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1. Introduction

Results concerning the possibility of finding, given a pair of real-valued
functions g, h on a space X, such that g ≤ h, a continuous function f such
that g ≤ f ≤ h, form part of the classical theory of general topology. For
example, recall that a real-valued g is upper semicontinuous (abbreviated
USC below) if the sets g−1((−∞, r)) are open in X for each r in R, and is
lower semicontinuous (abbreviated LSC) if the sets g−1((r,∞)) are open in
X for each r in R. As early as 1917 Hahn [12] proved that if X is metrizable,
g is USC, and h is LSC, then such an f : X → R exists.

Dieudonné [2] later extended Hahn’s [12] result to paracompact spaces,
and also showed that any paracompact space X with the property that

for each g, h : X → R, g USC, h LSC, and g < h (at each point), there is
a continuous f : X → R such that g < f < h,

is normal and countably paracompact. In fact, these so called insertion
results characterize natural and important topological properties, as the
following result from [14][Theorem 1] and [26] shows:

Theorem 1. (Katětov, Tong). A space X is normal if and only if for each
g, h : X → R, g USC, h LSC, such that g ≤ h (at each point) there is a
continuous f : X → R so that g ≤ f ≤ h.

Many other similar results have been obtained, and are discussed in Sec-
tion 8. Notice that the above results seem bitopological, in that they involve
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two topologies on R, the lower, ω = {(−∞, a) : −∞ ≤ a ≤ ∞} and the up-
per, σ = {(a,∞) : −∞ ≤ a ≤ ∞}.

In fact, a function g : X → R is USC if and only if it is continuous into
(R, ω) and is LSC if and only if it is continuous into (R, σ) and Theorem
1 is a special case of the corresponding bitopological result Theorem 28(b)
below. It turns out, however, that all of these results are actually con-
sequences of a general principle that holds for quasiproximities, and more
generally for posets with auxiliary relations (defined in section 3), a basic
concept of domain theory. Indeed as the Theorem 26 shows, the notion of
an auxiliary relation encapsulates both the topology of the space and the
idea of Katětov’s proof in [14].

As a special case we obtain:
Suppose (P,≤) is a Scott domain (see [7]) and g : (P, ω) → (R, ω), h :

(P, σ) → (R, σ) are continuous and such that g ≤ h (at each point). Then
there is an f : P → R which is continuous from (P, ω) → (R, ω) and from
(P, σ)→ (R, σ) such that g ≤ f ≤ h (see Corollary 29(b)).

2. Binary Relations and Associated Orders

In this section we introduce the order-theoretic concepts that we use to
formulate our theory. We use the conventions that for a binary relation ≺
on a set P and any A,B ⊆ P, c ∈ P, A ≺ B means a ≺ b for each a ∈ A
and b ∈ B, c ≺ A means {c} ≺ A and A ≺ c means A ≺ {c}.

Definition 2. Let ≺ be a binary relation on a set P . Define

↑≺ p = {q : p ≺ q},
↓≺ p = {q : q ≺ p}.

The associated order, ≤≺, on P is defined by p ≤≺ q if and only if ↓≺ p ⊆ ↓≺ q
and ↑≺ p ⊇ ↑≺ q.

Definition 3. A binary relation ≺ on a poset (P,≤), is approximating if
and only if p =

∨
↓≺ p for all p ∈ P and dually approximating if and only if

p =
∧
↑≺ p.

Recall that a preorder on a set is a reflexive, transitive order.

Lemma 4. Let ≺ be a binary relation on P and ≤≺ be its associated order.
(1) ≤≺ is a preorder.
(2) ≤≺ is a partial order if and only if p = q whenever both ↑≺ p = ↑≺ q

and ↓≺ p = ↓≺ q (that is, for all a, b ∈ P : p ≺ a ⇔ q ≺ a and
b ≺ p ⇔ b ≺ q).

(3) ≺ is transitive if and only if ≺ ⊆ ≤≺.
(4) ≺ is reflexive if and only if ≤≺ ⊆ ≺.
(5) If p ≤≺ q ≺ r ≤≺ s then p ≺ s.

Assume also that ≤ is a partial order on P :
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(6) ≤ ⊆ ≤≺ holds if and only if, for each p, q, r, s ∈ P , p ≤ q ≺ r ≤ s⇒
p ≺ s,

(7) If ≺ is approximating, then ≤≺⊆≤ .

Proof. Clearly (1) and (2) follow from the corresponding properties of ⊆.
For (3), assume first that ≺ is transitive. If q ≺ r and p is any element of
↓≺ q, then p ≺ q ≺ r, so p ∈ ↓≺ r. Hence ↓≺ q ⊆ ↓≺ r. Similarly ↑≺ q ⊇ ↑≺ r,
thus q ≤≺ r.

Conversely, suppose that ≺⊆≤≺. If p ≺ q ≺ r, then q ≤≺ r, so p ∈ ↓≺ q ⊆
↓≺ r thus p ≺ r.

To see (4), suppose that ≺ is reflexive. If p ≤≺ q, then p ∈ ↓≺ p ⊆ ↓≺ q.
Hence p ≺ q and ≺ ⊇ ≤≺. Conversely, if ≺ ⊇ ≤≺ then reflexivity of ≤≺
implies the reflexivity of ≺.

For (5), if p ≤≺ q ≺ r ≤≺ s then r ∈ ↑≺ q ⊆ ↑≺ p so that p ≺ r, which
implies that p ∈ ↓≺ r ⊆ ↓≺ s. Hence p ≺ s.

For (6), assume p ≤ q ≺ r ≤ s ⇒ p ≺ s. If r ≤ s and q ∈ ↓≺ r then
q ≤ q ≺ r ≤ s so q ≺ s, thus q ∈ ↓≺ s, showing ↓≺ r ⊆ ↓≺ s; similarly if
t ∈ ↑≺ s then r ≤ s ≺ t ≤ t so t ∈ ↑≺ r, showing ↑≺ s ⊆ ↑≺ r. These two
together show r ≤≺ s. Conversely, if ≤ ⊆≤≺ and p ≤ q ≺ r ≤ s then
p ≤≺ q ≺ r ≤≺ s hence p ≺ s.

Finally for (7) assume ≺ is approximating and let a ≤≺ b. By definition,
↓≺ a ⊆ ↓≺ b, thus since ≺ is approximating, a =

∨
↓≺ a ≤

∨
↓≺ b = b.ut

3. Auxiliary Relations and the Katětov-Lane Axioms

In this section we compare the order-theoretic notions of Urysohn relation
and auxiliary relation with the properties that Katětov [14] and Lane [19]
isolate in considering insertion theorems.

Definition 5 (The Auxiliary Relation Axioms). Let ≤ be a partial order on
the set P and let / be a binary relation on P . Then / is a Urysohn relation
on (P,≤) provided:

(ARstr) / is stricter than ≤: / ⊆ ≤;
(ARtrn) / is transitive through ≤: c / d whenever c ≤ a / b ≤ d;

(ARin11) interpolates between singletons: if a/b then there is some c such that
a / c / b.

The Urysohn relation / is said to be an auxiliary relation on (P,≤) if, in
addition:

(ARin21) / interpolates between a pair and a singleton: if a, b/c, then a, b/d/c
for some d ∈ P .

We say that the auxiliary relation / is dualizable if it also satisfies

(ARin12) / interpolates between a singleton and a pair, i.e. if a / b, c, then
a / d / b, c for some d ∈ P .
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The following lemma collects together a number of basic facts about the
Auxiliary Relation Axioms. Recall that a set R ⊆ P is directed by the
relation / if, for each a, b ∈ R there is some c ∈ R such that a, b / c.

