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Abstract. We consider several generalized metric properties and study
the relation between a space X satisfying such property and its n-fold sym-
metric product satisfying the same property.

1 Introduction

The hyperspace CL(X) of closed subsets of a topological space equipped with
various topologies and various of its subsets such as 2X , the space of compact
subsets of X, and F(X), the space of finite subsets of X have been the
focus of much research. For example, Mizokami presents a survey of results
relating a generalized metric property of space X with the hyperspaces 2X

and F(X) [23]. Fisher, Gratside, Mizokami and Shimane prove that for a
space X, CL(X) is monotonically normal if and only if X is metrizable, 2X

is monotonically normal if and only if 2X = F(X) or 2X is stratifiable. They
also show that monotone normality of X2 is equivalent to the monotone
normality of Xn and F(X) [6] (compare with Theorem 4.6). A survey of
CL(X), 2X and F(X) with several topologies is in [10]. A study of 2X and
Cn(X) when X is a compact, connected and metric space can be found in
[26] and [17], respectively.

The symmetric products of a space have been less well studied except
for the case of symmetric products of continua (compact, connected metric
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Key words and phrases. ccc-space, Fréchet space, Gδ-diagonal, g-function, generalized met-
ric space, hyperspace, monotonically normal space, stratifiable space, symmetric product.
The second named author was partially supported by DGAPA, UNAM. This author thanks
The University of Birmingham for the support given during this research..

1



spaces). The n-fold symmetric product Fn(X) of a space, originally defined in
1931 by Borsuk and Ulam [2], is the quotient of Xn formed by the quotient
map (x1, x2, . . . , xn) 7→ {x1, x2, . . . , xn}. If X is a Hausdorff space, then
Fn(X) is a closed subset of CL(X) and the union of all symmetric products of
X is the subspace F(X), which is dense in CL(X). Borsuk and Ulam studied
the symmetric products of the unit interval [0, 1] and showed that Fn([0, 1])
is homeomorphic to [0, 1]n for n ∈ {1, 2, 3}, that Fn([0, 1]) is not embeddable
in the Euclidean space IRn for any n ≥ 4, and that dim(Fn([0, 1])) = n
for each n [2]. Borsuk claimed that the third symmetric product of the
unit circle S1 was homeomorphic to S1 × S2, where S2 is the two sphere
[1], but Bott showed that actually F3(S1) is homeomorphic to the three
sphere S3 [3]. Ganea proved that if X is a separable metric space, then
dim(Xn) = dim(Fn(X)). Molski showed that F2([0, 1]2) is homeomorphic to
[0, 1]4, that Fn([0, 1]2) cannot be embedded in IR2n and that F2([0, 1]n) cannot
be embedded in IR2n, for any n ≥ 3 [25]. Schori characterized Fn([0, 1]) as
Cone(Dn−2)× [0, 1] for some subspace Dn−2 of Fn([0, 1]) [29]. Maćıas proved
that if X is a continuum, then for each n ≥ 3, each map from Fn(X) into
the unit circle, S1, is homotopic to a constant map. In particular we have
that Fn(X) is unicoherent for each n ≥ 3 [15]. He showed that for a finite
dimensional continuum X, C1(X) is homeomorphic to F2(X) if and only if X
is homeomorphic to [0, 1] [15]; also, Cn(X) is never homeomorphic to Fn(X)
[18]. Additionally, he proved that if Fn(X) is a retract of Cm(X) (m ≥
n), then Fn(X) is uniformly pathwise connected, weakly chainable, movable
and has trivial shape [19]. He also obtained some aposyndetic properties of
symmetric products of continua [16].

In this paper we study symmetric products of generalized metric spaces.
It turns out that the behaviour of the symmetric product topology mir-
rors the behaviour of the usual product topology. (Where ever possible we
have proved our results directly rather than relying on preservation under
products and closed maps.) Regarding positive results, in all but one case
(Question 3.33), we show that Fn(X) has the generalized metric property if
and only if X does. With respect to counterexamples, we find that proto-
metrizability, being a Fréchet space, monotone normality, countable compact-
ness and pseudocompactness do not hold and we give examples of spaces X
satisfying each of these properties such that F2(X) does not satisfy them.
The set-theoretic behaviour Fn(X) for a ccc space X again mirrors that of
Xn and F2(X) is ccc if and only if X2 is ccc.

We introduce the definitions just before we use them for the first time.
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2 Preliminaries

All of our spaces are Hausdorff unless otherwise indicated. The symbol IN
stands for the set of positive integers and IR stands for the set of real numbers.

Given a space X, we define its hyperspaces as the following sets:

• CL(X) = {A ⊂ X | A is closed and nonempty};

• 2X = {A ∈ CL(X) | A is compact},

• Cn(X) = {A ∈ 2X | A has at most n components}, n ∈ IN;

• Fn(X) = {A ∈ 2X | A has at most n points}, n ∈ IN;

• F(X) = {A ∈ 2X | A is finite}.

CL(X) is topologized by the Vietoris topology defined as the topology gen-
erated by

β = {〈U1, . . . , Uk〉 | U1, . . . , Uk are open subsets of X, k ∈ IN},

where 〈U1, . . . , Uk〉 = {A ∈ CL(X) | A ⊂ ∪kj=1Uj and A∩Uj 6= ∅, for each j ∈
{1, . . . , k}}. Note that, by definiton, 2X , Cn(X), Fn(X) and F(X) are sub-
spaces of CL(X). Hence, they are topologized with the appropriate restric-
tion of the Vietoris topology. CL(X) is called the hyperspace of nonempty
closed subsets of X, 2X is called the hyperspace of nonempty compact subsets
of X, Cn(X) is called the n-fold hyperspace of X, Fn(X) is called the n-fold
symmetric product of X and F(X) is called the hyperspace of finite subsets
of X. Observe that F(X) =

⋃∞
n=1Fn(X).

Let X be a space and let n be a positive integer. Note that there is a
surjective continuous function fn : Xn →→ Fn(X) given by fn((x1, . . . , xn)) =
{x1, . . . , xn}. It is not difficult to show that fn is always a closed function.
It is known that f2 : X2 →→ F2(X) is open (Lemma 2.13).

2.1 Remark. Let X be a space and let n be an integer greater than or equal
to two. Note that F1(X) is closed in Fn(X) and ξ : F1(X) →→ X given by
ξ({x}) = x is a homeomorphism.

2.2 Notation. Let X be a space and let n be a positive integer. To simplify
notation, if U1, . . . , Us are open subsets of X, then 〈U1, . . . , Us〉n denotes
the intersection of the open set 〈U1, . . . , Us〉, of the Vietoris Topology, with
Fn(X).
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2.3 Notation. LetX be a space and let n be a positive integer. If {x1, . . . , xr}
is a point of Fn(X) and {x1, . . . , xr} ∈ 〈U1, . . . , Us〉n, then for each j ∈
{1, . . . , r}, we let Uxj =

⋂
{U ∈ {U1, . . . , Us} | xj ∈ U}. Observe that

〈Ux1 , . . . , Uxr〉n ⊂ 〈U1, . . . , Us〉n [20, 2.3.1].

Let X be a space. A collection U of subsets of X is closure-preserving
provided that for each each V ⊂ U , ClX (

⋃
{V | V ∈ V}) =

⋃
{ClX(V ) | V ∈

V}.

2.4 Lemma. Let X be a space. If U and V are two closure-preserving col-
lection of subsets of X, then U ∪ V is a closure preserving family of subsets
of X.

2.5 Theorem. Let X be a space, let U be a closure-preserving family of
subsets of X and let n be a positive integer. Then U = {〈U1, . . . , Uk〉n |
U1, . . . , Uk ∈ U} is a closure-preserving family of subsets of Fn(X).

Proof. Let U0 be an arbitrary subfamily of U, and let {x1, . . . , xr} ∈
Fn(X) \

⋃
{ClFn(X)(W) | W ∈ U0}. Let j ∈ {1, . . . , r}, and let Vj = X \⋃

{ClX(U) | xj ∈ X \ ClX(U) and U ∈ U}. Then, since U is a closure-
preserving family of open subsets of X, Vj is an open subset of X and xj ∈ Vj.
Let V = 〈V1, . . . , Vr〉n. Then V is an open subset of Fn(X), {x1, . . . , xr} ∈ V
and V∩W = ∅ for allW ∈ U0 [20, 2.3.2]. Hence, {x1, . . . , xr} ∈ V ⊂ Fn(X)\⋃
{W | W ∈ U0}. Thus, {x1, . . . , xr} ∈ Fn(X) \ ClFn(X) (

⋃
{W | W ∈ U0}).

Therefore, U is a closure-preserving family of subsets of Fn(X).
Q.E.D.

A space X has N as a network provided that N is a collection of subsets
of X such that for each x ∈ X and each open subset U of X with x ∈ U ,
there exists N ∈ N such that x ∈ N ⊂ U .

2.6 Lemma. Let X be a space and let n be a positive integer. If N is a net-
work for X, then N = {〈N1, . . . , N`〉n | N1, . . . , N` ∈ N and ` ∈ {1, . . . , n}}
is a network for Fn(X).

Proof. Let {x1, . . . , xr} be an element of Fn(X) and let U be an open
subset of Fn(X) such that {x1, . . . , xr} ∈ U . Then there exist open sub-
sets U1, . . . , Us of X such that {x1, . . . , xr} ∈ 〈U1, . . . , Us〉n ⊂ U . Let j ∈
{1, . . . , r}. Since N is a network for X, there exists Nj ∈ N such that
xj ∈ Nj ⊂ Uxj (Notation 2.3). Note that {x1, . . . , xr} ∈ 〈N1, . . . , Nr〉n ⊂
〈U1, . . . , Us〉n ⊂ U . Therefore, N is a network for Fn(X).

Q.E.D.
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2.7 Lemma. Let X be a space and let n be a positive integer. If N is a
discrete family of subsets of X, then N = {〈N1, . . . , N`〉n | N1, . . . , N` ∈
N and ` ∈ IN} is a discrete family of subsets of Fn(X).

