An Ore-type theorem for perfect packings in graphs

Andrew Treglown

University of Birmingham, School of Mathematics

9th July 2009

Joint work with Daniela Kühn and Deryk Osthus (University of Birmingham)
Motivation 1: Characterising graphs with perfect matchings

- Hall’s Theorem characterises all those bipartite graphs with perfect matchings.
- Tutte’s Theorem characterises all those graphs with perfect matchings.
Motivation 2: Finding a (small) graph \(H \) in \(G \)

Theorem (Erdős, Stone ‘46)

Given \(\eta > 0 \), if \(G \) graph on sufficiently large \(n \) number of vertices and

\[
e(\mathcal{G}) \geq \left(1 - \frac{1}{\chi(H) - 1 + \eta}\right) \frac{n^2}{2}
\]

then \(H \subseteq G \).

Corollary

\[
\delta(\mathcal{G}) \geq \left(1 - \frac{1}{\chi(H) - 1 + \eta}\right)n \implies H \subseteq G
\]

- Erdős-Stone Theorem best possible (up to error term).
Other types of degree condition

Ore-type degree conditions:
Consider the sum of the degrees of non-adjacent vertices.

\[d(x) + d(y) = 2 + 2 = 4 \]
\[d(y) + d(z) = 2 + 1 = 3 \]
Properties of Ore-type conditions

- $\delta(G) \geq a \Rightarrow d(x) + d(y) \geq 2a \ \forall \ x, y \in V(G) \ s.t. \ xy \notin E(G)$.
- $d(x) + d(y) \geq 2a \ \forall \ldots \Rightarrow d(G) \geq a$.

Corollary

Given $\eta > 0$, if G has sufficiently large order n and

$$d(x) + d(y) \geq 2 \left(1 - \frac{1}{\chi(H) - 1} + \eta \right) n \ \forall \ldots$$

then $H \subseteq G$.
Perfect packings in graphs

- An H-packing in G is a collection of vertex-disjoint copies of H in G.
- An H-packing is perfect if it covers all vertices in G.

Decision problem NP-complete (Hell and Kirkpatrick '83).

Sensible to look for simple sufficient conditions.
An H-packing in G is a collection of vertex-disjoint copies of H in G.

An H-packing is perfect if it covers all vertices in G.

H
Perfect packings in graphs

- An H-packing in G is a collection of vertex-disjoint copies of H in G.
- An H-packing is perfect if it covers all vertices in G.

If $H = K_2$ then perfect H-packing \iff perfect matching.

Sensible to look for simple sufficient conditions.

Andrew Treglown

An Ore-type theorem for perfect packings in graphs
An H-packing in G is a collection of vertex-disjoint copies of H in G. An H-packing is perfect if it covers all vertices in G.

If $H = K_2$ then perfect H-packing \iff perfect matching.

Decision problem NP-complete (Hell and Kirkpatrick ‘83).

Sensible to look for simple sufficient conditions.
Theorem (Hajnal, Szemerédi ‘70)

Let G be a graph with $|G| = n$ where $r | n$ and $\delta(G) \geq \left(1 - \frac{1}{r}\right) n$.

Then G contains a perfect K_r-packing.

Hajnal-Szemerédi Theorem best possible.

\[G \mid G \mid = mr \]

\[m - 1 \quad m + 1 \quad m \]

\[\cdots \]

\[|G| = mr \]
Hajnal-Szemerédi Theorem best possible.

\[
\delta(G) = m(r - 1) - 1 = (1 - 1/r)|G| - 1
\]
Hajnal-Szemerédi Theorem best possible.

\[|G| = mr \]

\[\delta(G) = m(r - 1) - 1 = (1 - 1/r)|G| - 1 \]

no perfect \(K_r \)-packing
perfect H-packings for arbitrary H

Given H, the critical chromatic number $\chi_{cr}(H)$ of H is

$$\chi_{cr}(H) := (\chi(H) - 1) \frac{|H|}{|H| - \sigma(H)}$$

where $\sigma(H)$ is the size of the smallest possible colour class in a $\chi(H)$-colouring of H.