Lemma 6. (1) ARin21 implies ARin11 and ARin12 implies ARin11.
(2) If a binary relation / satisfies both ARstr and ARtrn, then it is tran-

sitive.
(3) An auxiliary relation / is dualizable if and only if the reverse order

/−1 (also denoted at times by .) is an auxiliary relation on (P,≥).
(4) If / is an auxiliary relation on P , then ↓/ a is directed by / for all

a ∈ P . If / is dualizable, then ↑/ a is directed by /−1 for all a ∈ P .
(5) ARtrn if and only if ≤ ⊆ ≤/.
(6) If / is an approximating Urysohn relation, then ≤/=≤.

Proof. (1) and (3) are obvious. (2) holds since if a / b / c, then a ≤ a / b ≤ c
by ARstr and so a / c by ARtrn. (4) is immediate from ARin21 and ARin12.
(5) follows directly from Lemma 4 (6), and then (6) comes from (5) and
Lemma 4 (7). ut

The auxiliary relations that we are interested in here are not always ap-
proximating:

Example 7. If X is a normal topological space and P is the power set 2X

of X ordered by ⊆, then A /N B if and only if cl(A) ⊆ int(B) defines an
auxiliary relation. In the case that X = R, /N is not approximating, for if
a / b = (0, 1) ∪ {2}, then a ⊆ (0, 1) and so b 6=

∨
↓/ b.

A common assumption is that in (P,≤), if {a, b} is bounded above, then
it has a join, a ∨ b; a straightforward induction then shows that each finite
set that is bounded above has a join. In this case, we say that (P,≤) has
suprema for pairs that are bounded above.

Lemma 8. (1) If (P,≤), has suprema for pairs that are bounded above,
then each Urysohn relation / on (P,≤) is contained in a smallest
auxiliary relation.

(2) If (P,≤), has suprema for pairs that are bounded above and infima
for pairs that are bounded below, then each Urysohn relation / on
(P,≤) is contained in a smallest dualizable auxiliary relation.

(3) Every Urysohn relation on (2X ,⊆) is contained in a smallest dual-
izable auxiliary relation.

Proof. (3) follows from (2). For (1), set /0 = / and, for each n, /n+1 =
{(a, b) : (∃c, d)(c, d /n b & a ≤ c ∨ d)}. Of course this recursive definition
depends on the fact that if a /n b then a ≤ b, but this is easily seen by
induction, it holds for /0 by ARstr, and if it holds for /n and a /n+1 b then
for some c, d, c, d /n b & a ≤ c∨ d, so by induction, c, d ≤ b thus c∨ d exists
and c ∨ d ≤ b; since a ≤ c ∨ d, a ≤ b as required. Then set /a =

⋃∞
n=0 /n.

It is easy to check that each /n is a Urysohn relation and /a is this smallest
auxiliary relation.
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Similarly, to see (2), set /0 = / and for each n, /n+1 = {(a, b) : (∃c, d)(c, d/n

b & a ≤ c ∨ d)} ∪ {(a, b) : (∃c, d)(b /n c, d & c ∧ d ≤ a)}, and /d =
⋃∞
n=0 /

n.
It is easy to check that each /n is a Urysohn relation and /d is this smallest
dualizable auxiliary relation.ut

Essentially Katětov [14] and Lane [19] isolate the following properties in
their proof of insertion theorems.

Definition 9 (The Katětov-Lane Axioms). Let (P,≤) be a poset and / a
binary relation on P . Let us call the following conditions on P the Katětov-
Lane Axioms:

(KLstr) / ⊆ ≤;
(KLtrn) ≤ ⊆ ≤/;

(KLinf,f ) if A,B ⊆ P are finite and A/B, then there is some c ∈ P such that
A / c / B.

(KLbd) for any finite A ⊆ P there are a, b ∈ P such that
(a) b ≤/ A ≤/ a,
(b) a / c, whenever A / c, and
(c) c / b, whenever c / A.

(KLinω,ω) if a, b ∈ P , and A and B are countable subsets of P , such that
A ≤/ a / B and A / b ≤/ B, then there is c ∈ P such that A / c / B.

(KLtop) If A / B, then cl(A) ⊆ B and A ⊆ int(B) (in the case that P is the
power set of a topological space and ≤=⊆).

We say that / is a KL-relation on P if and only if it satisfies KLstr, KLtrn
and KLinf,f .

(In Katětov’s other paper [15], KLbd is denoted by Katětov’s Property
(L) and KLinω,ω is denoted by Katětov’s Property (I).)

Theorem 10. Let (P,≤) be a poset and / be a binary relation on P .
(1) If / is a KL-relation on (P,≤), then it is a dualizable auxiliary

relation on (P,≤).
(2) Let (P,≤) have suprema for pairs or have infima for pairs. If / is

a dualizable auxiliary relation on (P,≤) then / is a KL-relation on
(P,≤).

Proof. (1) Note first that KLstr and KLtrn imply that / ⊆≤/, so that / is
transitive by Lemma 4. Clearly both ARin21 and ARin12 are special cases of
KLinf,f , and ARin11 is a special case of ARin21. That ARtrn holds follows
from KLtrn and Lemma 4 (6), for if c ≤ a / b ≤ d, then c ≤/ a / b ≤/ d so
that c / d.
(2) KLstr = ARstr, and KLtrn follows by Lemma 4 (6). Let A and B be
finite subsets of P such that a / b for each a ∈ A and b ∈ B; then assume
for the moment that a′ is a ≤-sup of A. By Lemma 6 (4), for b ∈ B, ↓/ b is
directed by / and since A ⊆ ↓/ b, there is some db / b such that A / db. By
KLstr, A ≤ db so that a′ ≤ db / b ≤/ b. ARtrn then implies that a′ / b. Since
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↑/ a′ is directed by /−1 and B ⊆ ↑/ a′, there is some c so that a′ / c / B, but
A ≤ a′ / c ≤ c so we have A / c / B. If A, has no sup then (2) is shown by a
similar proof using a inf of B.ut

The next result modifies Katětov’s [14] ?? to fit the current setting.

Theorem 11 (Katětov). If / is a dualizable auxiliary relation on the poset
(P,≤) and every finite subset of P has a ≤-supremum and infimum, then
(P,≤, /) satisfies KLbd.

If every countable subset of P has a ≤-supremum and infimum, then
(P,≤, /) satisfies KLinω,ω.

Proof. By Theorem 10 (2), / is a KL-relation on (P,≤). For the property
KLbd, suppose A is a finite subset of P . Let a be a ≤-supremum of A and
b be a ≤-infimum of A. Then b ≤ A ≤ a so, by KLtrn b ≤/ A ≤/ a. If
A / c, then by KLinf,f there is some d such that A / d / c. Since A ≤ d,
A ≤ a ≤ d / c, so that a / c. Similarly, if c / A, then c / b.

For second part of the theorem, suppose every countable subset of P has
a ≤-supremum and infimum and that a, b ∈ P and A = {an : n ∈ N},
B = {bn : n ∈ N} are subsets of P such that A ≤/ a / B and A / b ≤/ B.

