
On a degree sequence analogue of Pósa’s
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Abstract

A famous conjecture of Pósa from 1962 asserts that every graph on n vertices
and with minimum degree at least 2n/3 contains the square of a Hamilton cycle.
The conjecture was proven for large graphs in 1996 by Komlós, Sárközy and Sze-
merédi [17]. We prove a degree sequence version of Pósa’s conjecture: Given any
η > 0, every graph G of sufficiently large order n contains the square of a Hamilton
cycle if its degree sequence d1 ≤ · · · ≤ dn satisfies di ≥ (1/3+η)n+ i for all i ≤ n/3.
The degree sequence condition here is asymptotically best possible. Our approach
uses a hybrid of the Regularity-Blow-up method and the Connecting-Absorbing
method.
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1 Introduction

One of the most fundamental results in extremal graph theory is Dirac’s the-
orem [10] which states that every graph G on n ≥ 3 vertices with minimum
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degree δ(G) at least n/2 contains a Hamilton cycle. It is easy to see that the
minimum degree condition here is best possible. The square of a Hamilton
cycle C is obtained from C by adding an edge between every pair of vertices of
distance two on C. A famous conjecture of Pósa from 1962 (see [11]) provides
an analogue of Dirac’s theorem for the square of a Hamilton cycle.

Conjecture 1.1 (Pósa [11]) Let G be a graph on n vertices. If δ(G) ≥
2n/3, then G contains the square of a Hamilton cycle.

Again, it is easy to see that the minimum degree condition in Pósa’s con-
jecture cannot be lowered. The conjecture was intensively studied in the
1990s (see e.g. [12,13,14,15,16]), culminating in its proof for large graphs G
by Komlós, Sárközy and Szemerédi [17]. The proof applies Szemerédi’s Regu-
larity lemma and as such the graphs G considered are extremely large. More
recently, the lower bound on the size of G in this result has been significantly
lowered (see [7,20]).

Although the minimum degree condition is best possible in Dirac’s theo-
rem, this does not necessarily mean that one cannot significantly strengthen
this result. Indeed, Ore [21] showed that a graph G of order n ≥ 3 contains
a Hamilton cycle if d(x) + d(y) ≥ n for all non-adjacent x 6= y ∈ V (G). The
following result of Pósa [22] provides a degree sequence condition that ensures
Hamiltonicity.

Theorem 1.2 (Pósa [22]) Let G be a graph on n ≥ 3 vertices with degree
sequence d1 ≤ · · · ≤ dn. If di ≥ i+ 1 for all i < (n− 1)/2 and if additionally
ddn/2e ≥ dn/2e when n is odd, then G contains a Hamilton cycle.

Notice that Theorem 1.2 is significantly stronger than Dirac’s theorem as
it allows for almost half of the vertices of G to have degree less than n/2.
A theorem of Chvátal [8] generalises Theorem 1.2 by characterising all those
degree sequences which ensure the existence of a Hamilton cycle in a graph:
Suppose that the degrees of a graph G are d1 ≤ · · · ≤ dn. If n ≥ 3 and
di ≥ i + 1 or dn−i ≥ n − i for all i < n/2 then G is Hamiltonian. Moreover,
if d1 ≤ · · · ≤ dn is a degree sequence that does not satisfy this condition then
there exists a non-Hamiltonian graph G whose degree sequence d′1 ≤ · · · ≤ d′n
is such that d′i ≥ di for all 1 ≤ i ≤ n.

Recently there has been an interest in generalising Pósa’s conjecture. An
‘Ore-type’ analogue of Pósa’s conjecture has been proven for large graphs
in [6,9]. A random version of Pósa’s conjecture was proven by Kühn and
Osthus in [19]. In [2], Allen, Böttcher and Hladký determined the minimum
degree threshold that ensures a large graph contains a square cycle of a given



length. The problem of finding the square of a Hamilton cycle in a pseudoran-
dom graph has recently been studied in [1]. Our focus here is to investigate
degree sequence conditions that guarantee a graph contains the square of a
Hamilton cycle. This problem was raised in the arXiv version of [3]. In [24]
we prove the following degree sequence version of Pósa’s conjecture.