Proof. Let {x1, . . . , xr} be an element of Fn(X). Since N is a discrete
family of subsets of X, for each j ∈ {1, . . . , r}, there exists an open subset
Uj of X such that xj ∈ Uj and Uj intersects at most one element of N . Then
〈U1, . . . , Ur〉n is an open subset of Fn(X) and {x1, . . . , xr} ∈ 〈U1, . . . , Ur〉n.

Suppose there exist two distinct elements 〈N1, . . . , N`〉n and 〈N ′1, . . . , N ′s〉n
of N such that 〈U1, . . . , Ur〉n ∩ 〈N1, . . . , N`〉n 6= ∅ and 〈U1, . . . , Ur〉n∩
〈N ′1, . . . , N ′s〉n 6= ∅. Since 〈U1, . . . , Ur〉n ∩ 〈N1, . . . , N`〉n 6= ∅, for each i ∈
{1, . . . , r}, there exists j ∈ {1, . . . , `} such that Ui ∩ Nj 6= ∅. Moreover,
the way Ui is selected, guarantees that Nj is the only element of N that
intersects Ui. Now, if k ∈ {1, . . . , s} is such that N ′k 6∈ {N1, . . . , N`}, then
N ′k∩(

⋃r
t=1 Ut) = ∅. Hence, 〈U1, . . . , Ur〉n∩〈N ′1, . . . , N ′s〉n = ∅, a contradiction.

A similar reasoning works when {N1, . . . , N`} 6⊂ {N ′1, . . . , N ′s}. Therefore, N
is discrete family of subsets of Fn(X).

Q.E.D.
We believe the following is known, but we could not find a refernce.

2.8 Lemma. Let X be a space and let n be a positive integer. If U is an
open subset of Fn(X), then

⋃
U is an open subset of X.

Proof. Let U be an open subset of Fn(X) and let x ∈
⋃
U . Then there

exists {x1, . . . , xr} ∈ U such that x ∈ {x1, . . . , xr}. We assume that x = x1.
Hence, there exist open subsets U1, . . . , Us of X such that {x1, . . . , xr} ∈
〈U1, . . . , Us〉n ⊂ U . To see that Ux1 ⊂

⋃
U (Notation 2.3), let x′ ∈ Ux1 . Then

{x′, x2, . . . , xr} ∈ 〈U1, . . . , Us〉n ⊂ U and x′ ∈
⋃
U . Therefore,

⋃
U is an

open subset of X.
Q.E.D.

Note that, in general, the union of closed subsets is not necessarily closed.

2.9 Example. Let S =
{{
x, 1

x

}
| x ∈ (0,∞)

}
. Then S is a closed subset of

F2(IR) and
⋃
S = (0,∞) which is not closed in IR.

2.10 Lemma. Let X be a space and let n be a positive integer. If G is an open
cover of X, G = {〈G1, . . . , Gk〉n | G1, . . . , Gk ∈ G and k ∈ {1, . . . , n}}, and
{x1, . . . , xr} ∈ Fn(X), then St({x1, . . . , xr},G) ⊂ 〈St(x1,G), . . . , St(xr,G)〉n.
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Proof. Let {y1, . . . , y`} ∈ St({x1, . . . , xr},G). Then there exists
〈G1, . . . , Gk〉n ∈ G such that {y1, . . . , y`} ∈ 〈G1, . . . , Gk〉n. Hence, by [20,
2.3.1], we have that 〈G1, . . . , Gk〉n ⊂ 〈St(x1,G), . . . , St(xr,G)〉n. Therefore,
St({x1, . . . , xr},G) ⊂ 〈St(x1,G), . . . , St(xr,G)〉n.

Q.E.D.

2.11 Lemma. Let X be a space and let n be a positive integer. Let x1, . . . , xr
be points of X with r ≤ n. For each j ∈ {1, . . . , r}, let {Ujm}∞m=1 be a
decreasing sequence of nonempty subsets of X such that

⋂∞
m=1 Ujm = {xj}.

Then
∞⋂
m=1

〈U1m, . . . , Urm〉n = {{x1, . . . , xr}}.

Proof. Let {y1, . . . , y`} ∈
⋂∞
m=1〈U1m, . . . , Urm〉n. Let j ∈ {1, . . . , r}.

Then for each positive integer m, {y1, . . . , y`}∩Ujm 6= ∅. Thus, {y1, . . . , y`}∩⋂∞
m=1 Ujm 6= ∅. Since {xj} =

⋂∞
m=1 Ujm, we have that xj ∈ {y1, . . . , y`}.

Hence, {x1, . . . , xr} ⊂ {y1, . . . , x`}. Also, since {y1, . . . , y`} ⊂
⋃r
j=1 Ujm

for all positive integers m, we obtain that {y1, . . . , y`} ⊂
⋂∞
m=1

⋃r
j=1 Ujm =⋃r

j=1

⋂∞
m=1 Ujm =

⋃r
j=1{xj} = {x1, . . . , xr}. Therefore, {y1, . . . , y`} =

{x1, . . . , xr}.
Q.E.D.

2.12 Lemma. Let X be a space and let n be a positive integer. Let x1, . . . , xr
be points of X with r ≤ n. For each j ∈ {1, . . . , r}, let Uj = {Ujm}∞m=1 be
a local base at xj in X. Then U = {〈U1m, . . . , Urm〉n | Ujm ∈ Uj, j ∈
{1, . . . , r}}∞m=1 is a local base at {x1, . . . , xr} in Fn(X).

Proof. Let j ∈ {1, . . . , r}. Then without loss of generality, we assume
that Ujm+1 ⊂ Ujm for every positive integer m. Let W be an open subset of
Fn(X) containing {x1, . . . , xr}. Then there exist open subsets W1, . . . ,Ws of
X such that {x1, . . . , xr} ∈ 〈W1, . . . ,Ws〉n ⊂ W . Then Wx1 , . . . ,Wxr (Nota-
tion 2.3) are open subsets of X such that {x1, . . . , xr} ∈ 〈Wx1 , . . . ,Wxr〉n ⊂
〈W1, . . . ,Ws〉n ⊂ W . Let j ∈ {1, . . . , r}. Since Uj is a local base at
xj, there exists a positive integer mj such that xj ∈ Umjj ⊂ Wxj . Let
m = max{m1, . . . ,mr}. Then xj ∈ Umj ⊂ Wxj . Thus, 〈U1m, . . . , Urm〉n ∈ U,
{x1, . . . , xr} ∈ 〈U1m, . . . , Urm〉n ⊂ 〈Wx1 , . . . ,Wxr〉n ⊂ W . Hence, U is a local
base at {x1, . . . , xr}.

Q.E.D.
The following lemma is known for metric continua [16, Lemma 9].
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2.13 Lemma. If X is a Hausdorff space, then the map f2 : X2 →→ F2(X)
given by f2((x1, x2)) = {x1, x2} is open.

Proof. Let U×V be a basic open subset of X2, and let ∆X = {(x, x) | x ∈
X} be the diagonal. If (U ×V )∩∆X = ∅, then f2|U×V : U ×V →→ f2(U ×V )
is a homeomorphism. Hence, f2(U × V ) is an open subset of F2(X).

Assume (U × V ) ∩∆X 6= ∅. Let {x1, x2} ∈ f2(U × V ). Suppose x1 6= x2.
Without loss of generality, we assume that (x1, x2) ∈ U × V . Since X is a
Hausdorff space, ∆X is a closed subset of X2. Hence, there exists a basic open
subset U ′ × V ′ of X2 such that (x1, x2) ∈ U ′ × V ′ and (U ′ × V ′) ∩∆X = ∅.
We assume that U ′ × V ′ ⊂ U × V . Thus, as in the previous paragraph,
f2(U ′ × V ′) is an open subset of F2(X), and {x1, x2} is an interior point of
f2(U × V ). Now suppose x1 = x2. Let U = (U × V ) ∩ (V × U). Then U is
an open subset of X2 such that (x1, x1) ∈ U and U = f−1

2 (f2(U)). Hence,
f2(U) is an open subset of F2(X), and {x1} is an interior point of f2(U ×V ).
Therefore, f2 is open.

Q.E.D.

3 Positive Results

A metric d on a space X is said to be an ultrametric if for all x, y, z ∈
X, d(x, y) ≤ max{d(x, z), d(y, z)}. If A is a nonempty subset of X, then
Vdε (A) = {x ∈ X | inf{d(x, a) | a ∈ A} < ε}, and H denotes the Hausdorff
function on 2X × 2X induced by d, given by:

H(A,B) = inf{ε > 0 | A ⊂ Vdε (B) and B ⊂ Vdε (A)}.

3.1 Lemma. Let a, a′, b, b′ be four positive real numbers such that a < a′ and
b < b′. Then max{a, b} < max{a′, b′}.

Proof. Suppose max{a, b} = max{a′, b′}. Without loss of generality, we
assume that max{a, b} = a. Since a 6= a′, we have that a = b′. Hence,
b < b′ = a < a′, a contradiction. Therefore, max{a, b} < max{a′, b′}.

Q.E.D.

3.2 Theorem. Let X be a space. If d is an ultrametric for X, then H is an
ultrametric for 2X . In particular, H is an ultrametric for Fn(X).
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Proof. We only prove the inequality. Let A, B and C be elements of
2X . Let η > 0. Let δAB = H(A,B) + η and let δBC = H(B,C) + η. Note
that A ⊂ VdδAB

(B) and B ⊂ VdδBC
(C). Let a ∈ A. Then there exists b ∈ B

such that d(a, b) < δAB. Thus, there exists c ∈ C such that d(b, c) < δBC .
Since d is an ultrametric, we have that d(a, c) ≤ max{d(a, b), d(b, c)} <
max{δAB, δBC} (Lemma 3.1). Hence, A ⊂ Vdmax{δAB ,δBC}(C). Similarly,

C ⊂ Vdmax{δAB ,δBC}(A). Thus, H(A,C) ≤ max{H(A,B) + η,H(B,C) + η}.
Since η is an arbitrary positive number, H(A,C) ≤ max{H(A,B),H(B,C)}.
Therefore, H is an ultrametric.

Q.E.D.
A symmetric on a space is a metric that does not necessarily satisfy the

triangle inequality. The following is clear:

3.3 Theorem. Let X be a space. If d is a symmetric for X, then H is a
symmetric for 2X . In particular, H is a symmetric for Fn(X).