We want c ∈ P such that an / c / bn for all n ∈ N. We first define
inductively {cn : n ∈ N} and {dn : n ∈ N} such that ai / ci / b, a / dj / bj
and ci / dj for all i, j. For this, inductively assume that we have such ci, dj
for i, j < n. Since an ≤/ a / di, for each i < n, Lemma 4 (5) implies that
an / di. Hence an / {b} ∪ {di : i < n}, so by KLinf,f there is a cn such that
an / cn / {b} ∪ {dj : j < n}. Similarly, since cn / b ≤/ bn, cn / bn. Also ci / bn
for i < n, and a / bn. Hence {a} ∪ {ci : i ≤ n} / bn, so there is some dn such
that {a} ∪ {ci | i ≤ n} / dn / bn.

Let c = supn∈N cn. Then an / cn ≤ c for each n, so A/ c. Moreover ci / dj
for each i, j ∈ N, so ck ≤ dj . Thus ck ≤ c ≤ dj / bj for each j ∈ N, from
which it follows that c / B. ut

4. Topologies, Auxiliary Relations and KLtop

An auxiliary relation on the power set of a set X, ordered by inclusion,
naturally gives rise to two topologies on X. It turns out, in fact, that when
considering the insertion of a continuous real-valued function between two
semicontinuous functions, both the topology on the space and the continuity
of the functions are inherent in the natural auxiliary relation on the power
set of X. In this section we show that when our order theoretic notions
are applied to the poset (2X ,⊆), they correspond naturally to normal or
completely regular (bi)topologies on the set X.

Definition 12. Let X be a set and / be a binary relation on the power set
2X . The topology arising from /, τ/ is the collection of subsets U of X such
that for each x ∈ U there is some finite subset F of 2X such that

⋂
F ⊆ U

and {x} / B for each B ∈ F .
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We say that a Urysohn relation satisfies ARin1s2 or has ARin12 for sin-
gletons if for each x ∈ X, B,C ⊆ X, {x} /B&{x} /C ⇒ {x} /D for some
D ⊆ B, C.

Lemma 13. If / is a Urysohn relation on (2X ,⊆), then τ/ is a topology on
X. Moreover, if / satisfies ARin1s2, then T ∈ τ/ if and only if {x} / T for
all x ∈ T .

Proof. If S ⊆ τ/ and x ∈
⋃
S, then for some T ∈ S, x ∈ T , so for some

finite set F of subsets of X, {x} / B for each B ∈ F , and
⋂
F ⊆ T ⊆

⋃
S;

this shows
⋃
S ∈ τ/ (as a special case, ∅ ∈ τ/).

If T,U ∈ τ/ and x ∈ T ∩ U , then for some finite sets F,G of subsets of
X, {x} / B for each B ∈ F and

⋂
F ⊆ T , and {x} / B for each B ∈ G and⋂

G ⊆ U . Thus {x}/B for each B ∈ F∪G, and
⋂

(F∪G) = (
⋂
F )∩(

⋂
G) ⊆

T ∩ U , thus intersections of pairs of open sets are open.
Finally, to see that X ∈ τ/, for each x ∈ X let F = ∅; then {x} / B for

each B ∈ F and
⋂
F ⊆ X.

Now suppose further that / satisfies ARin1s2. If x ∈ T ∈ τ/, then for
some finite set F of subsets of X, {x} / B for each B ∈ F and

⋂
F ⊆ T .

Thus by induction on axiom ARin1s2, if {x} / B1, ..., Bn, then for some
D, {x} / D ⊆ B1, . . . , Bn, and so by ARstr,there is a D such that {x} / D
and D ⊆ B for each B ∈ F . But then {x} / D ⊆

⋂
F ⊆ T , so by ARtrn,

{x} / T . For the reverse implication (in an arbitrary Urysohn relation),
suppose x ∈ T ⇒ {x} / T ; then F = {T} is a finite collection of sets such
that {x} / B for each B ∈ F and

⋂
F ⊆ T . Thus T ∈ τ/.ut

Since Katětov’s original result, Theorem 1 (from [14]), involves two topolo-
gies on the reals, it is not surprising that our setting naturally gives rise to
two topologies on the domain set as well.

Definition 14. Given a Urysohn relation / on (2X ,⊆), the Urysohn dual
of / is denoted by /∗ and defined by A/∗B if and only if (X−B)/ (X−A).

It is simple to see that /∗ is a Urysohn relation when / is one, and an
auxiliary relation when / is a dualizable auxiliary relation. Also, clearly
(/∗)∗ = /.

It turns out that the axiom KLtop is inherently incorporated into the
topology τ/ arising from a Urysohn relation / as the following proposition
shows.

Proposition 15. Let / be a Urysohn relation on (2X ,⊆) and let A ⊆ X.
Then x ∈ intτ/ A if and only if for some finite set F of subsets of X, {x}/B
for each B ∈ F , and

⋂
F ⊆ A.

Moreover, if A / B then A ⊆ intτ/ B and clτ/∗ A ⊆ B.

Proof. Let

Ao =
{
x ∈ A : ∃F ⊆ 2X , F finite,

⋂
F ⊆ A and, for all B ∈ F, {x} / B

}
.
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Certainly Ao ⊆ A, and if x ∈ U ⊆ intτ/ A, for some U ∈ τ/, then, by the
definition of τ/, x ∈ Ao. Therefore intτ/ A ⊆ Ao ⊆ A. To show intτ/ A = Ao,
it suffices to show that the latter is open. But if x ∈ Ao then there is a finite
F as above; for each B ∈ F , there is thus a CB such that {x} /CB /B; now
let G = {CB | B ∈ F}; G is finite, and if y ∈

⋂
G then for each B ∈ F ,

{y} ⊆ CB / B, so {y} / B, and of course,
⋂
F ⊆ A. But this asserts that

if y ∈
⋂
G then y ∈ Ao; as a result, for arbitrary x ∈ Ao we have found a

finite collection G of sets such that for each C ∈ G, {x} /C, and
⋂
G ⊆ Ao;

thus Ao ∈ τ/ and so Ao = intτ/ A.
Now suppose A/B; then for each x ∈ A, {x} ⊆ A/B so {x} /B, whence

x ∈ Bo; this shows A ⊆ Bo = intτ/ B. Further, X −B /∗X −A, thus by the
previous sentence, X −B ⊆ intτ/∗ (X −A) = X − clτ/∗ A, so clτ/∗ A ⊆ B, as
required. ut

In fact, Theorems 17 and 18 will show that for a Urysohn relation /,
we can say a good deal more about the topology τ/ when we consider the
bitopological setting. We start by recalling some key definitions; though
many of these are old, they are found in our notation in [16]:

Definition 16. For a topological space (X, τ), its (Alexandroff) specializa-
tion order is defined by x ≤τ y if x ∈ clτ{y},

A bitopological space is a triple (X, τ, τ∗) such that X is a set and τ, τ∗

are topologies on X. Given bitopological spaces (X, τX , τ∗X) and (Y, τY , τ∗Y )
a pairwise continuous map from (X, τX , τ∗X) to (Y, τY , τ∗Y ) is a function f :
X → Y such that f is continuous both from (X, τX) to (Y, τY ) and from
(X, τ∗X) to (Y, τ∗Y ).

A bitopological space (X, τ, τ∗) is weakly symmetric if x /∈ clτ{y} =⇒
y /∈ clτ∗{x}.

A bitopological space (X, τ, τ∗) is pseudoHausdorff (pH) if whenever x 6∈
clτ{y} then for some T ∈ τ , U ∈ τ∗, x ∈ T, y ∈ U, and T ∩ U = ∅.

For any property Q of bitopological spaces, (X, τ, τ∗) is said to be pairwise
Q if both (X, τ, τ∗) and its bitopological dual, (X, τ∗, τ) is Q.

A bitopological space (X, τ, τ∗) is joincompact it is pairwise pH, and τ∨τ∗
is compact and T0.

