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ABSTRACT. Folkman’s theorem asserts that for each k € N, there exists a natural
number n = F(k) such that whenever the elements of [n] are two-coloured, there
exists a set A C [n] of size k with the property that all the sums of the form
> scp T, where B is a nonempty subset of A, are contained in [n] and have
the same colour. In 1989, Erdés and Spencer showed that F(k) > 20+°/logk
where ¢ > 0 is an absolute constant; here, we improve this bound significantly
by showing that F(k) > 22" /% for all k € N.

1. INTRODUCTION

Schur’s theorem, proved in 1916, is one of the central results of Ramsey theory
and asserts that whenever the elements of N are finitely coloured, there exists
a monochromatic set of the form {z,y,z 4+ y} for some z,y € N. About fifty
years ago, a wide generalisation of Schur’s theorem was obtained independently by
Folkman, Rado and Sanders, and this generalisation is now commonly referred to
as Folkman’s theorem (see [2], for example). To state Folkman’s theorem, it will be
convenient to have some notation. For n € N, we write [n] for the set {1,2,...,n},
and for a finite set A C N, let

S(A):{Zx:BcAandB¢@}
z€B
denote the set of all finite sums of A. In this language, Folkman’s theorem states
that for all k,r € N, there exists a natural number n = F'(k, r) such that whenever
the elements of [n] are r-coloured, there exists a set A C [n] of size k such that
S(A) is a monochromatic subset of [n]; of course, it is easy to see that Folkman’s
theorem, in the case where k = 2, implies Schur’s theorem.
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In this note, we shall be concerned with lower bounds for the two-colour Folkman
numbers, i.e., for the quantity F'(k) = F(k,2). In 1989, Erdés and Spencer [1]
proved that

F(k) > 20k2/logk (1)

for all k£ € N, where ¢ > 0 is an absolute constant; here, and in what follows, all

logarithms are to the base 2. Our primary aim in this note is to improve (1).

Before we state and prove our main result, let us say a few words about the
proof of (1). Erdds and Spencer establish (1) by considering uniformly random
two-colourings. In particular, they show that if [n] is two-coloured uniformly at
random and additionally n < 2°*/1°6% for some suitably small absolute constant
¢ > 0, then with high probability, there is no k-set A C [n] for which S(A) is
monochromatic. On the other hand, it is not hard to check that if n > 2°%* for
some suitably large absolute constant C' > 0, then a two-colouring of [n] chosen
uniformly at random is such that, with high probability, there exists a set A C [n]
of size k for which S(A) is monochromatic; indeed, to see this, it is sufficient to
restrict our attention to sets of the form {p,2p,...,kp}, where p is a prime in the
interval [n/log®n,2n/log?n], and notice that the sets of finite sums of such sets
all have size k(k + 1)/2 and are pairwise disjoint. With perhaps this fact in mind,
in their paper, Erdés and Spencer also describe some of their attempts at removing
the factor of log k in the exponent in (1); nevertheless, their bound has not been

improved upon since.

Our main contribution is a new, doubly exponential, lower bound for F(k),
significantly strengthening the bound due to Erdds and Spencer.

Theorem 1.1. For all k € N, we have

F(k)>22'/* (2)

This short note is organised as follows. We give the proof of Theorem 1.1 in
Section 2 and conclude with some remarks in Section 3.

2. PROOF OF THE MAIN RESULT
In this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. The result is easily verified when k£ < 3, so suppose that
k>4 andlet n = L22k71/ *]. In the light of our earlier remarks, a uniformly random
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colouring of [n] is a poor candidate for establishing (2). Instead, we generate a
(random) red-blue colouring of [n] as follows: we first red-blue colour the odd
elements of [n| uniformly at random, and then extend this colouring uniquely to all
of [n] by insisting that the colour of 2x be different from the colour of x for each
x € [n]; hence, for example, if 5 is initially coloured blue, then 10 gets coloured
red, 20 gets coloured blue, and so on.

Fix a set A C [n] of size k with S(A) C [n]. We have the following estimate for
the probability that S(A) is monochromatic in our colouring.
Claim 2.1. P(S(A) is monochromatic) < 212",
Proof. First, if |S(A)| < 2F — 2, then it is easy to see from the pigeonhole principle
that there exist two subsets By, By C A such that } _p © =} 5 x, and by
removing By N By from both By and B, if necessary, these sets may further be
assumed to be disjoint; in particular, this implies that S(A) contains two elements
one of which is twice the other. It therefore follows from the definition of our
colouring that S(A) cannot be monochromatic unless |S(A)| = 2~ — 1.

Next, suppose that |S(A)| = 28 — 1. For each odd integer m € N, we define
G = {m,2m,4m, ...} N [n], and note that these geometric progressions partition
[n]. Observe that S(A) intersects at least 2"~! of these progressions. Indeed, if
there is an odd integer 7 € A for example, then S(A) contains exactly 2¥~! distinct
odd elements and these elements must lie in different progressions. More generally,
if each element of A is divisible by 2° and s is maximal, then there exists an element
r of A with r = 2°¢, where ¢ is odd; it is then clear that precisely 2! elements of
S(A) are divisible by 2° but not by 257! and these elements must necessarily lie in
different progressions. With this in mind, we define B4 to be a maximal subset of
S(A) with the property |B4 NG| < 1 for each m; for example, we may take By
to consist of the least elements (where they exist) of the sets S(A) N G,,. Clearly,
our red-blue colouring restricted to B4 is a uniformly random colouring, so the
probability that B4 is monochromatic is 2'~154l; it follows that the probability

that S(A) is monochromatic is at most 2!'~1Bal < 21-2""" O

It is now easy to see that if X is the number of sets A C [n] of size k for which
S(A) is a monochromatic subset of [n] in our colouring, then

s (s () < () () () <o
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where the last inequality holds for all £ > 4. Hence, there exists a red-blue colouring
of [n] without any set A of size k for which S(A) is a monochromatic subset of [n],
proving the result. O

3. CONCLUSION

We conclude this note with two remarks. First, using the original arguments of
Erdds and Spencer [1] in conjunction with an inverse Littlewood-Offord theorem
of Nguyen and Vu [3], it is possible to improve (1) (up to removing the factor
of logk in the exponent) by just considering uniformly random two-colourings.
Second, we note that while (2) improves significantly on (1), this lower bound is
still considerably far from the best upper bound for F'(k), which is of tower type;
see [4], for instance.
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