffeomorphism restricted to its non-wandering set (see [8] for example).
Other important classes are shifts of finite type (one or two-sided), and topologically
Anosov maps (see [32]). A list of conditions equivalent to topological hyperbolicity
in the context of homeomorphisms can be found in [20] (see also [22, 23]). As we see
in Theorem 1.1, ω-limit sets are fully characterized in the context of topologically
hyperbolic maps by internal chain transitivity.

We note that to obtain such a characterization of ω-limit sets in terms of topo-
logical hyperbolicity, the assumption of shadowing can’t be dropped on its on, since
there are c-expansive maps without shadowing for which internal chain transitivity
does not characterize ω-limit sets. One such class of maps are chain-transitive sofic
shifts which are not transitive (see [17] for detailed description of this class), and
thus cannot be the ω-limit set of any of the inner points [6].

The standard definition of an expanding map is the following (see also [20, 26,
28]), which is generally a stronger property than either positively expansive or c-
expansive, and will enable us to demonstrate the existence of shadowing properties
in various maps. This property can be observed in many classes of maps, such as
interval maps away from their turning points.

For a closed set Λ, we say that f is expanding on Λ if there are δ > 0, µ > 1
such that d(f(x), f(y)) ≥ µd(x, y) provided that x, y ∈ Λ ⊆ X and d(x, y) < δ. In
the case that Λ = X we simply say that f is expanding. If there is some open set
U ⊃ Λ such that the definition of expanding holds for every x, y ∈ U , we say that
f is expanding on U , or if the set U is not specified, we say f is expanding on a
neighbourhood of Λ.
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Remark 3.10. If f is expanding on Λ then for each x ∈ Λ there is an open set
U ∋ x such that f↾U∩Λ is one-to-one. Furthermore, if f is expanding on an invariant
set Λ then it is easy to see that f is positively expansive on Λ, and also c-expansive.

Przytyicki and Urbański [26] define a property they refer to as expanding at
Λ, which is equivalent to our notion of expanding on a neighbourhood of Λ; the
following is from their text (Corollary 3.2.4):

Lemma 3.11. Let (X, d) be a compact metric space, and f : X → X be continuous.
If f is open and expanding then f has shadowing.

We get the following easy corollary from Theorem 3.7 (1), Remark 3.10 and
Lemma 3.11:

Corollary 3.12. Let (X, d) be a compact metric space, and f : X → X be contin-
uous. If f is open and expanding then

(1) f is topologically hyperbolic;
(2) f has h-shadowing.

4. Proof of Theorem 1.1

In this section we prove our main theorem. To complete the theory we require a
property introduced in [3] (Definition 4.1), which seems closely linked to shadowing
but better approximates the dynamics of maps on their ω-limit sets. Recall that a
set Λ ⊂ X is said to be regularly closed if Λ = int(Λ). Notice that if U is open then
U is regularly closed, and that the intersection of two regularly closed sets with
intersecting interiors is regularly closed. Moreover, if A is regularly closed and f is

open on A, then f(A) = f(int(A)) is regularly closed.

Definition 4.1. For a compact metric space X and a continuous map f : X → X
we say that a set Λ ⊆ X is dynamically indecomposable if for every ε > 0, every
pair of points x, y ∈ Λ and every pair of open sets U, V such that x ∈ U and y ∈ V
there is m > 0 and a sequence of regularly closed sets J0, J1, . . . , Jm for which

(1) x ∈ int(J0), J0 ⊆ U ,
(2) Ji+1 ⊆ f(Ji) for i = 0, 1, . . . ,m− 1,
(3) Ji ⊆ Bε(Λ) for i = 0, 1, . . . ,m,
(4) y ∈ int(Jm), Jm ⊆ V .

Next we present Lemmas 4.2 and 4.3, which relate dynamical indecomposability
to shadowing and ω-limit sets.