A bitopological space (X, τ, τ∗) is completely regular if whenever x ∈ U ∈
τ , then there is a pairwise continuous f from (X, τ, τ∗) to (I, σ, ω) such that
f(x) = 1 and f(y) = 0 whenever y 6∈ U .

A bitopological space (X, τ, τ∗) is normal if whenever C ⊆ U , C is τ∗-
closed and U τ -open, then there is a τ∗-closed D and a τ -open V such that
C ⊆ V ⊆ D ⊆ U .

Theorem 17. The following are equivalent:
(1) The bitopological space (X, τ, τ∗) is pairwise completely regular.
(2) There is a Urysohn relation / on 2X such that τ = τ/ and τ∗ = τ/∗.
(3) There is a dualizable auxiliary relation / on 2X such that τ = τ/ and

τ∗ = τ/∗.
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Summary of proof: (1) ⇔ (2) The definition of Urysohn relation in [16]
is designed so that for each set of functions F from a set X into [0, 1], the
relation

A /F B ⇔ (∃r, s ∈ [0, 1], f ∈ F )(r < s & A ⊆ f−1[[s, 1]] &f−1[(r, 1]] ⊆ B)

is a Urysohn relation (the reader can easily check this), and to support
the classic proof of the Urysohn Lemma (also easily checked, or see [16],
Lemma 2.8). If each function in F is pairwise continuous from (X, τ, τ∗) to
([0, 1], σ, ω), then τ/F ⊆ τ and τ/∗F ⊆ τ

∗.
Thus if there is a Urysohn relation / on 2X such that τ = τ/ and τ∗ =

τ/∗ , then by Urysohn’s Lemma, for each x ∈ T ∈ τ there is a pairwise
continuous f : (X, τ, τ∗) → ([0, 1], σ, ω), and similar reasoning applies to
the dual, (X, τ∗, τ), so (X, τ, τ∗) is pairwise completely regular. Conversely,
if (X, τ, τ∗) is pairwise completely regular, and F = {f : f is pairwise
continuous from (X, τ, τ∗) to (I, σ, ω)}, then by the previous paragraph, /F
is a Urysohn relation for which τ/F ⊆ τ and τ/∗F ⊆ τ∗. But in fact if
x ∈ T ∈ τ there is an f ∈ F such that f(x) = 1 and f−1[(0, 1]] ⊆ T , so
T ∈ τ/F . This shows τ = τ/F and similarly τ∗ = τ/∗F .

Clearly (3) ⇒ (2), for the converse, if there is a Urysohn relation / on
2X such that τ = τ/ and τ∗ = τ/∗ , then construct /d as in Lemma 8, and
note that for each n, τ/n = τ/ and τ/∗n = τ/∗ and then that τ/d

= τ/ and
τ/∗d = τ/∗ . Thus /d is a dualizable auxiliary relation that gives rise to the
same bitopology as does /.ut

In [16], the following is proved:

Theorem 18. The following are equivalent:

(1) The bitopological space (X, τ, τ∗) is normal.
(2) The binary relation /N on (2X ,⊆) is a dualizable auxiliary relation,

where A /N B if and only if clτ∗ A ⊆ intτ B.

Further, if (X, τ, τ∗) and (X, τ∗, τ) are weakly symmetric, then τ = τ/N and
τ∗ = τ/∗N .

Remark Theorem 17 easily yields the fact that a topological space (X, τ)
is completely regular if and only if there is a Urysohn relation / on 2X such
that / is self-dual (that is, / = /∗). Thus of course, τ = τ/ = τ/∗ :

Simply note that (X, τ) is completely regular if and only if (X, τ, τ) is
pairwise completely regular, and f is pairwise continuous from (X, τ, τ) to
(I, σ, ω) if and only if, f is continuous from (X, τ) to (I, us), where us is the
usual topology on the unit interval.

Then consider /F which is defined in the proof of Theorem 17. Note that
(/F )d is a proximity in this situation, giving the usual characterization of
complete regularity.

Also, by Theorem 18, a topological space (X, τ) is T4 if and only if /N a
self-dual Urysohn relation on 2X and τ = τ/N .
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5. Auxiliary Relations in Domain Theory

We point out some topological uses of the idea of auxiliary relation in
domain theory. Suppose that (P,≤, /) is a poset with auxiliary relation.
For A,B ⊆ P , we define A ≺/ B to mean that for some r and s in P ,
A ⊆ ↑≤ s ⊆ ↑/ r ⊆ B (note that by ARtrn), ↑≤ s ⊆ ↑/ r if and only if r / s).
Then ≺/ is easily seen to be an Urysohn relation on (2P ,⊆); indeed each of
ARstr −ARin11 for ≺/ arises from the corresponding axiom for /. However,
the fact that / satisfies ARin21 implies that ≺/ satisfies ARin1s2: first note
that {x} ≺/ B ⇔ for some r, s ∈ P , {x} ⊆ ↑≤ s ⊆ ↑/ r ⊆ B ⇔ for some
r, s ∈ P , x ≥ s.r and ↑/ r ⊆ B ⇔ for some r ∈ P , x.r and ↑/ r ⊆ B. Having
shown this characterization, clearly if {x} ≺/ B,C then there are r, t ∈ P
such that x . r, t, ↑/ r ⊆ B and ↑/ t ⊆ C, thus if / is an auxiliary relation,
there is a u ∈ P such that r, t / u / x, and then ↑/ u ⊆ ↑/ r ∩ ↑/ t ⊆ B ∩ C.

Definition 19. Given a poset with auxiliary relation (P,≤, /), two topolo-
gies on P are defined using ≤ and /: the pseudoScott topology, ρ, is the one
whose open sets are generated by all sets of the form ↑/ p for p ∈ P , while
the lower, ω, is the one whose closed sets are generated by all sets of the
form ↑≤ p for p ∈ P .

Theorem 20. The pseudoScott topology is τ≺/. If also / is approximating,
the lower is τ≺∗/, ≤τ≺/

is ≤ and ≤τ≺∗/ is ≥.

Proof. For the first assertion let p ∈ P . If q ∈ ↑/ p, then p / q so for some
r, p / r / q; thus {q} ⊆ ↑/ r ⊆ ↑/ p, whence {q} ≺/ ↑/ p. This shows that ↑/ p
is open in τ≺/ . Also, if q ∈ T ∈ τ≺/ , then by the last assertion of Lemma
13, {q} ≺/ T , so for some p, r ∈ P, {q} ⊆ ↑≤ r ⊆ ↑/ p ⊆ T , so in particular,
q ∈ ↑/ p ⊆ T , so the ↑/ p form an open base for τ≺/ , showing that ρ = τ≺/ .

To see that the lower is τ≺∗/ if / is approximating, let q ∈ P \ ↑≤ p, then
q 6≥ p and there is some r ∈ P such that q 6≥ r (so surely r // q) and r / p.
That is, {q} ⊆ P \ ↑/ r ⊆ P \ ↑≤ p; so each subbasic ω-open P \ ↑≤ p is a τ≺∗/
neighborhood of each of its elements q, so it is τ≺∗/-open. Therefore ω ⊆ τ≺∗/ .

On the other hand, if q ∈ T ∈ τ≺∗/ then for some n, s1, . . . , sn, r1, . . . , rn ∈
P , each ri / si and {q} ⊆

⋂n
1 (P \ ↑/ ri) ⊆

⋂n
1 (P \ ↑≤ pi) ⊆ T . In particular

q ∈
⋂n

1 (P \ ↑≤ pi) ⊆ T , showing that T is an ω neighborhood of q, and so T
is an ω neighborhood of each of its elements q, so it is ω-open. This shows
τ≺∗/ ⊆ ω, so τ≺∗/ = ω.