A pseudo-metric on a space is a function d : X × X → [0,∞) such that
for every three elements x, y and z of X we have that d(x, x) = 0, d(x, y) =
d(y, x) and d(x, z) ≤ d(x, y) + d(y, z). The following is clear:

3.4 Theorem. Let X be a space. If d is a pseudo-metric for X, then H is
a pseudo-metric for 2X . In particular, H is a pseudo-metric for Fn(X).

A space X is a Lašnev space if it is the closed image of a metric space.

3.5 Theorem. Let X be a space and let n be a positive integer. If Fn(X) is
a Lašnev space, then X is a Lašnev space.

Proof. Suppose Fn(X) is a Lašnev space. Then there exist a metric
space Z and a closed surjective map g : Z →→ Fn(X). Let Z1 = g−1(F1(X)).
By Remark 2.1, Z1 is a closed subset of Z and g1 = g|Z1 is a closed map. Since
ξ is a homeomorphism (Remark 2.1), ξ ◦ g1 : Z1 →→ X is a closed surjective
map. Therefore, X is a Lašnev space.

Q.E.D.

3.6 Question. If X is a Lašnev space, then is Fn(X) a Lašnev space for
some integer n greater than or equal to two?

3.7 Theorem. Let X be a space and let n be a positive integer. Then X is
separable if and only if Fn(X) is separable.

8



Proof. Suppose X is separable and let D be a coutable dense subset of
X. Let D = {{d1, . . . , dt} ∈ Fn(X) | d1, . . . , dt ∈ D}. Then D is a countable
subset of Fn(X). We show that D is dense in Fn(X). Let U be an open
subset of Fn(X) and let {x1, . . . , xr} be an element of U . Thus, there exist
open subsets U1, . . . , Us of X such that {x1, . . . , xr} ∈ 〈U1, . . . , Us〉n ⊂ U .
Hence, {x1, . . . , xr} ∈ 〈Ux1 , . . . , Uxr〉n ⊂ 〈U1, . . . , Us〉n (Notation 2.3). Since
D is dense in X, for each j ∈ {1, . . . , r}, there exists dj ∈ D ∩ Uxj . Then
{d1, . . . , dr} ∈ D ∩ 〈Ux1 , . . . , Uxr〉n ⊂ D ∩ U . Therefore, Fn(X) is separable.

Suppose that Fn(X) is separable and let D be a countable dense subset
of Fn(X). Let D =

⋃
D. Then D is a countable subset of X. We prove that

D is dense in X. Let U be an open subset of X. Thus, 〈U〉n is a nonepmty
open subset of Fn(X). Since D is dense in Fn(X), there exists A ∈ D∩〈U〉n.
Hence, A ⊂ U ∩D. Therefore, X is separable.

Q.E.D.

3.8 Theorem. Let X be a space and let n be a positive integer. Then X is
first countable if and only if Fn(X) is first countable.

Proof. Suppose X is first countable. Let {x1, . . . , xr} be an element
of Fn(X). Since X is first countable, for each j ∈ {1, . . . , r}, there ex-
ists a countable local base Uj = {Ujm}∞m=1 at xj. Without loss of gen-
erality, we assume that Ujm+1 ⊂ Ujm for every positive integer m. Let
U = {〈U1m, . . . , Urm〉n | Ujm ∈ Uj}∞m=1. Then U is a countable family of
open subsets of Fn(X). By Lemma 2.12, U is a local base at {x1, . . . , xr}.
Therefore, Fn(X) is first countable.

Suppose Fn(X) is first countable. Let x be a point of X. Since Fn(X)
is first countable, there exists a countable local base U = {Um}∞m=1 at {x}.
For each positive integer m, let Um =

⋃
Um. By Lemma 2.8, Um is an open

subset of X. Note that x ∈ Um. Hence, {Um}∞m=1 is a countable family of
open subsets of X, we prove that it is a local base at x. Let U be an open
subset of X containing x. Then 〈U〉n is an open subset of Fn(X) containing
{x}. Since U is a local base at {x}, there exists a positive integer m such that
{x} ∈ Um ⊂ 〈U〉n. Thus, x ∈

⋃
Um = Um ⊂

⋃
〈U〉n = U . Hence, {Um}∞m=1

is a local base at x. Therefore, X is first countable.
Q.E.D.

If P is a collection of pairs, for j ∈ {1, 2}, Pj = {Pj | (P1, P2) ∈ P}.
If X is a space, then a collection P of pairs of subsets of X is a pairbase
provided that each element of P1 is an open subset of X and for each point
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x of X and a neighborhood U of x in X, there exists (P1, P2) ∈ P such that
x ∈ P1 ⊂ P2 ⊂ U .

3.9 Theorem. Let X be a space and let n be a positive integer. Then X has
a pairbase if and only if Fn(X) has a pairbase.

Proof. Suppose X has a pairbase P. Let

P = {(〈P11, . . . , P1k〉n, 〈P21, . . . , P2k〉n) | (P1j, P2j) ∈ P,

j ∈ {1, . . . , k} and k ∈ {1, . . . , n}}.

We prove that P is a pairbase for Fn(X). Let {x1, . . . , xr} be an element of
Fn(X) and let U be an open subset of Fn(X) such that {x1, . . . , xr} ∈ U .
Then there exist open subsets U1, . . . , Us of X such that {x1, . . . , xr} ∈
〈U1, . . . , Us〉n ⊂ U . Let j ∈ {1, . . . , r}. Since P is a pairbase for X, there
exists (P1j, P2j) ∈ P such that xj ⊂ P1j ⊂ P2j ⊂ Uxj (Notation 2.3). Thus,
{x1, . . . , xr} ∈ 〈P11, . . . , P1r〉n ⊂ 〈P21, . . . , P2r〉n ⊂ 〈U1, . . . , Us〉n ⊂ U . There-
fore, P is a pairbase for Fn(X).

Assume Fn(X) has a pairbase P. Let P = {(
⋃
P1,
⋃
P2) | (P1,P2) ∈ P}.

We show that P is a pairbase forX. Note that, by Lemma 2.8,
⋃
P1 is an open

subset of X for each (P1,P2) ∈ P. Let x be an element of X and let U be an
open subset of X such that x ∈ U . Then 〈U〉n is an open subset of Fn(X)
and {x} ∈ 〈U〉n. Since P is a pairbase for Fn(X), there exists (P1,P2) ∈ P
such that {x} ∈ P1 ⊂ P2 ⊂ 〈U〉n. Hence, x ∈

⋃
P1 ⊂

⋃
P2 ⊂

⋃
〈U〉n = U .

Therefore, P is a pairbase for X.
Q.E.D.

3.10 Theorem. Let n be a positive integer. A space X is a regular space if
and only if Fn(X) is a regular space.

Proof. Let {x1, . . . , xr} be an element of Fn(X) and let U be an open
subset of Fn(X) such that {x1, . . . , xr} ∈ U . Then there exist open sub-
sets U1, . . . , Us of X such that {x1, . . . , xr} ∈ 〈U1, . . . , Us〉n ⊂ U . Let j ∈
{1, . . . , r}. Since X is regular, there exists an open subset Vj of X such that
xj ∈ Vj ⊂ ClX(Vj) ⊂ Uxj (Notation 2.3). Thus, by [20, 2.3.2], {x1, . . . , xr} ∈
〈V1, . . . , Vr〉n ⊂ 〈ClX(V1), . . . , ClX(Vr)〉n = ClFn(X)(〈V1, . . . , Vr〉n) ⊂
〈U1, . . . , Us〉n ⊂ U . Therefore, Fn(X) is a regular space.

By Remark 2.1, the reverse implication is clear.
Q.E.D.
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3.11 Theorem. Let n be a positive integer. Then a space X is a locally
compact space if and only if Fn(X) is a locally compact space.

Proof. We show that Fn(X) is a Hausdorff space. Let {x1, . . . , xr}
and {y1, . . . , yt} be two distinct elements of Fn(X). Since {x1, . . . , xr} 6=
{y1, . . . , yt}, without loss of generality we assume that x1 6∈ {y1, . . . , yt}.
Since X is a Hausdorff space, there exist open subsets U1, V1, . . . , Vt of X
such that x1 ∈ U1, and for each k ∈ {1, . . . , t}, yk ∈ Vk, and U1∩Vk = ∅. Let
U2, . . . , Ur be open subsets of X such that xj ∈ Uj for every j ∈ {2, . . . , r}.
Then 〈U1, . . . , Ur〉n and 〈V1, . . . , Vt〉n are open subsets of Fn(X) such that
{x1, . . . , xr} ∈ 〈U1, . . . , Ur〉n, {y1, . . . , yt} ∈ 〈V1, . . . , Vt〉n and 〈U1, . . . , Ur〉n ∩
〈V1, . . . , Vt〉n = ∅. Therefore, Fn(X) is a Hausdorff space.

We prove that Fn(X) is locally compact. Let {x1, . . . , xr} be an element
of Fn(X) and let U be an open subset of Fn(X) containing {x1, . . . , xr}.
Then there exist open subsets U1, . . . , Us of X such that {x1, . . . , xr} ∈
〈U1, . . . , Us〉n ⊂ U . Then Ux1 , . . . , Uxr (Notation 2.3) are open subsets of X
such that {x1, . . . , xr} ∈ 〈Ux1 , . . . , Uxr〉n ⊂ 〈U1, . . . , Us〉n ⊂ U . Since X is a
locally compact Hausdorff space, for each j ∈ {1, . . . , r}, there exists an open
subset Wj of X such that xj ∈ Wj ⊂ ClX(Wj) ⊂ Uxj and ClX(Wj) is com-
pact. Without loss of generality, we assume that ClX(Wj) ∩ClX(Wk) = ∅ if
j 6= k. Hence, {x1, . . . , xr} ∈ 〈W1, . . . ,Wr〉n ⊂ 〈ClX(W1), . . . , ClX(Wr)〉n ⊂
〈Ux1 , . . . , Uxr〉n ⊂ U . Observe that since ClX(Wj) ∩ ClX(Wk) = ∅ if j 6= k,
〈ClX(W1), . . . , ClX(Wr)〉n is homeomorphic to ClX(W1) × · · · × ClX(Wr).
Thus, 〈ClX(W1), . . . , ClX(Wr)〉n is compact. Since, by [20, 2.3.2],

ClFn(X)(〈W1, . . . ,Wr〉n) = 〈ClX(W1), . . . , ClX(Wr)〉n,

we obtain that Fn(X) is locally compact.
By Remark 2.1, the reverse implication is clear.