Theorem 1.3 Given any η > 0 there exists an n0 ∈ N such that the following
holds. If G is a graph on n ≥ n0 vertices whose degree sequence d1 ≤ · · · ≤ dn
satisfies

di ≥ n/3 + i+ ηn for all i ≤ n/3,

then G contains the square of a Hamilton cycle.

Note that Theorem 1.3 allows for almost n/3 vertices in G to have degree
substantially smaller than 2n/3. However, it does not quite imply Pósa’s
conjecture for large graphs due to the term ηn. An example from the arXiv
version of [3] shows that the term ηn in Theorem 1.3 cannot be replaced by
o(
√
n) for every i ≤ n/3. So in this sense Theorem 1.3 is close to best possible.

(Extremal examples for Theorem 1.3 are discussed in more detail in Section 3.)
We suspect though that the degrees in Theorem 1.3 can be capped at 2n/3.

Conjecture 1.4 Given any η > 0 there exists an n0 ∈ N such that the
following holds. If G is a graph on n ≥ n0 vertices whose degree sequence
d1 ≤ · · · ≤ dn satisfies

di ≥ min{n/3 + i+ ηn, 2n/3} for all i,

then G contains the square of a Hamilton cycle.

It would be extremely interesting to establish an analogue of Chvátal’s
theorem for the square of a Hamilton cycle, i.e., to characterise those degree
sequences which force the square of a Hamilton cycle.

The proof of Theorem 1.3 makes use of Szemerédi’s Regularity lemma [25]
and the Blow-up lemma [18]. In the next section, we give a more detailed
overview.

2 Overview of the proof

Over the last few decades a number of powerful techniques have been devel-
oped for embedding problems in graphs. The Blow-up lemma [18], in combi-
nation with the Regularity lemma [25], has been used to resolve a number of
long-standing open problems, including Pósa’s conjecture for large graphs [17].



More recently, the so-called Connecting-Absorbing method developed by Rödl,
Ruciński and Szemerédi [23] has also proven to be highly effective in tackling
such embedding problems.

Typically, both these approaches have been applied to graphs with ‘large’
minimum degree. Our graph G in Theorem 1.3 may have minimum degree
(1/3 + o(1))n. In particular, this is significantly smaller than the minimum
degree threshold that forces the square of a Hamilton cycle in a graph (namely,
2n/3). As we describe below, having vertices of relatively small degree makes
the proof of Theorem 1.3 highly involved and rather delicate. Indeed, our proof
draws on ideas from both the Regularity-Blow-up method and the Connecting-
Absorbing method. Further, we also develop a number of new ideas in order
to deal with these vertices of small degree.

2.1 An approximate version of Pósa’s conjecture

In order to highlight some of the difficulties in the proof of Theorem 1.3, we
first give a sketch of a proof of an approximate version of Pósa’s conjecture.
This is based on the proof of Pósa’s conjecture for large graphs given in [20].

Let 0 < ε � γ � η. Suppose that G is a sufficiently large graph on n
vertices with δ(G) ≥ (2/3 + η)n. We wish to find the square of a Hamilton
cycle in G. The proof splits into three main parts.

• Step 1 (Absorbing path): Find an ‘absorbing’ square path PA in G such
that |PA| ≤ γn. PA has the property that given any set A ⊆ V (G) \ V (PA)
such that |A| ≤ 2εn, G contains a square path P with vertex set V (PA)∪A,
where the first and last two vertices on P are the same as the first and last
two vertices on PA.