Note that by ARstr and ARtrn, each basic ↑/ p, thus each open set, is a ≤-
upper set, so each closed set is a ≤-lower set, therefore y ≤ x⇒ y ∈ clρ({x}),
so ≤⊆≤τ≺/

. If / is approximating and y 6≤ x then for some z / y, z // x,
so ↑/ z is a neigborhood of y not meeting {x}, thus y 6∈ clρ({x}), and so
≤⊇≤τ≺/

. Also in this case (P, ρ, ω) is pairwise completely regular, thus
≤ω= (≤ρ)−1 =≥.ut
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Definition 21. A dcpo is a poset in which directed subsets all have suprema,
and a dcpo is continuous if each element is the directed supremum of those
way below (compactly below) it:

The way below relationship is defined by declaring p� q if and only if

(q ≤
∨
D ⇒ (∃r ∈ D)(p ≤ r))

for all directed sets D. Thus a dcpo is continuous if for each p ∈ P , ↓� p is
directed and p =

∨
↓� p.

A dcpo is bounded complete if each set which is bounded above has a
supremum, and a Scott domain is a bounded complete continuous dcpo.

Note that (R,≤, <) is a continuous dcpo and (I,≤, <) is a Scott domain;
their upper topologies are in fact their Scott topologies, a fact we have
foreshadowed by using σ to denote them. Among the good references to
domain theory we particularly recommend [7] and [1].

A useful example of continuous dcpo is the collection of open proper
subsets of a locally compact space (X, τ), K = (τ \ {X},⊆). Here T �
U ⇔ (∃ compact K)(T ⊆ K ⊆ U). Verification is left to the reader, or can
be found in [7].

Theorem 22. (a) For each continuous dcpo, (P,≤), � is an approximating
auxiliary relation on P , and for each Scott domain, (P, σ, ω) is joincompact.

(b) For each continuous dcpo, (P,≤), σ = τ≺� and ω = τ(≺�)∗.
(c) For each Scott domain (P,≤), the bitopological space (P, σ, ω) arises

from the dualizable auxiliary relation /N .

Proof. Most assertions of (a) are well known (see for example [7]), but we
show them here for the convenience of the reader. Certainly if p� q, since
{q} is directed, and q ≤

∨
{q}, p ≤ q, showing ARstr; it is also clear that

if r ≤ p � q ≤ s and s ≤
∨
D, D directed, then q ≤

∨
D, so for some

d ∈ D, r ≤ p ≤ d, showing ARtrn. To see ARin11, suppose p � q and
consider D = ↓�(↓� q). Then D is directed, for if s, t ∈ D then for some
s′, t′ ∈ ↓� q, s ∈ ↓� s′ and t ∈ ↓� t′. Since ↓� q is directed, there is a u ∈
↓� q such that s′, t′ � u, and then since ↓� u is directed, there is a v ∈ ↓� u
such that s′, t′ ≤ v. Then v ∈ D, and s ≤ s′ � v, t ≤ t′ � v, so s, t ≤ v.
Since p ∈ ↓� q, we have ↓� p ⊆ ↓�(↓� q) = D, so p =

∨
↓� p ≤

∨
D, thus

p ≤ t for some t ∈ D; that is, for some u, p ≤ t � u � q, so p � u � q
showing ARin11. Since each ↓� q is directed, ARin21 holds as well; thus �
is an auxiliary relation, and it is approximating since we have required that
p =

∨
↓� p for all p ∈ P .

Thus as a special case of Theorem 20, if (P,≤) is a continuous dcpo, then
σ is τ≺� and ω is τ(≺�)∗ , so (P, σ, ω) is pairwise completely regular; also
≤σ=≤, so σ is T0, thus so is the stricter σ ∨ ω.

If (P,≤) is a Scott domain, then σ ∨ ω is also compact ([7]), so (P, σ, ω)
is joincompact. Each joincompact bitopological space is T4 by reasoning
similar to the topological case (see [16], Theorem 3.6). So the Theorem
results from these observations as well as Theorems 17 and 18.ut
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6. Adjoints and Interpolating Relations on Functions

Given two posets with auxiliary relations (P,≤P , /P ) and (Q,≤Q, /Q),
one can define an interpolating order on order preserving functions from P
to Q in terms of /P and /Q. To relate these notions to real valued functions
on topological spaces we consider adjoints.

Let P and Q be posets, and l : P → Q and u : Q→ P be order preserving
maps. Then u is an upper adjoint for l if, for each p ∈ P and q ∈ Q,
p ≤ u(q)⇔ l(p) ≤ q. In this case, l is a lower adjoint for u.

For the example most familiar to topologists, let f : X → Y be any
function and, for and A ⊆ X, B ⊆ Y , let f→(A) = {f(x) : x ∈ A} and
f←(B) = {x : f(x) ∈ B}. Then f← is an upper adjoint to f→ between the
posets (2X ,⊆) and (2Y ,⊆), since A ⊆ f←(B) if and only if f→(A) ⊆ B.

The following useful observations on adjunctions are gathered in Section
0.3 of [7]: A function from one poset to another has at most one upper
adjoint. Each function with an upper adjoint preserves

∨
; as a partial con-

verse, if the domain is a complete lattice, then each function that preserves∨
has an upper adjoint. Results on adjoints are easily dualizable, since

clearly if u is an upper adjoint for l regarded as a map from (P,≤P ) to
(Q,≤Q) then l is an upper adjoint for u, seen as a map from (Q,≤−1

Q ) to
(P,≤−1

P ).

Definition 23. Let (P,≤P , /P ), (Q,≤Q, /Q) be posets with auxiliary rela-
tions. Let QP denote the set of all maps f : P → Q which have an upper ad-
joint, and denote the upper adjoint of f by fu. Thus a ≤ fu(b)⇔ f(a) ≤ b.

We define the order ≤QP on QP by: f ≤QP g if fu(q) ≤P gu(r), whenever
q ≤Q r. Also, let /QP be the relation on (QP ,≤QP ), defined by: f /QP g if
and only if fu(q) /P gu(r), whenever q /Q r.

The connection between auxiliary relations and continuity can now be
described in Theorem 24.

Theorem 24. Let P = (2X ,⊆, /X) and Q = (2Y ,⊆, /Y ) be posets with
auxiliary relations and let f, g : X → Y .

(1) If f→ /QP g→ then g→ /∗
QP f

→.
(2) If f→ /QP f→ then f is pairwise continuous from (X, τ/X , τ/∗X ) to

(Y, τ/Y , τ/∗Y ).

Proof. For (1), let f→ /QP g→. If A /∗Q B, then (Y −B) /Q (Y −A), so

X − f←[B] = f←[Y −B] /P g←[Y −A] = X − g←[A],

thus g←[A] /∗P f←[B].
For (2), if f→ /QP f→ and x ∈ f←[T ], T ∈ τ/Y then for some finite set

F of subsets of Y, {f(x)} /Q B for each B ∈ F and
⋂
F ⊆ T , thus by

the definition of /QP , {x} ⊆ f←[{f(x)}] /P f←[B] for each B ∈ F , and⋂
B∈F f

←[B] = f←[
⋂
F ] ⊆ f←[T ]; by the arbitrary nature of x ∈ f←[T ],
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this shows that f←[T ] ∈ τ/X and therefore f is continuous from (X, τ/X ) to
(Y, τ/Y ). But, if f→ /QP f→, then f→ /∗

QP f
→ by (1), so f is also continuous

both from (X, τ/∗X ) to (Y, τ/∗Y ), by the same reasoning.ut

7. Insertion of Functions

Below let I = ([0, 1],≤, <).