Q.E.D.
A space X is cosmic if X has a countable network.

3.12 Theorem. Let X be a space and let n be a positive integer. Then X
is cosmic if and only if Fn(X) is cosmic.

Proof. Suppose X is cosmic and let N be a countable network for X.
Let N = {〈N1, . . . , N`〉n | N1, . . . , N` ∈ N and ` ∈ {1, . . . , n}}. Then N is a
countable family and, by Lemma 2.6, N is a network for Fn(X). Therefore,
Fn(X) is cosmic.
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Assume Fn(X) is cosmic and let N be a countable network for Fn(X).
Let N1 = {N ∈ N | N ∩ F1(X) 6= ∅} and let N1 = {

⋃
N | N ∈ N1}. Then

N1 is a countable family of subsets of X. We prove that N1 is a network.
Let x be a point of X and let U be an open subset of X such that x ∈ U .
Then 〈U〉n is an open subset of Fn(X) and {x} ∈ 〈U〉n. Since N is a network
for Fn(X), there exists N ∈ N such that {x} ∈ N ⊂ 〈U〉n. Observe that
N ∈ N1 and x ∈

⋃
N ⊂ U . Thus, N1 is a network for X. Therefore, X is

cosmic.
Q.E.D.

3.13 Remark. Note that in Theorem 3.12 we do not use the fact that being
cosmic is hereditary.

A collection P of (not necessarily open) subsets of a space X is a pseu-
dobase for X if for each compact subset C of X and an open subset U of X
such that C ⊂ U , then there exists P ∈ P such that C ⊂ P ⊂ U .

A space T3 X is an ℵ0-space if X has a countable pseudobase.

3.14 Theorem. Let X be a T3 space and let n be a positive integer. Then
X is an ℵ0-space if and only if Fn(X) is an ℵ0-space.

Proof. Suppose X is an ℵ0-space. By [22, (F), p. 983], any countable
product of ℵ0-spaces is an ℵ0-space. Also, by [22, (G), p. 983], any image of
an ℵ0-space under a closed map is an ℵ0-space. Hence, Fn(X) is an ℵ0-space.

Assume Fn(X) is an ℵ0-space and let N be a countable pseudobase for
Fn(X). Let N1 = {

⋃
N | N ∈ N}. Then N1 is a countable family of

subsets of X. We show that N1 is a pseudobase for X. Let C be a compact
subset of X and let U be an open subset of X such that C ⊂ U . Then
Fn(C) is a compact subset of Fn(X), 〈U〉n is an open subset of Fn(X) and
Fn(C) ⊂ 〈U〉n. Since N is a pseudobase for Fn(X), there exists N ∈ N such
that Fn(C) ⊂ N ⊂ N. Thus, C =

⋃
Fn(C) ⊂

⋃
N ⊂

⋃
〈U〉n = U . Hence,

N1 is a pseudobase for X. Therefore, X is an ℵ0-space.
Q.E.D.

3.15 Remark. Observe that in Theorem 3.14 we do not use the fact that
being an ℵ0-space is hereditary.

A space X is a σ-space if X has a σ-discrete network.

3.16 Theorem. Let X be a space and let n be a positive integer. Then X
is a σ-space if and only if Fn(X) is a σ-space.
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Proof. Suppose X is a σ-space. Let N =
⋃∞
j=1Nj be a σ-discrete

network for X. Since the union of two discrete families of subsets of X is
a discrete family of subsets of X, we assume that for each j, Nj ⊂ Nj+1.
For each j, let Nj = {〈N1, . . . , Nk〉n | N1, . . . , Nk ∈ Nj and k ∈ IN}. Then
Nj ⊂ Nj+1 for all j. By Lemma 2.7, Nj is a discrete family of subsets of
Fn(X). Let N =

⋃∞
j=1 Nj. Hence, N is a σ-discrete family of subsets of

Fn(X).
We show that N is a network for Fn(X). Let {x1, . . . , xr} be an element

of Fn(X) and let U be an open subset of Fn(X) such that {x1, . . . , xr} ∈
U . Then there exist open subsets U1, . . . , Us of X such that {x1, . . . , xr} ∈
〈U1, . . . , Us〉n ⊂ U . Let ` ∈ {1, . . . , r}. SinceN is a network for X, there exist
a positive integer j and N`j ∈ Nj such that x` ∈ N`j ⊂ Ux` (Notation 2.3).
Note that {x1, . . . , xr} ∈ 〈N`1 , . . . , N`r〉n ⊂ 〈U1, . . . , Us〉n ⊂ U . Let `0 =
max{`1, . . . , `r}. Then {N`1 , . . . , N`r} ⊂ N`0 and 〈N`1 , . . . , N`r〉n ∈ N`0 .
Therefore, N is a network for Fn(X).

By Remark 2.1, the reverse implication follows from the fact that being
a σ-space is hereditary.

Q.E.D.
A space X is developable if there exists a sequence {Gm}∞m=1 of open covers

of X such that for each x ∈ X, {St(x,Gm)}∞m=1 is a local base at x. This
family {Gm}∞m=1 of open covers of X is a development for X.

3.17 Theorem. Let X be a space and let n be a positive integer. Then X
is a developable space if and only if Fn(X) is a developable space.

Proof. Suppose X is a developable space and let {Vm}∞m=1 be a devel-
opment for X. For each m ∈ IN, let

Gm =

{
m⋂
j=1

Vj

∣∣∣ Vj ∈ Vj for all j ∈ {1, . . . ,m}

}
.

Then {Gm}∞m=1 is a development for X such that St(x,Gm) ⊂ St(x,Gm+1)
for all x ∈ X and every m ∈ IN.

Let m be a positive integer and let

Gm = {〈Gm1, . . . , Gmk〉n | Gm1, . . . , Gmk ∈ Gm and k ∈ {1, . . . , n}}.

Then Gm is an open cover of Fn(X). We prove that if {x1, . . . , xr} is an ele-
ment of Fn(X), then {St({x1, . . . , xr},Gm}∞m=1 is a local base at {x1, . . . , xr}.
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Let U be an open subset of Fn(X) such that {x1, . . . , xr} ∈ U . Then there ex-
ist open subsets U1, . . . , Us of X such that {x1, . . . , xr} ∈ 〈U1, . . . , Us〉n ⊂ U .
Let j ∈ {1, . . . , r}. Since {St(xj,Gm)}∞m=1 is a local base at xj, there ex-
ists a positive integer mj such that St(xj,Gmj

) ⊂ Uxj (Notation 2.3). Then
there exists m ≥ max{m1, . . . ,mr} such that St(xj,Gm) ⊂ St(xj,Gmj

) for
all j ∈ {1, . . . , r}. Hence, {x1, . . . , xr} ∈ 〈St(x1,Gm), . . . , St(xr,Gm)〉n ⊂
〈U1, . . . , Us〉n ⊂ U . By Lemma 2.10, St({x1, . . . , xr},Gm) ⊂ U .

By Remark 2.1, the reverse implication follows from the fact that being
a developable space is hereditary.

Q.E.D.
A regular developable space is a Moore space. As a consequence of The-

orem 3.10 and Theorem 3.17, we obtain:

3.18 Theorem. Let X be a space and let n be a positive integer. Then X
is a Moore space if and only if Fn(X) is a Moore space.

Let X be a space. Then X has a Gδ-diagonal (G∗δ-diagonal) if there
exists a sequence {Gm}∞m=1 of open covers of X such that for each x ∈ X,
{x} =

⋂∞
m=1 St(x,Gm) ({x} =

⋂∞
m=1 ClX(St(x,Gm))).

3.19 Theorem. Let X be a space and let n be a positive integer. Then
X has a Gδ-diagonal (G∗δ-diagonal) if and only if Fn(X) has a Gδ-diagonal
(G∗δ-diagonal).

Proof. Suppose X has a Gδ-diagonal (G∗δ-diagonal) and let {Vm}∞m=1 be a
sequence of open covers ofX such that for each x ∈ X, {x} =

⋂∞
m=1 St(x,Vm)

({x} =
⋂∞
m=1 ClX(St(x,Vm))). For each m ∈ IN, let

Gm =

{
m⋂
j=1

Vj

∣∣∣ Vj ∈ Vj for all j ∈ {1, . . . ,m}

}
.

Then {Gm}∞m=1 is a sequence of covers of X such that for each x ∈ X, {x} =⋂∞
m=1 St(x,Gm) ({x} =

⋂∞
m=1ClX(St(x,Gm))) and St(x,Gm) ⊂ St(x,Gm+1)

for all x ∈ X and every m ∈ IN.
Let m be a positive integer and let

Gm = {〈Gm1, . . . , Gmk〉n | Gm1, . . . , Gmk ∈ Gm and k ∈ {1, . . . , n}}.

Then Gm is an open cover of Fn(X). We prove that if {x1, . . . , xr} ∈
Fn(X), then {{x1, . . . , xr}} =

⋂∞
m=1 St({x1, . . . , xr},Gm) ({{x1, . . . , xr}} =
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⋂∞
m=1 ClFn(X)(St({x1, . . . , xr},Gm))). Note that, by Lemma 2.10,

St({x1, . . . , xr},Gm) ⊂ 〈St(x1,Gm), . . . , St(xr,Gm)〉n

(ClFn(X)(St({x1, . . . , xr},Gm)) ⊂ ClFn(X)(〈St(x1,Gm), . . . , St(xr,Gm)〉n) =

〈ClX(St(x1,Gm)), . . . , ClX(St(xr,Gm))〉n [20, 2.3.2]).

Hence,

∞⋂
m=1

St({x1, . . . , xr},Gm) ⊂
∞⋂
m=1

〈St(x1,Gm), . . . , St(xr,Gm)〉n

(
∞⋂
m=1

ClFn(X)(St({x1, . . . , xr},Gm)) ⊂

∞⋂
m=1

〈ClX(St(x1,Gm)), . . . , ClX(St(xr,Gm))〉n

)
.