• Step 2 (Reservoir set): Let G′ := G \ V (PA). Find a ‘reservoir’ set
R ⊆ V (G′) such that |R| ≤ εn. R has the property that, given arbitrary
disjoint ordered edges ab, cd ∈ E(G), there are ‘many’ short square paths
P in G so that: (i) The first two vertices on P are a, b respectively; (ii) The
last two vertices on P are c, d respectively; (iii) V (P ) \ {a, b, c, d} ⊆ R.

• Step 3 (Almost tiling with square paths): Let G′′ := G′ \ R. Find
a collection P of a bounded number of vertex-disjoint square paths in G′′

that together cover all but εn of the vertices in G′′.

Assuming that δ(G) ≥ (2/3 + η)n, the proof of each of these three steps is
not too involved. (Note though that the proof in [20] is more technical since
there δ(G) ≥ 2n/3.)

After completing Steps 1–3, it is straightforward to find the square of a



Hamilton cycle in G. Indeed, suppose ab is the last edge on a square path
P1 from P and cd is the first edge on a square path P2 from P . Then Step 2
implies that we can ‘go through’ R to join P1 and P2 into a single square
path in G. Repeating this process we can obtain a square cycle C in G that
contains all the square paths from P . Further, we may also incorporate the
absorbing square path PA into C. C now covers almost all the vertices of G.
We then use PA to absorb all the vertices from V (G) \ V (C) into C to obtain
the square of a Hamilton cycle.

2.2 A degree sequence version of Pósa’s conjecture

Suppose that G is a sufficiently large graph on n vertices as in the statement of
Theorem 1.3. A result of the second author [26] guarantees that G contains a
collection of bn/3c vertex-disjoint triangles. Further, this result together with
a simple application of the Regularity lemma implies that G in fact contains a
collection P of a bounded number of vertex-disjoint square paths that together
cover almost all of the vertices in G. So we can indeed prove an analogue of
Step 3 in this setting. In particular, if we could find a reservoir set R as
above, then certainly we would be able to join together the square paths in P
through R, to obtain an almost spanning square cycle C in G.

Suppose that ab, cd ∈ E(G) and we wish to find a square path P in G
between ab and cd. If dG(a), dG(b) < n/2 then it may be the case that a and
b have no common neighbours. Then it is clearly impossible to find such a
square path P between ab and cd (since ab does not lie in a single square
path!). The degree sequence condition on G is such that almost n/6 vertices
in G may have degree less than n/2. Therefore we cannot hope to find a
reservoir set precisely as in Step 2 above.

We overcome this significant problem as follows. We first show that G
contains a reservoir set R that can only be used to find a square path between
pairs of edges ab, cd ∈ E(G) of large degree (namely, at least (2/3+η)n). This
turns out to be quite involved. In order to use R to join together the square
paths P ∈ P into an almost spanning square cycle, we now require that the
first and last two vertices on each such P have large degree.

To find such a collection of square paths P we first find a special collection
F of so-called ‘folded paths’ in a reduced graph R of G. Roughly speaking,
folded paths are a generalisation of the notion of a square path. Each such
folded path F ∈ F will act as a ‘guide’ for embedding one of the paths P ∈ P
into G. More precisely, there is a homomorphism from a square path P into a
folded path F . In particular, the structure of F will ensure that the first and



last two vertices on P are ‘mapped’ to large degree vertices in G.

Given our new reservoir set R and collection of square paths P , we again
can obtain an almost spanning square cycle C in G. Further, if we could
construct an absorbing square path PA as in Step 1, we would be able to
absorb the vertices in V (G) \ V (C) to obtain the square of a Hamilton cycle.
However, we were unable to construct such an absorbing square path, and
do not believe there is a ‘simple’ way to construct one. (Though, one could
construct such a square path PA if one only requires PA to absorb vertices of
large degree.) Instead, our method now turns towards the Regularity-Blow-up
approach.