Theorem 25 (Lane). Let (P,≤, /) be a poset with auxiliary relation such
that (P,≤) has suprema and infima for finite sets and let (Q,≤′) be a count-
able poset.

Let F,G : (Q,≤′) → (P,≤) be order-preserving functions. If F (r) / G(s)
whenever r < s, then there is an order-preserving function H ′ : (Q,≤′) →
(P,≤) such that F (r) / H ′(s) / H ′(t) / G(u) whenever r < s < t < u.

Moreover, if Q is a countable dense subset of [0, 1], with ≤′ its usual
order, then there is an order-preserving function H : [0, 1] → P such that
F (r) /H(s) /H(t) /G(u), whenever r < s < t < u, r, u ∈ Q and s, t ∈ [0, 1].
Moreover, H(

∧
D) =

∧
H(D) for any D ⊆ [0, 1].

Proof. We define H ′ inductively. Index Q = {tn : n ∈ N}. Suppose that for
some n ∈ N, we have defined H ′(tk) for each k < n, so that whenever t ∈ Q
and j, k < n: if t < tk then F (t) / H ′(tk), if tk < t then H ′(tk) / G(t) and if
tk < tj then H ′(tk) / H ′(tj). Now we define:

A = {H ′(tk) : k < n, tk < tn} ∪ {F (t) : t < tn}
A′ = {H ′(tk) : k < n, tk < tn} ∪ {F (tn)}
B = {H ′(tk) : k < n, tn < tk} ∪ {G(t) : tn < t}
B′ = {H ′(tk) : k < n, tn < tk} ∪ {G(tn)}.

Since A′ and B′ are finite sets, by KLbd, there are a, b ∈ P so that
A′ ≤ a, b ≤ B′; also a / e whenever A′ / e, and e / b whenever e / B′. If
d ∈ A, then either d ∈ A′ or d = F (tk) ≤ F (tn) ∈ A′; in either case d ≤ a/e,
whenever a′ / e. Thus A ≤ a / B; similarly A / b ≤ B. Hence by KLinω,ω,
there exists c ∈ P such that A / c / B. Let H ′(tn) = c, completing the
definition of H ′.

Suppose that ti < tj < tk < tl, then for some n and i, j, k, l < n, so we
have F (ti) / H ′(tj), H ′(tj) / H ′(tk) and H ′(tk) / G(tl) as required.

If Q is a countable dense subset of [0, 1], with ≤′ its usual order, we
define H : [0, 1] → P by H(r) =

∧
{H ′(q) : r < q ∈ Q}. Let r < s < t < u

where r, u ∈ Q and s, t ∈ [0, 1], then there are r′, s′, t′, u′ ∈ Q such that
r < r′ < s < s′ < t′ < t < u′ < u so that

F (r) / H ′(r′) ≤ H(s) ≤ H ′(s′) / H ′(t′) ≤ H(t) ≤ H ′(u′) / G(u),

from which it follows that F (r) / H(s) / H(t) / G(u).



D
R
A
FT

14 CHRIS GOOD, RALPH KOPPERMAN, AND FILIZ YILDIZ

Finally, for a subset D ⊆ [0, 1],

H

(∧
D

)
=
∧{

H ′(q) |
∧
D < q ∈ Q

}
.

Also, since
{
H ′(q) |

∧
D < q ∈ Q

}
=
⋃
d∈D{H ′(q) | d < q ∈ Q} and∧(⋃

d∈D{H ′(q) | d < q ∈ Q}
)

=
∧
H(D) we have H

(∧
D

)
=
∧
H(D).ut

Theorem 26. (a) Let (P,≤, /) be a poset with auxiliary relation such that
(P,≤) has suprema and infima for finite sets. If f, g ∈ IP and f /IP g, then
for some h : P → I, f /IP h /IP h /IP g.

(b) Let (P,≤P , /P ), (Q,≤Q, /Q) be posets with auxiliary relations and let
f, g : P → Q, be order preserving. Then f /QP g if and only if for each
a ∈ P, c ∈ Q, if f(a) /Q c then for some b ∈ P, a /P b and g(b) /Q c.

(c) In particular, /IP is a Urysohn relation on IP .

Proof. (a) Given such f, g : P → I, let Q = Q ∩ I and define F,G : (Q,≤
) → (P,≤/) by F = fu �Q and G = gu �Q . Then, by Theorem 25, there is
an order preserving H : (I,≤) → (P,≤/) such that, whenever p < u < v <
q, p, q ∈ Q and u, v ∈ I, then F (p) / H(u) / H(v) / G(q). In addition, for
each D ⊆ [0, 1], H(

∧
D) =

∧
H[D].

By the dual of the comments on adjoints, H thus has a lower adjoint,
h : (P,≤/) → (I,≤), so H is the upper adjoint to h, which we denote
H = hu. Thus if u < v then hu(u) = H(u) / H(v) = hu(v), so h /IP h.

Since fu, gu : I → P have lower adjoints, they preserve
∨

, and thus
preserve order. So, if u < v, u, v ∈ I, there is some p ∈ Q such that
u < p < v and fu(u) ≤ fu(p) = F (p) / H(v) = hu(v), hence f /IP h. Also,
hu(u) = H(u) / G(p) = gu(p) ≤ gu(v), from which it follows that h /IP g.

(b) Suppose first f /QP g, and let f(a)/Q c. Then for some d ∈ Q, f(a)/Q
d /Q c, so a ≤ fu(f(a)) /P gu(d), so a /P gu(d). Thus there is some b ∈ P
so that a /P b /P gu(d); therefore b ≤P gu(d), so g(b) ≤Q d /Q c, showing
g(b) /Q c.

Conversely, assume our condition and let c/Qd. Then f(fu(c)) ≤Q c/Qd,
so for some b, fu(c)/P b and g(b)/Q d. But then g(b) ≤Q d, so fu(c)/P b ≤P
gu(d), showing fu(c) /P gu(d).

(c) By (a) ARin11 holds. To see ARstr, assume f /IP g; then if a ≤ b,
let c be an arbitrary element such that c < a. Since then c < b, we have
fu(c) /P gu(b), so in particular, fu(c) ≤P gu(b). Since < is approximating
and f preserves

∨
, fu(a) =

∨
{fu(c) : c < a} ≤P gu(b), thus f ≤IP g.

Finally, to see ARtrn: if h ≤ f /IP g ≤ k, then whenever a < b, we have
hu(a) ≤ fu(a) /Q gu(b) ≤ ku(b), so hu(a) /Q ku(b), and as a result, h /IP k.ut

Corollary 27. Let (P,≤, /) be a poset with approximating auxiliary relation.
Also, let v be a relation on IP which is interpolative (satisfies ARin11) and

(1) v⊆ /IP ,
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(2) if s v p /IP q v r, then s v q and p v r.
Then whenever f v g there is some h such that f v h /IP h v g.

Proof. If f v g then two interpolations give f ′ and g′ such that f v f ′ v
g′ v g. So by (1), f ′ /IP g′. By Theorem 26, there is an h such that
f ′ /IP h /IP h /IP g′. It follows by (2) that f v h /IP h v g.ut

Below, for f : X → Y , we use f→ to denote the image function:
f→ : 2X → 2Y , defined by f→(A) = {f(x) : x ∈ A}, for A ∈ 2X .

