Hamiltonian degree sequences in digraphs

Andrew Treglown

University of Birmingham, School of Mathematics

August 11, 2008

Joint work with Daniela Kühn and Deryk Osthus (University of Birmingham)

Theorem (Dirac, 1952)

Graph G of order $n \ge 3$ and $\delta(G) \ge n/2 \implies G$ Hamiltonian.

Theorem (Ghouila-Houri, 1966)

Digraph G of order $n \ge 2$ with $\delta^+(G), \delta^-(G) \ge n/2 \implies G$ Hamiltonian.

Theorem (Dirac, 1952)

Graph G of order $n \ge 3$ and $\delta(G) \ge n/2 \implies G$ Hamiltonian.

Theorem (Ghouila-Houri, 1966)

Digraph G of order $n \ge 2$ with $\delta^+(G), \delta^-(G) \ge n/2 \implies G$ Hamiltonian.

Theorem (Chvátal, 1972)

Let G be a graph with degree sequence $d_1 \leq \cdots \leq d_n$. G has a Hamilton cycle if

$$d_i \ge i + 1$$
 or $d_{n-i} \ge n - i$ $\forall i < n/2$.

 The bound on the degrees in Chvátal's theorem is best possible.

degree sequence: $\underbrace{k, \dots, k}_{k \text{ times}}, \underbrace{n-k-1, \dots, n-k-1}_{n-2k \text{ times}}, \underbrace{n-1, \dots, n-k-1}_{k \text{ times}}$

Theorem (Chvátal, 1972)

Let G be a graph with degree sequence $d_1 \leq \cdots \leq d_n$. G has a Hamilton cycle if

$$d_i \geq i+1$$
 or $d_{n-i} \geq n-i$ $\forall i < n/2$.

 The bound on the degrees in Chvátal's theorem is best possible.

degree sequence: $\underbrace{k, \ldots, k}_{k}, \underbrace{n-k-1, \ldots, n-k-1}_{n-k-1}, \underbrace{n-1, \ldots, n-1}_{k-1-k-1}$

Theorem (Chvátal, 1972)

Let G be a graph with degree sequence $d_1 \leq \cdots \leq d_n$. G has a Hamilton cycle if

$$d_i \ge i+1$$
 or $d_{n-i} \ge n-i$ $\forall i < n/2$.

 The bound on the degrees in Chvátal's theorem is best possible.

degree sequence:
$$\underbrace{k, \ldots, k}_{k \text{ times}}, \underbrace{n-k-1, \ldots, n-k-1}_{n-2k \text{ times}}, \underbrace{n-1, \ldots, n-1}_{k \text{ times}}$$

Andrew Treglown

 Nash-Williams raised the question of a digraph analogue of Chvátal's theorem.

Conjecture (Nash-Williams, 1975)

Suppose that G is a strongly connected digraph whose out- and indegree sequences $d_1^+ \leq \cdots \leq d_n^+$ and $d_1^- \leq \cdots \leq d_n^-$ satisfy

- (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$ $\forall i < n/2$,
- (ii) $d_i^- \ge i+1$ or $d_{n-i}^+ \ge n-i$ $\forall i < n/2$.

Then G contains a Hamilton cycle.

• If true, the conjecture is much stronger than Ghouila-Houri's theorem.

 Nash-Williams raised the question of a digraph analogue of Chvátal's theorem.

Conjecture (Nash-Williams, 1975)

Suppose that G is a strongly connected digraph whose out- and indegree sequences $d_1^+ \le \cdots \le d_n^+$ and $d_1^- \le \cdots \le d_n^-$ satisfy

(i)
$$d_i^+ \ge i + 1$$
 or $d_{n-i}^- \ge n - i$ $\forall i < n/2$,

(ii)
$$d_i^- \ge i+1$$
 or $d_{n-i}^+ \ge n-i$ $\forall i < n/2$.

Then G contains a Hamilton cycle.