Lemma 4.2. Let f : X → X be a continuous map acting on a compact metric
space (X, d). If Λ ⊆ X is internally chain transitive, f has h-shadowing on Λ and
is open on a neighbourhood of Λ, then Λ is dynamically indecomposable.

Proof. Let ε > 0, pick x, y ∈ Λ and let U and V be open with x ∈ U and y ∈ V .
Certainly there is an η > 0 for which Bη(x) ⊆ U and Bη(y) ⊆ V . There is also ξ
such that f is open on Bξ(Λ). Denote ε′ = min {η, ε, ξ/2}. Let δ be provided for
ε′/2 by h-shadowing. By the assumptions Λ is internally chain transitive, so there
is a δ-pseudo-orbit {x0 = x, x1, . . . , xm = y} ⊂ Λ. Thus there is a z ∈ X for which
d(f i(z), xi) < ε′/2 and fm(z) = xm = y.

So let J0 = Bε′/2(x0) and for i = 0, 1, . . . ,m− 1, let

Ji+1 = f(Ji) ∩Bε′/2(xi+1)
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We claim that

(1) x ∈ int(J0), J0 ⊆ U ;
(2) Ji+1 ⊆ f(Ji) for i = 0, 1, . . . ,m− 1;
(3) Ji ⊆ Bε(Λ) for i = 0, 1, . . . ,m;
(4) y ∈ int(Jm), Jm ⊆ V .

The first condition holds by the definition of J0, the second and third by the defi-
nition of the Ji. J0 is regularly closed, being the closure of an open set, so suppose
that Ji is regularly closed, for some 0 ≤ i < m. Since f is open on each Ji, we have
that f(Ji) is regularly closed, and certainly Bε′/2(xi+1), whose interior intersects

that of f(Ji), is regularly closed. Thus Ji+1 = f(Ji) ∩ Bε′/2(xi+1) is regularly
closed, so by induction, Ji is regularly closed for every i = 0, 1, . . . ,m.

To get the fourth condition, notice that f is open at f i(z) ∈ Bξ(Λ) for every
i = 0, 1, . . . ,m, and certainly z ∈ int(J0). Another induction argument easily
shows then that f i(z) ∈ int(Ji) for every i = 0, 1, . . . ,m, and in particular that
fm(z) = y ∈ int(Jm). Finally, Jm ⊆ V by the definition of Jm. �

Lemma 4.3. Assume that (X, d) is compact, f : X → X is continuous, and Λ ⊆ X
is a closed set which is dynamically indecomposable for f . Then Λ = ω(xΛ, f) for
some xΛ ∈ X.

Proof. Since Λ is compact, there is a sequence of points {zn : n ∈ N} in Λ

such that Λ = {zn}n∈N. Enumerate the collection {B1/p(zn) : n, p ∈ N} as
{Bk : k ∈ N}, then for every k there is an nk ∈ N such that znk

∈ Bk. We define
a sequence of natural numbers {mn : n ∈ N} and a sequence of regularly closed
sets {Jk : k ∈ N} as follows.

(1) Let m1 = 1 and let Jm1
be the closure of any open ball (which is regularly

closed) around zn1
contained in B1;

(2) Given Jmi
such that zni

∈ intJmi
consider the point zni+1

∈ Bi+1. Since

Λ is dynamically indecomposable, we can define open balls I0mi
and {Ij :

mi + 1 ≤ j ≤ mi+1} whose closures J0
mi

and {Jj : mi + 1 ≤ j ≤ mi+1}
respectively are contained in B1/i(Λ), and for which zni

∈ intJ0
mi

⊆ intJmi
,

Jmi+1 ⊆ f(J0
mi

), Jj+1 ⊆ f(Jj) for j = mi + 1, . . . ,mi+1 − 1, and zni+1
∈

intJmi+1
⊆ Bi+1.