Theorem 28. (a) Suppose /X is a Urysohn relation on (2X ,⊆), and let
f, g : X → I. If f→ /I2X g→ then there is a pairwise continuous h from
(X, τ/, τ∗/ ) to (I, σ, ω) such that f→ /I2X h→ /I2X g→.

(b) Suppose (X, τ, τ∗) is a T4 bitopological space, f is continuous from
(X, τ) to (I, σ), g is continuous from (X, τ∗) to (I, ω), and f ≤ g. Then for
some pairwise continuous h from (X, τ, τ∗) to (I, σ, ω), f ≤ h ≤ g.

Proof. (a) By Theorem 26, since (2X ,⊆) is a complete lattice, there is an
H ∈ I2X

so that f→ /I2X H /I2X H /I2X g→. Let h be the restriction of H
to X (formally, h(x) = H({x}) for each x ∈ X). Then h ∈ IX , and for each
A ⊆ X, A =

⋃
x∈A{x} =

∨
x∈A{x}, so h→(A) =

∨
x∈AH({x}) = H(A), so

h→ = H, and thus f→ /I2X h → /I2X h → /I2X g→. Finally, h is pairwise
continuous by Theorem 24.

For part (b), let / = /N ; then τ = τ/ and τ∗ = τ/∗ . Note that f /IX g,
for if A /I B then there is r < s such that A ⊆ ↑≤ s and ↑< r ⊆ B, so
clω A ⊆ intσ B (if r = 0 then I = ↑↑r). By continuity of f from (X, τ) to
(I, ω) and g from (X, τ∗) to (I, σ), we have that clτ∗ f←[A] ⊆ intτ g←[B],
which is to say that f←[A] /N g←[B]. Thus f→ /IX g→, so by Theorem 26
(with P = 2X), there is an h : P → [0, 1] such that f /IP h /IP h /IP g. Then
by Theorem 24, h is pairwise continuous from (X, τ, τ∗) to (I, σ, ω). ut

We now have:

Corollary 29. (a) Let P be a continuous dcpo and f, g : P → I be such
that g is continuous from (P, σ) to (I, σ), f is continuous from (P, ω) to
(I, ω), and f ≺� g. Then there is an h : P → I such that f ≤ h ≤ g
and h is pairwise continuous from (P, σ, ω) to (I, σ, ω). In particular each
f : P → I which is Scott continuous is the directed sup of the h ≺� f which
are pairwise continuous from (P, σ, ω) to (I, σ, ω).

(b) Let P be a Scott domain and f, g : P → I be such that f ≤ g, f is
continuous from (P, ω) to (I, ω), and g is continuous from (P, σ) to (I, σ).
Then there is an h : P → I such that f ≤ h ≤ g and h is pairwise continuous
from (P, σ, ω) to (I, σ, ω). In particular, each f : P → I which is Scott
continuous is the directed sup of the h ≤ f which are pairwise continuous
from (P, σ, ω) to (I, σ, ω).

Proof. Part (a) results from Theorems 22 (a) and 28 (a), while (b) comes
from Theorems 22 (b) and 28 (b).ut
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8. Classical Examples

Several classical insertion theorems now follow from the above results.
Notice that (by appropriately rescaling or considering functions with re-
stricted range) we can equally well consider functions from a space X to
either R or [0, 1]. We state our theorems using the more convenient range
in each case.

The Katětov-Tong [14, 26] insertion theorem is an immediate consequence
of Theorem 28.

Theorem 30 (Katětov-Tong). X is normal if and only if whenever f :
X → R is lower semicontinuous, g : X → R is upper semicontinuous and
g ≤ f then there is a continuous h : X → R such that g ≤ h ≤ f .

From this one can deduce a number of similar well-known results. For us,
the existence of a continuous insertion f ≤ h ≤ g in Theorem 30 follows from
the fact that g /h/h/f ; we cannot directly deduce that g(x) < h(x) < f(x)
for any x ∈ X, so some of our proofs rely on topological facts.

Corollary 31. (1) The Tietze Extension Theorem: X is normal if and
only if every continuous function f : C → [0, 1] on a closed set C
can be extended to a continuous function f ′ : X → [0, 1].

(2) Dowker’s Insertion Theorem [3]: X is normal and countably para-
compact iff whenever f : X → R is lower semicontinuous, g : X →
R is upper semicontinuous and f < g then there is a continuous
h : X → R such that f < h < g.

(3) Michael’s Insertion Theorem [21]: X is perfectly normal iff whenever
f : X → R is lower semicontinuous, g : X → R is upper semicon-
tinuous and f ≤ g then there is a continuous h : X → R such that
f ≤ h ≤ g and f(x) < h(x) < g(x) whenever f(x) < g(x).

Proof. In each case the converse is standard, so we only prove one direction.
For (1), if C is a closed subset of X and f : C → [0, 1] is continuous, let

ϕ(x) = ψ(x) = f(x), for all x ∈ C, and define ϕ(x) = 0 and ψ(x) = 1, for
x /∈ C. Then ϕ ≤ ψ, ϕ is usc and ψ is lsc. Theorem 30 provides us with a
continuous f ′ which is equal to f on C.

Simple, geometric proofs of both (2) and (3) given Katětov’s Theorem
appear in [10], but here we give more ‘functional’ proofs. A normal space X
is countably paracompact (see [3]) if and only for every decreasing sequence
of closed sets (Dn) such that

⋂
n∈NDn = ∅ there are open sets Un ⊇ Dn

such that
⋂
n∈N Un = ∅. A normal space X is perfect if and only if for every

closed set D there are open sets Un ⊇ D such that
⋂
n∈N Un = D. In fact

it is easy to prove (see [6] for example) that X is perfect if and only if for
every decreasing sequence of closed sets (Dn), there are open sets Un ⊇ Dn

such that
⋂
n∈N Un =

⋂
n∈NDn.
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For (2),1 suppose that X is both normal and countably paracompact and
that g < f , where g is usc and f is lsc. Let Dn = {x : f(x)−g(x) ≤ 1/3n+1};
Dn is then closed and

⋂
Dn = ∅. By countable paracompactness, for each

n ∈ N, there is an open Un ⊇ Dn such that
⋂
n∈N Un = ∅. By (1) we

can extend the continuous function taking the value 0 on Dn and 1 on
X − Un to a continuous function ϕn : X → [0, 1]. Let ϕ =

∑
ϕn/3n so that

ϕ : X → [0, 1/2] is continuous and ϕ(x) ≤ 1
3n2 for x ∈ Dn. Every x ∈ X is

in X − D1 or in Dn − Dn+1, for some n, so that 2ϕ(x) < f(x) − g(x) for
all x ∈ X. We can now apply the Katětov-Tong Theorem to the functions
g′ = g + ϕ ≤ f ′ = h− ϕ. The argument for (3) is similar: if g ≤ f , where g
is usc and f is lsc, then defining Dn as above we have

⋂
n∈NDn = D = {x :

f(x) = g(x)}, so that ϕ(x) = 0 for all x ∈ D. The rest of the argument is
identical.ut

A space is monotonically normal [27] if and only if there is an operator H
assigning an open set H(C,D) to each pair of disjoint closed sets such that

(1) C ⊆ H(C,D) ⊆ H(C,D) ⊆ X −D, and
(2) H(C,D) ⊆ H(C ′, D′), whenever C ⊆ C ′ and D′ ⊆ D.