• If true, the conjecture is much stronger than Ghouila-Houri's theorem

 Nash-Williams raised the question of a digraph analogue of Chvátal's theorem.

Conjecture (Nash-Williams, 1975)

Suppose that G is a strongly connected digraph whose out- and indegree sequences $d_1^+ \le \cdots \le d_n^+$ and $d_1^- \le \cdots \le d_n^-$ satisfy

- (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$ $\forall i < n/2$,
- (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$ $\forall i < n/2$.

Then G contains a Hamilton cycle.

• If true, the conjecture is much stronger than Ghouila-Houri's theorem.

We cannot replace the degree condition in Nash-Williams' conjecture with

- $d_i^+ \ge i + 1$ or $d_{n-i}^+ \ge n i$,
- $d_i^- \ge i + 1$ or $d_{n-i}^- \ge n i$.

satisfies degree conditions, strongly connected, no Hamilton cycle

outdegree sequence:
$$n-3, \ldots, n-3, n-2, n-2, n-1$$
 indegree sequence: $1, 1, n-1, \ldots, n-1$

We cannot replace the degree condition in Nash-Williams' conjecture with

•
$$d_i^+ \ge i + 1$$
 or $d_{n-i}^+ \ge n - i$,

$$\bullet \ d_i^- \geq i+1 \text{ or } d_{n-i}^- \geq n-i.$$

satisfies degree conditions, strongly connected, no Hamilton cycle

outdegree sequence: $n-3,\ldots,n-3,n-2,n-2,n-1$ indegree sequence: $1,1,n-1,\ldots,n-1$

We cannot replace the degree condition in Nash-Williams' conjecture with

•
$$d_i^+ \ge i + 1$$
 or $d_{n-i}^+ \ge n - i$,

$$\bullet \ d_i^- \geq i+1 \text{ or } d_{n-i}^- \geq n-i.$$

satisfies degree conditions, strongly connected, no Hamilton cycle

outdegree sequence: $n-3, \ldots, n-3, n-2, n-2, n-1$ indegree sequence: $1, 1, n-1, \ldots, n-1$

• If the Nash-Williams conjecture is true then it is best possible.

N-W conjecture

- (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$
- (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$

$$|K'| = n - k - 2$$
 and $|K| = k - 1$

outdegree sequence:
$$\underbrace{k-1,\ldots,k-1}_{l-1,l-1,\ldots,l}$$
, $\underbrace{k}_{l-1,l-1,\ldots,l}$

indegree sequence

$$\underbrace{n-k-2,\ldots,n-k-2}_{n-k-2 \text{ times}}, n-k-1, n-k-1, \underbrace{n-1,\ldots,n-1}_{k \text{ times}}$$

• If the Nash-Williams conjecture is true then it is best possible.

N-W conjecture

- (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$
- (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$

$$|K'| = n - k - 2$$
 and $|K| = k - 1$

outdegree sequence:
$$\underbrace{k-1,\ldots,k-1}_{k-1 \text{ times}}, k, k, \underbrace{n-1,\ldots,n-1}_{n-k-1 \text{ times}}$$

indegree sequence:

$$\underbrace{n-k-2,\ldots,n-k-2}_{n-k-2 \text{ times}}$$
, $n-k-1$, $n-k-1$, $\underbrace{n-1,\ldots,n-1}_{k \text{ times}}$

• If the Nash-Williams conjecture is true then it is best possible.