Using the methods described, we can obtain an almost spanning square
cycle in the reduced graph R of G. In fact, we obtain a much richer structure
Z` in R called a ‘triangle cycle’. Z` is a special 6-regular graph on 3` vertices
that contains the square of a Hamilton cycle. In particular, Z` contains a
collection of vertex-disjoint triangles T` that together cover all the vertices in
Z`. We then show that G contains an almost spanning structure C that looks
like the ‘blow-up’ of Z`. More precisely, if V (Z`) = {1, . . . , 3`} and V1, . . . , V3`
are the corresponding clusters in G, then

• V (C) = V1 ∪ · · · ∪ V3`;
• C[Vi, Vj] is ε-regular whenever ij ∈ E(Z`);

• If ij is an edge in a triangle T ∈ T` then C[Vi, Vj] is ε-regular and every
vertex in Vi has at least γ|Vj| neighbours in Vj.

We call C a ‘cycle structure’. The initial structure of C is such that it contains
a spanning square cycle. However, since C is not necessarily spanning in G,
this does not correspond to the square of a Hamilton cycle in G. We thus
need to incorporate the ‘exceptional vertices’ of G into this cycle structure C
in a balanced way so that at the end C (and hence G) contains the square
of a Hamilton cycle. The rich structure of Z` and thus C is vital for this.
Again particular care is needed when incorporating exceptional vertices of
small degree into our cycle structure. This part of the proof builds on ideas
used in [4,5].

3 Extremal examples for Theorem 1.3

In this section we describe examples which show that Theorem 1.3 is asymp-
totically best possible.

Given a fixed graph H, an H-packing in a graph G is a collection of
vertex-disjoint copies of H in G. We say that an H-packing is perfect if it



contains b|G|/|H|c copies of H in G, i.e. the maximum number. Observe that
the square of a Hamilton cycle contains a perfect K3-packing. The following
proposition is a special case of Proposition 17 in [3]. It implies that one cannot
replace ηn with −1 in Theorem 1.3.

Proposition 3.1 Suppose that n ∈ 3N, k ∈ N and 1 ≤ k < n/3. Then there
exists a graph G on n vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di =


n/3 + k − 1 if 1 ≤ i ≤ k

2n/3 if k + 1 ≤ i ≤ n/3 + k

n− k − 1 if n/3 + k + 1 ≤ i ≤ n− k + 1

n− 1 if n− k + 2 ≤ i ≤ n,

but such that G does not contain a perfect K3-packing.

Proof. Construct G as follows. The vertex set of G is the union of disjoint
sets V1, V2, A,B of sizes n/3, 2n/3 − 2k + 1, k − 1, k respectively. Add all
edges from B ∪ V2 ∪ A to V1. Further, add all edges with both endpoints in
V2 ∪ A. Add all possible edges between A and B.

Consider an arbitrary copy T of K3 in G which contains b ∈ B. Since B
is an independent set in G and there are no edges between B and V2, we have
that V (T ) \{b} ⊆ A∪V1. But V1 is an independent set in G, so T contains at
most one vertex in V1 and hence at least one vertex in A. But since |B| > |A|
this implies that G does not contain a perfect K3-packing. Furthermore, it is
easy to check that G has our desired degree sequence. 2

Note that Proposition 3.1 shows that, if true, Conjecture 1.4 is close to
best possible in the following sense: Given any 1 ≤ k < n/3, there is a graph
G on n vertices with degree sequence d1 ≤ · · · ≤ dn such that (i) G does not
contain the square of a Hamilton cycle and (ii) G satisfies the degree sequence
condition in Conjecture 1.4 except for the terms dk−ηn, . . . , dk which only ‘just’
fail to satisfy the desired condition.

At first sight, one might think that the ηn term in Theorem 1.3 is an
artifact of our proof, but in fact it is a feature of the problem: indeed, it
cannot be replaced by o(

√
n). This is shown by an example in Proposition 22

in the arXiv version of [3].
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[6] Châu, P., An Ore-type theorem on hamiltonian square cycles, Graphs Combin.
29 (2013), 795–834.
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