By Lemma 2.11, we have that

∞⋂
m=1

〈St(x1,Gm), . . . , St(xr,Gm)〉n = {{x1, . . . , xr}}

(
∞⋂
m=1

〈ClX(St(x1,Gm)), . . . , ClX(St(xr,Gm))〉n = {{x1, . . . , xr}}

)
.

Therefore,
∞⋂
m=1

St({x1, . . . , xr},Gm) ⊂ {{x1, . . . , xr}}(
∞⋂
m=1

ClFn(X)(St({x1, . . . , xr},Gm)) ⊂ {{x1, . . . , xr}}

)
and Fn(X) has a Gδ-diagonal (G∗δ-diagonal).

By Remark 2.1, the reverse implication follows from the fact that having
a Gδ-diagonal (G∗δ-diagonal) is hereditary.

Q.E.D.
A space X is an α-space if there exists a function g : IN×X → τX , where

τX is the topology of X, such that for each point x in X:

(a)
⋂∞
m=1 g(m,x) = {x}.

(b) If y ∈ g(m,x), then g(m, y) ⊂ g(m,x).
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3.20 Lemma. A space X is an alpha-space if and only if there exists a
function g : IN×X → τX , where τX is the topology of X, such that for each
point x in X:

(1) g(m+ 1, x) ⊂ g(m,x) for all m ∈ IN;

(2)
⋂∞
m=1 g(m,x) = {x};

(3) If y ∈ g(m,x), then g(m, y) ⊂ g(m,x).

Proof. Suppose X is an α-space. Let g′ : IN × X → τX be a function
given by the definition of an α-space. Define g : IN ×X → τX by g(m,x) =⋂m
j=1 g

′(j, x). Note that g is well defined and for every m ∈ IN and every
x ∈ X, g(m + 1, x) ⊂ g(m,x). Since for each m ∈ IN and each x in X,
g(m,x) ⊂ g′(m,x) and

⋂∞
m=1 g

′(m,x) = {x}, we obtain that
⋂∞
m=1 g(m,x) =

{x}. Let m ∈ IN and let x and y be points of X such that y ∈ g(m,x).
Then, y ∈

⋂m
j=1 g

′(j, x). By the properties of g′, for every j ∈ {1, . . . ,m},
g′(j, y) ⊂ g′(j, x). Thus,

⋂m
j=1 g

′(j, y) ⊂
⋂m
j=1 g

′(j, x). Hence, g(m, y) ⊂
g(m,x). Therefore, g satisfies (1), (2) and (3). The reverse implication is
clear.

Q.E.D.

3.21 Theorem. Let X be a space and let n be a positive integer. Then X
is an α-space if and only if Fn(X) is an α-space.

Proof. Suppose X is an α-space. Let g : IN×X → τX be a function given
by Lemma 3.20. Let g : IN×Fn(X)→ τFn(X) be given by g(m, {x1, . . . , xr}) =
〈g(m,x1), . . . , g(m,xr)〉n. Let {x1, . . . , xr} be an element of Fn(X). Since X
is an α-space and the properties of g, by Lemma 2.11, we have that

∞⋂
m=1

g(m, {x1, . . . , xr}) =
∞⋂
m=1

〈g(m,x1), . . . , g(m,xr)〉n = {{x1, . . . , xr}}.

Let m be a positive integer and let {y1, . . . , yt} ∈ g(m, {x1, . . . , xr}). Let
j ∈ {1, . . . , r} and let yj1, . . . , yjkj be the elements of {y1, . . . , yt} contained
in g(m,xj). Since X is an α-space, for each l ∈ {1, . . . , kj}, g(m, yjl) ⊂
g(m,xj). Thus,

⋃kj
l=1 g(m, yjl) ⊂ g(m,xj). Hence, by [20, 2.3.1], we have that

g(m, {y1, . . . , yt}) = 〈g(m, y1), . . . , g(m, yt)〉n ⊂ 〈g(m,x1), . . . , g(m,xr)〉n =
g(m, {x1, . . . , xr}). Therefore, Fn(X) is an α-space.

By Remark 2.1, the reverse implication follows from the fact that being
an α-space is hereditary.
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Q.E.D.
A space X is strongly first countable if there exists a function g : IN×X →

τX ,where τX is the topology of X, such that for each point x in X:

(a) {g(m,x)}∞m=1 is a local base at x.

(b) If y ∈ g(m,x), then g(m, y) ⊂ g(m,x).

3.22 Lemma. A space X is a strongly first countable space if and only if
there exists a function g : IN×X → τX , where τX is the topology of X, such
that for each point x in X:

(1) g(m+ 1, x) ⊂ g(m,x) for all m ∈ IN;

(2) {g(m,x)}∞m=1 is a local base at x;

(3) If y ∈ g(m,x), then g(m, y) ⊂ g(m,x).

Proof. Suppose X is a strongly first countable space. Let g′ : IN×X →
τX be a function given by the definition of a strongly first countable space.
Define g : IN × X → τX by g(m,x) =

⋂m
j=1 g

′(j, x). Note that g is well
defined and for every m ∈ IN and all x in X, g(m + 1, x) ⊂ g(m,x). Let
x be an element of X. Let U be an open subset of X containing x. Since
{g′(m,x)}∞m=1 is a local base at x, there exists m ∈ IN such that g′(m,x) ⊂ U .
By construction g(m,x) ⊂ g′(m,x). Thus, {g(m,x)}∞m=1 is a local base at
x. Let m ∈ IN and let x and y be points of X such that y ∈ g(m,x). The
argument given in Lemma 3.20 shows that g(m, y) ⊂ g(m,x). Therefore, g
satisfies (1), (2) and (3). The reverse implication is clear.

Q.E.D.

3.23 Theorem. Let X be a space and let n be a positive integer. Then
X is a strongly first countable space if and only if Fn(X) is a strongly first
countable space.

Proof. Suppose X is a strongly first countable space and let g : IN×X →
τX be a function given by Lemma 3.22. Let g : IN×Fn(X)→ τFn(X) be given
by

g(m, {x1, . . . , xr}) = 〈g(m,x1), . . . , g(m,xr)〉n.

Let {x1, . . . , xr} be a point of Fn(X). By Lemma 2.12, {g(m, {x1, . . . , xr})}∞m=1

is a local base at {x1, . . . , xr} in Fn(X). Let m be a positive integer and
let {y1, . . . , yt} ∈ g(m, {x1, . . . , xr}). The argument given in Theorem 3.21
shows that g(m, {y1, . . . , yt}) ⊂ g(m, {x1, . . . , xr}). Therefore, Fn(X) is
strongly first countable.
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By Remark 2.1, the reverse implication follows from the fact that being
a strongly first countable space is hereditary.

Q.E.D.
An M1-space is a regular space having a σ-closure preserving base.

3.24 Theorem. Let X be a regular space and let n be a positive integer.
Then X is an M1-space if and only if Fn(X) is an M1-space.

Proof. Suppose X is an M1-space and let U =
⋃∞
j=1 Uj be a σ-closure

preserving base. By Lemma 2.4, we assume that for each j, Uj ⊂ Uj+1. For
each positive integer j, let Uj = {〈U1, . . . , Uk〉n | U1, . . . , Uk ∈ Uj}. Then
Uj ⊂ Uj+1 for all j. Also, by Theorem 2.5, Uj is a closure preserving family
of open subsets of Fn(X). Let U =

⋃∞
j=1 Uj. Then U is a σ-closure preserving

family of open subsets of Fn(X).
We show U is a base. Let {x1, . . . , xr} be an element of Fn(X) and letW

be an open subset of Fn(X) such that {x1, . . . , xr} ∈ W . Since U is a base for
X, there exist U1, . . . , Us ∈ U such that {x1, . . . , xr} ∈ 〈U1, . . . , Us〉n ⊂ W .
Since Uj ⊂ Uj+1 for each j, there exists j0 such that U1, . . . , Us ∈ Uj0 . Hence,
〈U1, . . . , Us〉n ∈ Uj0 . Therefore, U is a base for Fn(X).

By [24, Theorem 2.4], each closed subset of an M1-space is an M1-space.
Hence, by Remark 2.1, if Fn(X) is an M1-space, then X is an M1-space.

Q.E.D.
A collection B of (not necessarily open) subsets of a regular space X is

a quasi-base if, whenever x ∈ X and U is a neighborhood of x, then there
exists a B ∈ B such that x ∈ IntX(B) ⊂ B ⊂ U .

An M2-space is a regular space with a σ-closure preserving quasi-base.

3.25 Theorem. Let X be a regular space and let n be a positive integer.
Then X is an M2-space if and only if Fn(X) is an M2-space.

Proof. Suppose X is an M2-space and let B =
⋃∞
j=1 Bj be a σ-closure

preserving quasi-base. By Lemma 2.4, we assume that for each j, Bj ⊂ Bj+1.
For each positive integer j, let Bj = {〈B1, . . . , Bk〉n | B1, . . . , Bk ∈ Bj}. Then
Bj ⊂ Bj+1 for all j. By Theorem 2.5, Bj is a closure preserving family of
subsets of Fn(X). Let B =

⋃∞
j=1 Bj. Then B is a σ-closure preserving

family of subsets of Fn(X).
We prove that B is a quasi-base for Fn(X). Let {x1, . . . , xr} be an element

of Fn(X) and letW be an open subset of Fn(X) such that {x1, . . . , xr} ∈ W .
Then there exist open subsets W1, . . . ,Ws of X such that {x1, . . . , xr} ∈
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〈W1, . . . ,Ws〉n ⊂ W . Let ` ∈ {1, . . . , r}. Since B is a quasi-base for X, there
exist a positive integer j and B`j ∈ Bj such that x` ∈ IntX(B`j) ⊂ Wx`

(Notation 2.3). Note that {x1, . . . , xr} ∈ 〈IntX(B`1), . . . , IntX(B`r)〉n ⊂
IntFn(X)(〈B`1 , . . . , B`r〉n) ⊂ 〈B`1 , . . . , B`r〉n ⊂ 〈W1, . . . ,Ws〉n ⊂ W . Let
`0 = max{`1, . . . , `r}. Then {B`1 , . . . , B`r} ⊂ B`0 and 〈B`1 , . . . , B`r〉n ∈ B`0 .
Therefore, B is a quasi-base for Fn(X).