- $\chi(H) - 1 < \chi_{cr}(H) \leq \chi(H)$ \quad \forall \ H
Theorem (Kühn, Osthus)

∀ H, ∃ C s.t. if |H| divides |G| and

\[\delta(G) \geq \left(1 - \frac{1}{\chi^*(H)} \right) |G| + C \]

then G contains a perfect H-packing.

Here,

\[\chi^*(H) = \begin{cases}
\chi(H) & \text{for some } H \text{ (including } K_r); \\
\chi_{cr}(H) & \text{otherwise.}
\end{cases} \]

- Result best possible up to constant term C.
What Ore-type degree condition ensures a graph G contains a perfect H-packing?

Theorem (Kierstead, Kostochka ‘08)

G graph, $|G| = n$ where $r|n$ and

$$d(x) + d(y) \geq 2 \left(1 - \frac{1}{r}\right) n - 1 \quad \forall \ldots$$

$\Rightarrow G$ contains a perfect K_r-packing.

- Result implies Hajnal-Szemerédi Theorem.
- Theorem best possible.
What Ore-type degree condition ensures a graph G contains a perfect H-packing?

Theorem (Kierstead, Kostochka ‘08)

Let G be a graph, $|G| = n$ where $r|n$ and

$$d(x) + d(y) \geq 2 \left(1 - \frac{1}{r}\right)n - 1 \quad \forall \ldots$$

\Rightarrow G contains a perfect K_r-packing.

- Result implies Hajnal-Szemerédi Theorem.
- Theorem best possible.
What about perfect H-packings for arbitrary H?

An example:

$$H$$

$\chi(H) = 3 \quad \chi_{cr}(H) = 8/3$

The Kühn-Osthus Theorem tells us that

$$\delta(G) \geq \left(1 - \frac{1}{\chi_{cr}(H)}\right)|G| + C \Rightarrow \text{perfect } H\text{-packing}.$$
What about perfect H-packings for arbitrary H? An example:

- $\chi(H) = 3$
- $\chi_{cr}(H) = 8/3$

Kühl-Osthus Theorem tells us that

$$\delta(G) \geq \left(1 - \frac{1}{\chi_{cr}(H)}\right)|G| + C \Rightarrow \text{perfect } H\text{-packing.}$$
A complete graph G with $2m - 1$ vertices is shown with a complete bipartite graph m connected to it. The size of G is $|G| = 3m$. A graph H is shown with no perfect H-packing. The inequality $d(x) + d(y) \geq 4m - 2 = 2(1 - 1/\chi(H))$ holds for all vertices x, y in G. The text indicates that "Something else is going on!"
$d(x) + d(y) \geq 4m - 2 = 2(1 - 1/\chi(H))|G| - 2 \quad \forall \ldots$

"Something else is going on!"
complete
complete bipartite

$|G| = 3m$

$d(x) + d(y) \geq 4m - 2 = 2(1 - 1/\chi(H))|G| - 2 \quad \forall \ldots$

“Something else is going on!”
Theorem (Kühn, Osthus, T. ‘08)

We characterised, asymptotically, the Ore-type degree condition which ensures that a graph contains a perfect H-packing.

- There are some graphs H for which this Ore-type condition depends on $\chi(H)$ and some for which it depends on $\chi_{cr}(H)$.

- However, for some graphs H it depends on a parameter strictly between $\chi_{cr}(H)$ and $\chi(H)$.

- This parameter in turn depends on the so-called ‘colour extension number’.
Open problem

Pósa-Seymour Conjecture

\[G \text{ on } n \text{ vertices, } \delta(G) \geq \frac{r}{r+1} n \implies G \text{ contains } r\text{th power of a Hamilton cycle} \]

- Conjecture true for large graphs (Komlós, Sarközy and Szemerédi ’98)

What Ore-type degree condition ensures a graph contains the \(r \)th power of a Hamilton cycle?
Open problem

Pósa-Seymour Conjecture

\[G \text{ on } n \text{ vertices, } \delta(G) \geq \frac{r}{r+1} n \implies G \text{ contains } r\text{th power of a Hamilton cycle} \]

- Conjecture true for large graphs (Komlós, Sarközy and Szemerédi '98)

What Ore-type degree condition ensures a graph contains the \(r \)th power of a Hamilton cycle?