By the construction of the Jk’s, for every k ∈ N there is a closed set D ⊆ Jk−1

such that f(D) = Jk. Hence, for every k ∈ N there is a J (k) ⊆ J0 such that
fk(J (k)) = Jk. The J (k) are nested, so by compactness K =

⋂

k∈N
J (k) 6= ∅.

For xΛ ∈ K, f i(xΛ) ∈ Ji for every i ∈ N, so certainly Λ ⊂ ω(xΛ, f). Suppose
that z ∈ X \ Λ, then there are disjoint open sets U and V for which z ∈ U and
Λ ⊆ V . Since

⋃

{Jj : mi ≤ j ≤ mi+1} ⊆ B1/i(Λ) there is an N ∈ N for which
fn(xΛ) ∈ V for every n ≥ N , hence z /∈ ω(xΛ, f). Thus Λ = ω(xΛ, f). �

Remark 4.4. Dynamical indecomposability is not a sufficient condition for shad-
owing of any type. Indeed an irrational rotation of the circle has neither shadowing
nor limit shadowing, but it is easy to verify that it is dynamically indecomposable.

We are now in a position to prove the main result in our paper, Theorem 1.1,
which gives various cases in which ω-limit sets are characterized by internal chain
transitivity, and thus also weak incompressibility.
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Proof of Theorem 1.1. In every case, we get that the closed sets with weak
incompressibility are precisely the closed sets with internal chain transitivity by
Corollary 2.3, and furthermore every ω-limit set is internally chain transitive as
was shown in [16]. Thus to prove the theorem we show that a closed internally
chain transitive set is necessarily an ω-limit set in each case.

In case (1), we have that the closed, internally chain transitive set Y is the
ω-limit set of an asymptotic pseudo-orbit {xn}n∈N by Corollary 2.3, and by limit
shadowing there is a point xY ∈ X whose orbit asymptotically shadows {xn}n∈N.
Thus Y = ω(xY , f).

In case (2), notice that f is c-expansive, so Lemma 3.2 and Theorem 3.7 (2)
imply that f has limit shadowing on Y , so the proof follows as in case (1).

In case (3), notice that by Proposition 2.1 we have that Y is invariant. Since f
is expanding and open on Y , by Corollary 3.12 we get that f has h-shadowing on
Y , so by Lemma 4.2 f is dynamically indecomposable, and by Lemma 4.3 there is
some xY ∈ X such that Y = ω(xY , f).

Case (4) follows directly from Lemmas 4.2 and 4.3. �

Corollary 1.2 applies Theorem 1.1 to specific types of maps. Shifts of finite
type are well-studied and definitions can be found in many texts, including [5, 17].
The interval maps mentioned in the Corollary are defined below.

We say that an interval map f : [0, 1] → [0, 1] is piecewise monotone if there is
a set of points {c0 = 0 < c1 < . . . < cm = 1} such that f is monotone on [ci−1, ci]
for 0 < i ≤ m. A piecewise monotone map f is

• piecewise linear if f is linear on [ci−1, ci] for 0 < i ≤ m;
• uniformly piecewise linear if it is piecewise linear and each linear piece has
equal gradient (in modulus), and the gradient modulus is strictly greater
than 1;

• locally pre-critical if for every open interval U there is some n ∈ N for which
cj ∈ fn(U) for some 1 ≤ j ≤ m− 1;

• strongly transitive if for every open interval U there is some m ∈ N for
which

⋃m
i=0 f

i(U) = [0, 1].

To see that Corollary 1.2 holds, note first that all of the maps in the statement
of the corollary are open on the set Λ as given. 1.2 part (1) follows from a result
in [10] which shows that uniformly piecewise linear maps that take values 0 or 1
at local extrema have shadowing, and thus have h-shadowing as in Example 3.5.
The result now follows from Theorem 1.1 (4). 1.2 parts (2) and (3) follow from
Theorem 1.1 (3) since the map is expanding on Λ in each case.