By [4, Theorem 2.3], each subset of an M2-space is an M2-space. Hence,
by Remark 2.1, if Fn(X) is an M2-space, then X is an M2-space.

Q.E.D.
Since the class of stratifiable spaces coincides with the class of M2-spaces

([8] and [11]), we have the following:

3.26 Corollary. Let X be a regular space and let n be a positive integer.
Then X is a stratifiable space if and only if Fn(X) is a stratifiable space.

A space X is a Nagata space provided that for each x ∈ X, there exist
sequences of open neighbourhoods of x in X, {Um(x)}∞m=1 and {Vm(x)}∞m=1,
such that for all x, y ∈ X:

(1) {Um(x)}∞m=1 is a local neighbourhood base at x;

and

(2) if y 6∈ Um(x), then Vm(y) ∩ Vm(x) = ∅.

3.27 Theorem. Let X be a space and let n be a positive integer. Then X
is a Nagata space if and only if Fn(X) is a Nagata space.

Proof. Suppose X is a Nagata space. Given a point x in X, let
{Um(x)}∞m=1 and {Vm(x)}∞m=1 be the sequences of neighbourhoods of x inX of
the definition of a Nagata space. Let {x1, . . . , xr} be an element of Fn(X) and
let m be a positive integer. Define Um({x1, . . . , xr}) = 〈Um(x1), . . . , Um(xr)〉n
and Vm({x1, . . . , xr}) = 〈Vm(x1), . . . , Vm(xr)〉n. Then

{Um({x1, . . . , xr})}∞m=1 and {Vm({x1, . . . , xr})}∞m=1

are sequences of neighbourhoods of {x1, . . . , xr} in Fn(X). By Lemma 2.12,
{Um({x1, . . . , xr})}∞m=1 is a neighbourhood base at {x1, . . . , xr} in Fn(X).

Now, let m be a positive integer and let {x1, . . . , xr} and {y1, . . . , yt}
be elements of Fn(X) such that {y1, . . . , yt} 6∈ Um({x1, . . . , xr}). Hence,
either {y1, . . . , yt} 6⊂

⋃r
j=1 Um(xj) or there exists j ∈ {1, . . . , r} such that

{y1, . . . , yt} ∩ Um(xj) = ∅.
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Suppose first that {y1, . . . , yt} 6⊂
⋃r
j=1 Um(xj). Without loss of gener-

ality, we assume that y1 6∈
⋃r
j=1 Um(xj). Since X is a Nagata space, we

have that for each j ∈ {1, . . . , r}, Vm(y1) ∩ Vm(xj) = ∅. Thus, Vm(y1) ∩
(
⋃r
k=1 Vm(xk)) = ∅. Let Um =

⋃r
j=1 Um(xj) and Vm =

⋃t
l=1 Vm(yl). Hence,

since Vm({y1, . . . , yt}) ∩ Vm({x1, . . . , xr}) = 〈Um ∩ Vm(y1), . . . , Um ∩ Vm(yt),
Vm ∩ Um(x1), . . . , Vm ∩ Um(xr)〉n and Um ∩ Vm(y1) = ∅, Vm({y1, . . . , yt}) ∩
Vm({x1, . . . , xr}) = ∅.

Now, suppose that there exists j ∈ {1, . . . , r} such that {y1, . . . , yt} ∩
Um(xj) = ∅. Since X is a Nagata space, for each l ∈ {1, . . . , t}, Vm(yl) ∩
Vm(xj) = ∅. Thus,

(⋃t
l=1 Vm(yl)

)
∩ Vm(xj) = ∅. Let Um =

⋃r
j=1 Um(xj) and

Vm =
⋃t
l=1 Vm(yl). Hence, since Vm({y1, . . . , yt})∩Vm({x1, . . . , xr}) = 〈Um∩

Vm(y1), . . . , Um∩Vm(yt), Um∩Vm(x1), . . . , Um∩Vm(xr)〉n and Vm∩Um(xj) = ∅.
Vm({y1, . . . , yt})∩Vm({x1, . . . , xr}) = ∅. Therefore, Fn(X) is a Nagata space.

Since subspaces of Nagata spaces are Nagata spaces [4, p. 109], by Re-
mark 2.1, if Fn(X) is a Nagata space, then X is a Nagata space.

Q.E.D.
By [13, Corollary, p. 234] a space X is a γ-space if for each x ∈ X,

there exist sequences of open neighbourhoods of x in X, {Um(x)}∞m=1 and
{Vm(x)}∞m=1, such that for all x, y ∈ X:

(1) {Um(x)}∞m=1 is a local neighbourhood base at x;

and

(2) if y ∈ Vm(x), then Vm(y) ⊂ Um(x).

3.28 Lemma. Let X be a space. Then X is a γ-space if and only if for each
x ∈ X, there exist sequences of neighbourhoods of x in X, {Um(x)}∞m=1 and
{Vm(x)}∞m=1, such that for all x, y ∈ X:

(1) {Um(x)}∞m=1 is a local neighbourhood base at x;

(2) if y ∈ Vm(x), then Vm(y) ⊂ Um(x).

and

(3) For each positive integer m, Um+1(x) ⊂ Um(x) and Vm+1(x) ⊂ Vm(x).

Proof. SupposeX is a γ-space. Let x be a point ofX and let {U ′m(x)}∞m=1

and {V ′m(x)}∞m=1 be the sequences of neighbourhoods of x in X given by the
definition of a γ-space. Let m be a positive integer, let Um(x) =

⋂m
j=1 U

′
j(x)

and let Vm(x) =
⋂m
j=1 V

′
m(x). Thus, {Um(x)}∞m=1 and {Vm(x)}∞m=1 are se-

quences of neighbourhoods of x in X. If {U ′m(x)}∞m=1 is a local neighbour-
hood base at x, then {Um(x)}∞m=1 is a local neighbourhood base at x. Let
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y ∈ Vm(x). Then y ∈ V ′j (x) for each j ∈ {1, . . . ,m}. Hence, for each
j ∈ {1, . . . ,m}, V ′j (y) ⊂ U ′j(x). Thus, Vm(x) =

⋂m
j=1 V

′
m(x) ⊂

⋂m
j=1 U

′
j(x) =

Um(x). By construction Um+1(x) ⊂ Um(x) and Vm+1(x) ⊂ Vm(x). The
reverse implication is clear.

Q.E.D.

3.29 Theorem. Let X be a space and let n be a positive integer. Then X
is a γ-space if and only if Fn(X) is a γ-space.

Proof. Suppose X is a γ-space. Given a point x in X, let {Um(x)}∞m=1

and {Vm(x)}∞m=1 be the sequences of neighbourhoods of x in X of the defi-
nition. By Lemma 3.28, without loss of genereality, we assume that for each
positive integer m, Um+1(x) ⊂ Um(x) and Vm+1(x) ⊂ Vm(x).

Let {x1, . . . , xr} be an element of Fn(X) and let m be a positive integer.
Define Um({x1, . . . , xr}) = 〈Um(x1), . . . , Um(xr)〉n and Vm({x1, . . . , xr}) =
〈Vm(x1), . . . , Vm(xr)〉n. Then

{Um({x1, . . . , xr})}∞m=1 and {Vm({x1, . . . , xr})}∞m=1

are sequences of neighbourhoods of {x1, . . . , xr} in Fn(X). By Lemma 2.12,
{Um({x1, . . . , xr})}∞m=1 is a neighbourhood base at {x1, . . . , xr} in Fn(X).

Now, let m be a positive integer and let {x1, . . . , xr} and {y1, . . . , yt} be
two elements of Fn(X) such that {y1, . . . , yt} ∈ Vm({x1, . . . , xr}). Let j ∈
{1, . . . , t} and let Vm(xj1), . . . , Vm(xjlj) be the elements of {Vm(x1), . . . , Vm(xr)}
containing yj. Hence, since X is a γ-space, Vm(yj) ⊂

⋂lj
g=1 Um(xjg). Thus,

Vm({y1, . . . , yt}) = 〈Vm(y1), . . . , Vm(yt)〉n ⊂

〈Um(x1), . . . , Um(xr)〉n = Um({x1, . . . , xr}).
Therefore, Fn(X) is a γ-space.

By Remark 2.1, the reverse implication follows from the fact that being
a γ-space is hereditary.

Q.E.D.
Let X be a T3 space. A point x of X is and r-point if it has a sequence

{Um}∞m=1 of neighbourhoods such that if xm ∈ Um, then {xm}∞m=1 is contained
in a compact subset of X. The space X is an r-space if all of its points are
r-points.

3.30 Theorem. Let X be a T3 space and let n be a positive integer. Then
X is an r-space if and only if Fn(X) is an r-space.
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Proof. Suppose X is an r-space. Let {x1, . . . , xs} be an element of
Fn(X). Since X is an r-space, for each j ∈ {1, . . . , s}, there exists a sequence
{Ujm}∞m=1 of neighbourhoods of xj satisfying the definition of an r-point.
Since X is a Hausdorff space, without loss of generality, we assume that Ujm∩
Ukl = ∅ if j 6= k andm and l are positive integers. For each positive integerm,
let Um = 〈U1m, . . . , Usm〉n. Then {Um}∞m=1 is a sequence of neighbourhoods of
{x1, . . . , xs}. For every positive integer m, let {y1m, . . . , ytmm} ∈ Um. Let j ∈
{1, . . . , s} be fixed and let ymj1, . . . , ymjsmj

be the elements of {ym1, . . . , ymtm}
such that {ymj1, . . . , ymjsmj

} ⊂ Ujm. Let sj = max{smj
| m ∈ IN}. If

i ∈ {1, . . . , sj}, let

y′mji =

{
ymji, if 1 ≤ i ≤ smj

;

ymjsmj
, if smj

≤ i ≤ sj.

Then {y′mj1, . . . , y′mjsj} ⊂ Ujm. Since X is an r-space, for each i ∈ {1, . . . , sj},
the sequence {y′mji}∞m=1 is contained in a compact subset Kji of X. Let
K =

⋃s
j=1

⋃sj
i=1Kji. Then K is a compact subset of X. Hence, Fn(K)

is a compact subset of Fn(X) containing {{y1m, . . . , ytmm}}∞m=1. Therefore,
Fn(X) is an r-space.