N-W conjecture

- (i) $d_i^+ \ge i + 1$ or $d_{n-i}^- \ge n i$
- (ii) $d_i^- \ge i + 1$ or $d_{n-i}^+ \ge n i$

$$|K'| = n - k - 2$$
 and $|K| = k - 1$

outdegree sequence:
$$\underbrace{k-1,\ldots,k-1}_{k-1 \text{ times}}, k, k, \underbrace{n-1,\ldots,n-1}_{n-k-1 \text{ times}}$$

indegree sequence:

$$\underbrace{n-k-2,\ldots,n-k-2}_{n-k-2 \text{ times}}, n-k-1, \underbrace{n-k-1}_{k \text{ times}}, \underbrace{n-1,\ldots,n-1}_{k \text{ times}}$$

 $\forall \eta > 0 \exists n_0 = n_0(\eta) \text{ s.t. if } G \text{ is a digraph on } n \geq n_0 \text{ vertices s.t.}$

- $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n-i$ $\forall i < n/2$,
- $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n-i$ $\forall i < n/2$, then G contains a Hamilton cycle.
 - The proof uses the Regularity lemma.

Corollary

The conditions in the above theorem imply G is pancyclic. That is, G contains a cycle of length $i \ \forall \ 2 \le i \le |G|$.

 $\forall \eta > 0 \exists n_0 = n_0(\eta) \text{ s.t. if } G \text{ is a digraph on } n \geq n_0 \text{ vertices s.t.}$

- $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n-i$ $\forall i < n/2$,
- $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n-i$ $\forall i < n/2$, then G contains a Hamilton cycle.
 - The proof uses the Regularity lemma.

Corollary

The conditions in the above theorem imply G is pancyclic. That is, G contains a cycle of length $i \ \forall \ 2 \le i \le |G|$.

 $\forall \eta > 0 \exists n_0 = n_0(\eta) \text{ s.t. if } G \text{ is a digraph on } n \geq n_0 \text{ vertices s.t.}$

- $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n-i$ $\forall i < n/2$,
- $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n-i$ $\forall i < n/2$,

then G contains a Hamilton cycle.

• The proof uses the Regularity lemma.

Corollary

The conditions in the above theorem imply G is pancyclic. That is, G contains a cycle of length $i \ \forall \ 2 \le i \le |G|$.

 The following result is an immediate corollary of Chvátal's theorem.

Theorem (Pósa, 1962)

Let G be a graph of order $n \ge 3$ with degree sequence $d_1 \le \cdots \le d_n$. G has a Hamilton cycle if

- $\bullet \ d_i \geq i+1 \ \forall \, i < n/2.$
- Pósa's theorem is much stronger than Dirac's theorem.

 The following result is an immediate corollary of Chvátal's theorem.

Theorem (Pósa, 1962)

Let G be a graph of order $n \ge 3$ with degree sequence $d_1 \le \cdots \le d_n$. G has a Hamilton cycle if

- $d_i \ge i + 1 \ \forall i < n/2$.
- Pósa's theorem is much stronger than Dirac's theorem.

 The following conjecture is a digraph analogue of Pósa's theorem.

Conjecture (Nash-Williams, 1968)

Let G be a digraph on $n \ge 3$ vertices s.t.

•
$$d_i^+, d_i^- \ge i + 1 \ \forall \ i < (n-1)/2$$

and s.t. $d_{\lceil n/2 \rceil}^+, d_{\lceil n/2 \rceil}^- \geq \lceil n/2 \rceil$ when n is odd. Then G contains a Hamilton cycle.

• If true, this conjecture is much stronger than Ghouila-Houri's theorem

 The following conjecture is a digraph analogue of Pósa's theorem.

Conjecture (Nash-Williams, 1968)

Let G be a digraph on $n \ge 3$ vertices s.t.

•
$$d_i^+, d_i^- \ge i + 1 \ \forall \ i < (n-1)/2$$

and s.t. $d^+_{\lceil n/2 \rceil}, d^-_{\lceil n/2 \rceil} \geq \lceil n/2 \rceil$ when n is odd. Then G contains a Hamilton cycle.

 If true, this conjecture is much stronger than Ghouila-Houri's theorem. The following conjecture is a digraph analogue of Pósa's theorem.

Conjecture (Nash-Williams, 1968)

Let G be a digraph on $n \ge 3$ vertices s.t.