�

Remark 4.5. Parry shows in [24] that uniformly piecewise linear interval maps are
conjugate to strongly transitive, piecewise monotone interval maps, thus Corollary
1.2 (1) also applies to this latter class of maps.

Remark 4.6. Theorem 1.1 (4) generalizes Barwell’s earlier result for smooth, lo-
cally pre-critical, piecewise monotone interval maps [4, Theorem 4.3], since it can
be shown that these maps have h-shadowing on closed and invariant sets Λ ⊂ [0, 1]
which don’t contain the image of cj for any 1 ≤ j ≤ m. Indeed, for such sets Λ,
it was shown in [4, Theorem 2.9] that f↾Λ is conjugate to σ↾It(Λ), where It is the
map which assigns to points in the interval their symbolic itinerary, and σ is the
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shift map which acts upon these itineraries (see also [11], [13]). To show that f has
h-shadowing on Λ, and thus that Theorem 1.1 (4) applies, it is enough to show that
the shift map has h-shadowing on the set of itineraries of Λ. The proof of this final
statement is very similar to arguments used in [4] and [5], but requires substantial
material from the kneading theory of interval maps so is omitted from the current
text.

We end with two examples. The first shows that the characterization of ω-limit
sets by internal chain transitivity is not hereditary.

Example 4.7. Consider the sofic shift X consisting of all bi-infinite words in a, b,
c and d obtained by following paths in the following presentation.

a

b c

a
d

d

The set
Λ = {a, b}Z ∪ {a, c}Z

is closed and shift invariant. Both sets {a, b}Z, {a, c}Z are internally chain transitive
with nonempty intersection, so Λ is also internally chain transitive. But Λ is not
ω-limit set of any point under σ↾X , since any point x ∈ X such that ω(x, σ↾X) ⊃ Λ
must contain infinitely many symbols d and so there must be a point in ω(x, σ↾X)
which contain d on at least one position. On the other hand Λ is the ω-limit set of
a point in the full shift on {a, b, c, d}.

�

The second example shows that there is no general characterization of ω-limits
sets in terms of internal chain transitivity together with even very strong mixing
properties.

Example 4.8. Consider the function f : [−2, 2] → [−2, 2], whose graph is the
piecewise linear curve passing through the points (−2, 2), (−3/2,−2), (−1, 0),
(−1/2,−2), (1/2, 2), (1, 0), (3/2, 2) and (2,−2) (see Figure 1). Note that the abso-
lute value of the gradient (at non-critical points) of the function is at least 4. Note
also that the function f is topologically exact (locally eventually onto), because if U
is any open interval then clearly for some n > 0, fn(U) will contain two consecutive
critical points, from which it follows that fn+2(U) = [−2, 2].

Let H− = {0} ∪ {−1/4−n : n ≥ 0} and H+ = {0} ∪ {1/4−n : n ≥ 0}. Clearly
H− and H+ are both closed, invariant and internally chain transitive sets, because
f(±1) = 0 and f(±1/4n+1) = ±1/4n. Since H−∩H+ 6= ∅, the union H = H−∪H+

is also, therefore, closed, invariant and internally chain transitive. However, H is
not the ω-limit set of any point. To see this we argue as follows. Suppose that
H = ω(x, f) for some x ∈ [−2, 2], and notice that f

(

[0, 7/4]
)

= [0, 2], whilst

f
(

[7/4, 2]
)

= [−2, 0]. Then since the orbit of x must approach both H+ and H−,

for infinitely many n ∈ N we have fn(x) ∈ (0, 2] and fn+1(x) ∈ [−2, 0), thus we
must have infinitely many n ∈ N for which fn(x) ∈ (7/4, 2], which is disjoint from
H . But this would mean there is a point x ∈ ω(x, f)∩[7/4, 2], and thusH 6= ω(x, f).

�
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1 2−1−2

Figure 1. The graph of the function f from Example 4.8
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[19] P. Kůrka. Topological and symbolic dynamics, volume 11 of Cours Spécialisés [Specialized
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