Suppose Fn(X) is an r-space. Let x be an element of X. Then {x}
is a point of Fn(X). Since Fn(X) is an r-space, there exists a sequence
{Um}∞m=1 of neighbourhoods of {x} satisfying the definition of an r-point.
For each positive integer m, let Um =

⋃
Um. Then, by Lemma 2.8, {Um}∞m=1

is a sequence of neighbourhoods of x. For each m, let xm ∈ Um. Thus,
{xm} ∈ Um. Since Fn(X) is an r-space, {{xm}}∞m=1 is contained in a compact
subset K of Fn(X). Let K =

⋃
K. By [20, 2.5.2], K is a compact subset of

X. Also note that {xm}∞m=1 is contained in K. Therefore, X is an r-space.
Q.E.D.

A space X is a Morita’s P -space if for every open collection

{U(α1, . . . , αj) | α1, . . . , αj ∈ A; j ∈ IN}

in X satisfying the condition:

U(α1, . . . , αj) ⊂ U(α1, . . . , αj, αj+1), α1, . . . , αj+1 ∈ A; j ∈ IN,

there exists a closed collection:

{F (α1, . . . , αj) | α1, . . . , αj ∈ A; j ∈ IN}
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in X satisfying:

(i) F (α1, . . . , αj) ⊂ U(α1, . . . , αj);

(ii) if
⋃∞
j=1 U(α1, . . . , αj) = X, for a sequence {αj}∞j=1, then we have that⋃∞

j=1 F (α1, . . . , αj) = X.

3.31 Lemma. Let X be a space. Then X is a Morita’s P -space if and only
if for every open collection

{U(α1, . . . , αj) | α1, . . . , αj ∈ A; j ∈ IN}

in X satisfying the condition:

U(α1, . . . , αj) ⊂ U(α1, . . . , αj, αj+1), α1, . . . , αj+1 ∈ A; j ∈ IN,

there exists a closed collection:

{F (α1, . . . , αj) | α1, . . . , αj ∈ A; j ∈ IN}

in X satisfying:

(i) F (α1, . . . , αj) ⊂ U(α1, . . . , αj);

(ii) if
⋃∞
j=1 U(α1, . . . , αj) = X, for a sequence {αj}∞j=1, then we have that⋃∞

j=1 F (α1, . . . , αj) = X;

and

(iii) F (α1, . . . , αj) ⊂ F (α1, . . . , αj, αj+1), α1, . . . , αj+1 ∈ A; j ∈ IN.

Proof. Suppose X is a Morita’s P -space. Let

{U(α1, . . . , αj) | α1, . . . , αj ∈ A; j ∈ IN}

be an open collection in X and let

{F ′(α1, . . . , αj) | α1, . . . , αj ∈ A; j ∈ IN}

be a closed collection in X satisfying the definition of a Morita’s P -space.
If α1 ∈ A, let F (α1) = F ′(α1). Let α1, . . . , αj ∈ A, j ≥ 2. Then let
F (α1, . . . , αj) = F (α1, . . . , αj−1)∪F ′(α1, . . . , αj). Note that {F (α1, . . . , αj) |
α1, . . . , αj ∈ A; j ∈ IN} is a closed collection in X such that

F (α1, . . . , αj) ⊂ U(α1, . . . , αj)
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and
F (α1, . . . , αj) ⊂ F (α1, . . . , αj, αj+1).

Suppose
⋃∞
j=1 U(α1, . . . , αj) = X, for a sequence {αj}∞j=1. Thus, by our

assumption,
⋃∞
j=1 F

′(α1, . . . , αj) = X. Hence, since each F ′(α1, . . . , αj) is
contained in F (α1, . . . , αj), we obtain that

∞⋃
j=1

F (α1, . . . , αj) = X.

The reverse implication is clear.
Q.E.D.

3.32 Theorem. Let X be a space and let n be a positive integer. If X is a
Morita’s P -space, then Fn(X) is a Morita’s P -space.

Proof. Let {U(α1, . . . , αj) | α1, . . . , αj ∈ A; j ∈ IN} be an open collection
in X and let {F (α1, . . . , αj) | α1, . . . , αj ∈ A; j ∈ IN} be a closed collection
in X given by Lemma 3.31. Then

{〈U(α1, . . . , αj)〉n | α1, . . . , αj ∈ A; j ∈ IN}

and
{〈F (α1, . . . , αj)〉n | α1, . . . , αj ∈ A; j ∈ IN}

are open and closed collections in Fn(X), respectively. We show that these
collections make Fn(X) into a Morita’s P -space. Since F (α1, . . . , αj) ⊂
U(α1, . . . , αj), it is clear that 〈F (α1, . . . , αj)〉n ⊂ 〈U(α1, . . . , αj)〉n.

Suppose that
⋃∞
j=1〈U(α1, . . . , αj)〉n = Fn(X), for some sequence {αj}∞j=1.

Note that this implies that
⋃∞
j=1 U(α1, . . . , αj) = X. Since X is a Morita’s

P -space,
⋃∞
j=1 F (α1, . . . , αj) = X. We prove that

⋃∞
j=1〈F (α1, . . . , αj)〉n =

Fn(X). Let {x1, . . . , xr} be a point of Fn(X). Since
⋃∞
j=1 F (α1, . . . , αj) = X,

for each ` ∈ {1, . . . , r}, there exists j` ∈ IN such that x` ∈ F (α1, . . . , αj`). Let
j0 = max{j1, . . . , jr}. Then each F (α1, . . . , αj`) is contained in F (α1, . . . , αj0).
This implies that {x1, . . . , xr} ⊂ F (α1, . . . , αj0) and {x1, . . . , xr} ∈ 〈F (α1, . . . , αj0)〉n.
Hence,

⋃∞
j=1〈F (α1, . . . , αj)〉n = Fn(X). Therefore, Fn(X) is a Morita’s P -

space.
Q.E.D.

3.33 Question. Let X be a space and let n be a positive integer. If Fn(X)
is Morita’s P -space, then is X a Morita’s P -space?

24



4 Examples

A space X is proto-metrizable if it is paracompact and it has an orthobase
B; i.e., a base B such that if B′ ⊂ B, then either

⋂
B′ is an open subset of X

or B′ is a local base at the unique point in
⋂
B′.

4.1 Theorem. Let X be a space and let n be a positive integer. If Fn(X) is
a proto-metrizable space, then X is a proto-metrizable space.

Proof. This follows from Remark 2.1.
Q.E.D.

4.2 Theorem. There exists a proto-metrizable space X such that F2(X) is
not proto-metrizable.

Proof. Let M be the Michael line [21]. Then, by [27, p. 196], M is
paracompact. Also, by [14, p. 458], M has an orthobase. Hence, M is a
proto-metrizable space. Let II be set of irrational numbers with their usual
topology inhereted from IR. Let X be the disjoint union of M and II. Thus,
X is a proto-metrizable space. Note that F2(X) contains a copy of M × II,
which is open and closed in F2(X). Hence, since M × II is not normal [27,
pp. 196 and 197], we have that F2(X) is not proto-metrizable.

Q.E.D.
A space X is a Fréchet space if for every subset A of X and each point

a ∈ ClX(A), there exists a sequence {am}∞m=1 in A converging to x.

4.3 Theorem. Let X be a space and let n be a positive integer. If Fn(X) is
a Fréchet space, then X is a Fréchet space.

Proof. This follows from Remark 2.1.
Q.E.D.

4.4 Theorem. There exists a compact Fréchet space X such that F2(X) is
not a Fréchet space.

Proof. Let F(X0) and F(X1) be the compact Fréchet spaces given in [30,
(b), p. 751] such that F(X0) × F(X1) is not a Fréchet space, and let X be
the disjoint union of F(X0) and F(X1). Note that F2(X) contains a copy of
F(X0)× F(X1) which is open and closed in F2(X). Therefore, F2(X) is not
a Fréchet space.

Q.E.D.
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A space X is monotonically normal if there exists an operator H(·, ·)
which assigns to each pair of disjoint closed subsets A and B of X an open
subset H(A,B) of X such that:

(i) A ⊂ H(A,B) ⊂ ClX(H(A,B)) ⊂ X \B
and

(ii) If A ⊂ A′ and B′ ⊂ B, then H(A,B) ⊂ H(A′, B′).

4.5 Theorem. There exists a monotonically normal space X such that F2(X)
is not normal.

Proof. Let X be the Sorgenfrey line. By [9, Example 7.1], X is mono-
tonically normal. It is well known that X2 is not normal because the set
L = {(x,−x) | x ∈ X} is a closed subset of X2 and it has the discrete topol-
ogy. Since f2 : X2 →→ F2(X) is an open map (Lemma 2.13), we have that
the set f2(L) = {{x,−x} | x ∈ X} is a closed subset of F2(X) and it has the
discrete topology in F2(X). With an argument similar to the one given for
X2, one can show that F2(X) is not normal.

Q.E.D.
Note the following:

4.6 Theorem. Let X be a space and let n be an integer greater than or
equal to two. Then X2 is monotonically normal if and only if Fn(X) is
monotonically normal.

Proof. Suppose X2 is monotonically normal. Then Xn is monotonically
normal [6, Theorem 3.1]. Hence, Fn(X) is monotonically normal [6, Fact (2),
p. 200].

Suppose Fn(X) is monotonically normal. Then, since F2(X) is closed in
Fn(X), F2(X) is monotonically normal. Thus, by the proof of [6, Theorem
3.1, p. 202], X2 is monotonically normal.

Q.E.D.
A space X is countably compact provided that every countable open cover

of X has a finite subcover.

4.7 Theorem. Let X be a space and let n be a positive integer. If Fn(X) is
a countably compact space, then X is a countably compact space.

Proof. By [5, Theorem 3.10.4], the result follows from Remark 2.1.
Q.E.D.

A T3 space X is pseudocompact if every real-valued map defined on X is
bounded.
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4.8 Theorem. There exists a countably compact (pseudocompact, respec-
tively) space Z such that F2(Z) is not countably compact (pseudocompact,
respectively).