For more on the significance of monotonically normal spaces see [11]. It turns
out that there is a natural monotone version of the Katětov-Tong Insertion
Theorem due to Kubiak [17] (see also [20]). It is convenient to introduce
some notation. Let C(X) denote the set of all continuous R-valued functions
on X and let UL(X) = {(g, f) : g ≤ f, f : X → R lsc, g : X → R usc},
ordered by (g, f) ≤ (g′, f ′) iff g ≤ g′ and f ≤ f ′.

Theorem 32 (Kubiak). X is monotonically normal iff there is an order
preserving map Φ : UL(X)→ C(X) such that g ≤ Φ(g, f) ≤ f .

Proof. Order the power set ofX, P(X) by inclusion. Let P = {ϕ : UL(X)→
P(X) : ϕ is order reversing}. Let ≤ be the partial order on P defined by
ϕ ≤ ϕ′ iff ϕ(g, f) ⊆ ϕ′(g, f) for all (g, f) ∈ UL(X). Define ϕ / ϕ′ iff
ϕ(g, f) ⊆ ϕ(g, f)◦.

Clearly (P,≤) has (finite) sups and infs, for example define
(∨

ϕ∈R ϕ
)
(g, f) =⋃

ϕ∈R
(
ϕ(g, f)

)
for any R ⊆ P . And so (P,≤, /) satisfies ARstr − ARin21.

To see ARin21 (hence ARin11), suppose that ϕ,ϕ′ /ψ. Let H be a monotone
normality operator. Define

χ(g, f) = H
(
ϕ(g, f), ψ(g, f)◦

)
∪H

(
ϕ′(g, f), ψ(g, f)◦

)
.

Then

ϕ(g, f) ∪ ϕ′(g, f) ⊆ χ(g, f)◦ = χ(g, f) ⊆ χ(g, f) ⊆ ψ(g, f)◦.

Moreover χ is order reversing since ϕ and ϕ′ are and H is monotone.

1In fact this may be Dowker’s original proof? I don’t have access to his paper until
I get back to my office in the UK Dec 18, but we should check and reference and for
Michael’s result as well.
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Now we can apply Theorem 25 to the functions F,G : Q→ P defined by
F (r)(g, f) = {x : f(x) ≤ r} and G(r)(g, f) = {x : g(x) < r} so that F / G
to get H : Q → P such that F / H / H / G. Defining Φ(g, f)(x) = inf{r :
x ∈ H(r)(g, f)} completes the proof.ut

There are natural monotone versions of the Dowker and Michael Insertion
Theorems, though both versions turn out to be equivalent to stratifiability.
A space is stratifiable if and only there is an operator U assigning an open
set U(n,D) to every closed set D and n ∈ N such that

⋂
n∈N U(n,D) = D

and U(n,D) ⊆ U(n,D′) whenever D ⊆ D′. The following two results appear
in [9] (see also [8]) and [22] respectively. One can also prove these results
from Kubiak’s in exactly the same way as Dowker’s and Michael’s follow
from the Katětov-tong theorem so we omit the proofs here.

Corollary 33. (1) X is stratifiable iff there is an order preserving map
Ψ assigning to each pair (g, f) ∈ UL(X), with g < f , a continuous
function Ψ(g, f) such that g < Ψ(g, f) < f .

(2) X is stratifiable iff there is an order preserving map Θ : UL(X) →
C(X) such that g ≤ Θ(g, f) ≤ f and g(x) < Θ(g, f)(x) < f(x),
whenever g(x) < f(X).

Theorem 34. Let Y be a subspace of a uniform space X. If f is bounded,
uniformly continuous R-valued function on Y , then there exists a bounded
uniformly continuous extension f ′ of f .

Proof. Let P be the power set of X and let A / B if and only if there is
U ∈ U the uniformity such that if a ∈ A and (a, b) ∈ U then b ∈ B.
Let α = inf{f(x) : x ∈ Y }, β = sup{f(x) : x ∈ Y }. For α ≤ r ≤ β
F (r) = {x ∈ Y : f(x) ≤ r}, G(r) = A(r) ∪ (X − Y ). F (r) = G(r) = ∅
for r < α and = X for r > β. Suppose H is given by Theorem 25. Define
f ′(x) = inf{r : x ∈ H(r)}.. . .ut

Definition 35. Given a function f , let f∗(x) = supx∈Uopen infy∈U∩X f(y)
and f∗(x) = infx∈U open supy∈U∩X f(y). A function is normal lsc if f = (f∗)∗
and is normal usc if f = (f∗)∗.

Theorem 36 (Lane). (1) Suppose disjoint regular closed sets are separated
by disjoint open sets. If g ≤ f , g normal usc, f normal lsc then there is
continuous h such that g ≤ h ≤ f .

(2) Suppose disjoint closed sets, at least one of which is regular closed,
are separated by disjoint open sets. If g ≤ f , and either g usc, f lsc normal
or g usc normal, f lsc, then there is continuous h such that g ≤ h ≤ f .

(3) Suppose X is extremally disconnected. If g ≤ f , g lsc, f usc, then
there is a continuous h such that g ≤ h ≤ f .

Proof. (1) Apply Theorem ?? with A / B iff A ⊆ F ⊆ G ⊆ B◦ where F is
regular closed and G is regular open. If f is normal lsc, then {x : f(x) < r}
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is regular closed. Similarly {x : g(x) ≤ r}◦ is regular open so {x : f(x) < r}/
{x : g(x) ≤ r}.

For (2) and (3) Use A / B iff there is some open G such that A ⊆ G ⊆
G ⊆ B◦. ut
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[15] M. Katětov, Correction to ”On Real-Valued Functions in Topological Spaces”, Fund.
Math. (1953), 203–205.

[16] R. Kopperman, Asymmetry and duality in topology, Topology and Appl. 66 (1995),
1–39.

[17] T. Kubiak, Monotone insertion of continuous functions, Question Answers Gen.
Topology 11 (1993), 51–59.

[18] E. Lane, Insertion of continuous functions, Topology Proc. 4 (1979), 463–478.
[19] E. Lane, A sufficient condition for the insertion of a continuous function, Proc.

Amer. Math. Soc. 49 (1975), 90–94.
[20] Lane and Pan
[21] E. Michael, Continuous selections I, Annals of Math. 63 (1956), 361–382.
[22] P. Nyikos and C. Pan, Monotone insertion property of stratifiable spaces, Presented

at the 915 th AMS Meeting (1996).
[23] C. Pan, Monotonically CP spaces, Questions and Answers in General Topology,

(1997), Symposium of General Topology.



D
RAFT

20 CHRIS GOOD, RALPH KOPPERMAN, AND FILIZ YILDIZ

[24] G. B. Raney, Completely distributive lattices, Proc. Amer. Math. Soc., 3 (1952),
667–680.

[25] M. B. Smyth, Effectively given domains, Theor. Comput. Sci. 5, (1977), pp. 257–274.
[26] H. Tong, Some characterizations of normal and perfectly normal spaces, Duke Math.

J. 19 (1952), 289–292.
[27] R. W. Heath, D. J. Lutzer, and P. L. Zenor, Monotonically normal spaces, Trans.

Amer. Math. Soc. 178 (1973), 481-493.

School of Mathematics and Statistics, University of Birmingham, Birm-
ingham, B15 2TT, United Kingdom

E-mail address: c.good@bham.ac.uk

Department of Mathematics, City College, City University of New York,
New York, N. Y. 10031

E-mail address: rdkcc@ccny.cuny.edu

Department of Mathematics, City College, City University of New York,
New York, N. Y. 10031 and Department of Mathematics, Faculty of Science,
Hacettepe University, Beytepe, Ankara, Turkey

E-mail address: fyildiz@ccny.cuny.edu