•
$$d_i^+, d_i^- \ge i + 1 \ \forall \ i < (n-1)/2$$

and s.t. $d^+_{\lceil n/2 \rceil}, d^-_{\lceil n/2 \rceil} \ge \lceil n/2 \rceil$ when n is odd. Then G contains a Hamilton cycle.

 If true, this conjecture is much stronger than Ghouila-Houri's theorem.

 $\forall \eta > 0 \exists n_0 = n_0(\eta) \text{ s.t. if } G \text{ is a digraph on } n \geq n_0 \text{ vertices s.t.}$

- $d_i^+ \geq i + \eta n$ or $d_{n-i-nn}^- \geq n-i$ $\forall i < n/2$,
- $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n-i$ $\forall i < n/2$,

then G contains a Hamilton cycle.

 This theorem implies an approximate version of the second Nash-Williams conjecture.

Corollary

 $\forall \eta > 0 \ \exists \ n_0 = n_0(\eta) \ s.t.$ every digraph G on $n \ge n_0$ vertices with $\bullet \ d_i^+, d_i^- \ge i + \eta n \ \forall i < n/2$

 $\forall \eta > 0 \exists n_0 = n_0(\eta) \text{ s.t. if } G \text{ is a digraph on } n \geq n_0 \text{ vertices s.t.}$

- $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n-i$ $\forall i < n/2$,
- $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n-i$ $\forall i < n/2$,

then G contains a Hamilton cycle.

 This theorem implies an approximate version of the second Nash-Williams conjecture.

Corollary

 $\forall \eta > 0 \ \exists \ n_0 = n_0(\eta) \ s.t. \ every \ digraph \ G \ on \ n \geq n_0 \ vertices \ with$ $\bullet \ d_i^+, d_i^- \geq i + \eta n \ \ \forall \ i < n/2$ contains a Hamilton cycle.

 $\forall \ \eta>0 \ \exists \ n_0=n_0(\eta) \ \text{s.t. if G is a digraph on } n\geq n_0 \ \text{vertices s.t.}$

- $d_i^+ \ge i + \eta n$ or $d_{n-i-\eta n}^- \ge n-i$ $\forall i < n/2$,
- $d_i^- \ge i + \eta n$ or $d_{n-i-\eta n}^+ \ge n-i$ $\forall i < n/2$,

then G contains a Hamilton cycle.

 This theorem implies an approximate version of the second Nash-Williams conjecture.

Corollary

 $\forall \eta > 0 \exists n_0 = n_0(\eta) \text{ s.t. every digraph } G \text{ on } n \geq n_0 \text{ vertices with}$

•
$$d_i^+, d_i^- \ge i + \eta n \ \forall i < n/2$$

contains a Hamilton cycle.

Theorem (Keevash, Kühn, Osthus, 2007)

 $\exists n_0 \text{ s.t. every oriented graph } G \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta^+(G), \delta^-(G) \geq \frac{3n-4}{8}$$

contains a Hamilton cycle.

Question

Can we strengthen this theorem in the same way as Pósa's theorem strengthens Dirac's theorem?

Theorem (Keevash, Kühn, Osthus, 2007)

 $\exists n_0 \text{ s.t. every oriented graph } G \text{ on } n \geq n_0 \text{ vertices with}$

$$\delta^+(G), \delta^-(G) \geq \frac{3n-4}{8}$$

contains a Hamilton cycle.

Question

Can we strengthen this theorem in the same way as Pósa's theorem strengthens Dirac's theorem?

Let $0 < \alpha < 3/8$, |G| = n sufficiently large, $c = c(\alpha)$ constant.

Both in- and outdegree sequences dominate $\alpha n, \ldots, \alpha n, 3n/8, \ldots, 3n/8$

Let $0 < \alpha < 3/8$, |G| = n sufficiently large, $c = c(\alpha)$ constant.

Both in- and outdegree sequences dominate $\underbrace{\alpha n, \ldots, \alpha n}_{c \text{ times}}, 3n/8, \ldots, 3n/8$