Proof. Let X and Y be the subspaces of the Čech-Stone compactification
of IN, β(IN), described in [5, Example 3.10.19]. Then X ∩ Y = IN, and X
and Y are countably compact (pseudocompact [5, p. 208], respectively) such
that X × Y is not countably compact (pseudocompact, respectively). Let
∆0 = {(m,m) | m ∈ IN}. Then ∆0 is a discrete open and closed subset of
X × Y . Let a and b be two distinct symbols and let Xa = X ×{a} and Yb =
Y ×{b}. We consider Xa×Xb with the product topology. Let ζ : Xa×Xb →
β(IN) × β(IN) be given by ζ((x, a), (y, b)) = (x, y). Then ζ is an embedding
and ζ(Xa × Yb) = X × Y . Hence, ζ−1(∆0) is a discrete open and closed
subset of Xa×Yb. Thus, Xa×Yb is not countably compact (pseudocompact,
repectively). Let Z = Xa ∪Yb with the free union topology. Then F2(Z) has
a copy of Xa × Yb which is open and closed in F2(Z). Therefore, F2(Z) is
not countably compact (pseudocompact, respectively)

Q.E.D.

5 Independence Results

A space X is a ccc-space provided that each family of nonempty pairwise
disjoint open subsets of X is at most countable.

5.1 Theorem. Let X be a space and let n be a positive integer. If Fn(X) is
a ccc-space, then X is a ccc-space.

Proof. Suppose X is not a ccc-space, then there exists an uncountable
family {Uλ}λ∈Λ of pairwise disjoint open subsets of X. Then {〈Uλ〉n}λ∈Λ is
an uncountable family of pairwise disjoint open subsets of Fn(X). Therefore,
Fn(X) is not a ccc-space.

Q.E.D.

5.2 Theorem. Let X be a space and let n be a positive integer. If Xn is a
ccc-space, then Fn(X) is a ccc-space.

Proof. Let fn : Xn→→Fn(X) be given by fn((x1, . . . , xn)) = {x1, . . . , xn}.
Then fn is a surjective continuous function. If Fn(X) is not a ccc-space, then
there exists an uncountable family {Uλ}λ∈Λ of pairwise disjoint open subsets
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of Fn(X). Then {f−1
n (Uλ)}λ∈Λ is an uncountable family of pairwise disjoint

subsets of Xn. Therefore, Xn is not a ccc-space.
Q.E.D.

5.3 Theorem. Let X be a space. Then X2 is a ccc-space if and only if
F2(X) is a ccc-space.

Proof. By Theorem 5.2, if X2 is a ccc-space, then F2(X) is a ccc-space.
Suppose X2 is not a ccc-space. Then there exists an uncountable family

{Uλ× Vλ}λ∈Λ of pairwise disjoint basic open subsets of X2. Note that {Vλ×
Uλ}λ∈Λ is also an uncountable family of pairwise disjoint basic open subsets
of X2. For each λ ∈ Λ, let Wλ = (Uλ × Vλ) ∪ (Vλ × Uλ). Thus, {Wλ}λ∈Λ is
an uncountable family of open subsets of X2.

Suppose there exists an uncountable subset Γ of Λ such that the ele-
ments of {Wγ}γ∈Γ are pairwise disjoint. Since f2 : X2 →→ F2(X) is open
(Lemma 2.13), {f2(Wγ)}γ∈Γ is an uncountable family of open subsets of
F2(X). Observe that, by construction, for each γ ∈ Γ, Wγ = f−1

2 (f2(Wγ)).
This implies that the elements of {f2(Wγ)}γ∈Γ are pairwise disjoint. Hence,
in this case, F2(X) is not a ccc-space.

Now, assume that at most countably many elements of {Wλ}λ∈Λ are
pairwise disjoint. Let ∆ be the countable subset of Λ such that the el-
ements of the family {Wδ}δ∈∆ are pairwise disjoint, and let Γ = Λ \ ∆.
Let Γ′0 = Γ2 \ {(γ, γ) | γ ∈ Γ}. For each pair (γ1, γ2) ∈ Γ′0, let Sγ1γ2 =
[(Uγ1 × Vγ1) ∩ (Vγ2 × Uγ2)] ∪ [(Vγ1 × Uγ1) ∩ (Uγ2 × Vγ2)]. Note that for each
two distinct elements γ1 and γ2 of Γ, Sγ1γ2 = Sγ2γ1 . Let Γ0 = {(γ1, γ2) ∈
Γ′0 | Sγ1γ2 6= ∅}. Observe that Γ0 is uncountable. Let (γ1, γ2) and (γ3, γ4) be
two distinct elements of Γ0. Then

Sγ1,γ2 ∩ Sγ3,γ4 =

[((Uγ1 × Vγ1) ∩ (Vγ2 × Uγ2)) ∪ ((Uγ2 × Vγ2) ∩ (Vγ1 × Uγ1))]∩
[((Uγ3 × Vγ3) ∩ (Vγ4 × Uγ4)) ∪ ((Uγ4 × Vγ4) ∪ (Vγ3 × Uγ3))] =(

[((Uγ1×Vγ1)∩(Vγ2×Uγ2))∪((Uγ2×Vγ2)∩(Vγ1×Uγ1))]∩((Uγ3×Vγ3)∩(Vγ4×Uγ4))
)
∪(

[((Uγ1×Vγ1)∩(Vγ2×Uγ2))∪((Uγ2×Vγ2)∩(Vγ1×Uγ1))]∩((Uγ4×Vγ4)∩(Vγ3×Uγ3))
)

=(
[((Uγ1 × Vγ1) ∩ (Vγ2 × Uγ2)) ∩ ((Uγ3 × Vγ3) ∩ (Vγ4 × Uγ4))]

)
∪(

[((Uγ2 × Vγ2) ∩ (Vγ1 × Uγ1)) ∩ ((Uγ3 × Vγ3) ∩ (Vγ4 × Uγ4))]
)
∪(

[((Uγ1 × Vγ1) ∩ (Vγ2 × Uγ2)) ∩ ((Uγ4 × Vγ4) ∩ (Vγ3 × Uγ3))]
)
∪
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(
[((Uγ2 × Vγ2) ∩ (Vγ1 × Uγ1)) ∩ ((Uγ4 × Vγ4) ∩ (Vγ3 × Uγ3))]

)
=(

[((Uγ2 × Vγ2) ∩ (Vγ1 × Uγ1)) ∩ ((Uγ3 × Vγ3) ∩ (Vγ4 × Uγ4))]
)
∪(

[((Uγ1 × Vγ1) ∩ (Vγ2 × Uγ2)) ∩ ((Uγ4 × Vγ4) ∩ (Vγ3 × Uγ3))]
)

=(
[((Uγ2×Vγ2)∩(Vγ1×Uγ1))∩((Uγ3×Vγ3)∩(Vγ4×Uγ4))]∩((Uγ1×Vγ1)∩(Vγ2×Uγ2))

)
∪(

[((Uγ2×Vγ2)∩(Vγ1×Uγ1))∩((Uγ3×Vγ3)∩(Vγ4×Uγ4))]∩((Uγ4×Vγ4)∩(Vγ3×Uγ3))
)
⊂(

((Uγ3 × Vγ3) ∩ (Vγ4 × Uγ4))] ∩ ((Uγ1 × Vγ1) ∩ (Vγ2 × Uγ2))
)
∪(

((Uγ2 × Vγ2) ∩ (Vγ1 × Uγ1)) ∩ ((Uγ4 × Vγ4) ∩ (Vγ3 × Uγ3))
)

= ∅.
Hence, the family {Sγ1γ2 | (γ1, γ2) ∈ Γ0} is pairwise disjoint. Since
f2 : X2 →→ F2(X) is open (Lemma 2.13), {f2(Sγ1γ2) | (γ1, γ2) ∈ Γ0} is an
uncountable family of open subsets of F2(X). Observe that, by construc-
tion, for each (γ1, γ2) ∈ Γ0, Sγ1γ2 = f−1

2 (f2(Sγ1γ2)). This implies that the
elements of {f2(Sγ1γ2) | (γ1, γ2) ∈ Γ0} are pairwise disjoint. Therefore, F2(X)
is not a ccc-space.

Q.E.D.

5.4 Corollary. Let X be a space and let n ≥ 3 be an integer. If F2(X) is a
ccc-space, then Fn(X) is a ccc-space.

Proof. Suppose F2(X) is a ccc-space. By Theorem 5.3, X2 is a ccc-space.
Hence, by [12, pp. 50 and 51], Xn is a ccc-space. Thus, by Theorem 5.2,
Fn(X) is a ccc-space.

Q.E.D.
It is known that assuming Martin’s Axiom and the Negation of the Con-

tinuum Hypothesis, being a ccc-space is productive [28, Theorem 2.1]. Hence,
we have the following:

5.5 Corollary. Let X be a space and let n be a positive integer. Then,
assuming Martin’s Axiom and the Negation of the Continuum Hypothesis, X
is a ccc-space if and only if Fn(X) is a ccc-space.

Proof. Suppose X is a ccc-space. Then, by [28, Theorem 2.1], X2 is a ccc-
space. Hence, by Theorem 5.3, F2(X) is a ccc-space. Thus, by Corollary 5.4,
Fn(X) is a ccc-space.

If Fn(X) is a ccc-space, then, by Theorem 5.1, X is a ccc-space.
Q.E.D.

It is known that assuming the Continuum Hypothesis, there exist two
ccc-spaces whose product is not a ccc-space. An example of such spaces is in
[28, Theorem 3.3].
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5.6 Theorem. Assuming the Continuum Hypothesis, there exists a ccc-space
X such that F2(X) is not a ccc-space.

Proof. Let X0 and X1 be the ccc-spaces described in [28, Theorem 3.3]
such that X0 ×X1 is not a ccc-space, and let X be the disjoint union of X0

and X1. Note that F2(X) contains a copy of X0 × X1 which is open and
closed in F2(X). Therefore, F2(X) is not a ccc-space.

Q.E.D.
As a consequence of [28, Corollary, p. 180] and Theorem 5.3, we obtain:

5.7 Corollary. Assuming the Continuum Hypothesis, there exists a compact
Hausdorff ccc-space X such that F2(X) is not a ccc-space.
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