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Abstract. Given two k-graphs H and F , a perfect F -packing in H is a collection of vertex-
disjoint copies of F in H which together cover all the vertices in H. In the case when F
is a single edge, a perfect F -packing is simply a perfect matching. For a given fixed F ,
it is often the case that the decision problem whether an n-vertex k-graph H contains a
perfect F -packing is NP-complete. Indeed, if k ≥ 3, the corresponding problem for perfect
matchings is NP-complete [17, 7] whilst if k = 2 the problem is NP-complete in the case
when F has a component consisting of at least 3 vertices [14].

In this paper we give a general tool which can be used to determine classes of (hy-
per)graphs for which the corresponding decision problem for perfect F -packings is polyno-
mial time solvable. We then give three applications of this tool: (i) Given 1 ≤ ` ≤ k − 1,
we give a minimum `-degree condition for which it is polynomial time solvable to determine
whether a k-graph satisfying this condition has a perfect matching; (ii) Given any graph F
we give a minimum degree condition for which it is polynomial time solvable to determine
whether a graph satisfying this condition has a perfect F -packing; (iii) We also prove a
similar result for perfect K-packings in k-graphs where K is a k-partite k-graph.

For a range of values of `, k (i) resolves a conjecture of Keevash, Knox and Mycroft [20]
whilst (ii) answers a question of Yuster [47] in the negative. In many cases our results
are best possible in the sense that lowering the minimum degree condition means that the
corresponding decision problem becomes NP-complete.

1. Introduction

Given k ≥ 2, a k-uniform hypergraph (or k-graph) consists of a vertex set V (H) and an

edge set E(H) ⊆
(V (H)

k

)
, where every edge is a k-element subset of V (H). A matching in H

is a collection of vertex-disjoint edges of H. A perfect matching M in H is a matching that
covers all vertices of H.

The question of whether a given k-graph H contains a perfect matching is one of the
most fundamental problems in combinatorics. In the graph case k = 2, Tutte’s Theorem [46]
gives necessary and sufficient conditions for H to contain a perfect matching, and Edmonds’
Algorithm [5] finds such a matching in polynomial time. On the other hand, the decision
problem whether a k-graph contains a perfect matching is famously NP-complete for k ≥ 3
(see [17, 7]).

An important generalisation of the notion of a perfect matching is that of a perfect packing :
Given two k-graphs H and F , an F -packing in H is a collection of vertex-disjoint copies of
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F in H. An F -packing is called perfect if it covers all the vertices of H. Perfect F -packings
are also referred to as F -factors or perfect F -tilings. Note that perfect matchings correspond
to the case when F is a single edge. Hell and Kirkpatrick [14] showed that the decision
problem whether a graph G has a perfect F -packing is NP-complete precisely when F has a
component consisting of at least 3 vertices.

In light of the aforementioned complexity results, there has been significant attention to
determine classes of (hyper)graphs for which the respective decision problems are polynomial
time solvable. A key contribution of this paper is to provide a general tool (Theorem 3.1)
that can be used to obtain such results. For this result we need to introduce several concepts
so we defer its statement until Section 3.4. However, roughly speaking, for any k-graph
F , Theorem 3.1 yields a general class of k-graphs within which we do have a complete
characterisation of those k-graphs that contain a perfect F -packing. We then give three
applications of Theorem 3.1, which we describe below. In particular, each of our applications
convey an underlying theme: In each case, the class of (hyper)graphs H we consider are
those that satisfy some minimum degree condition that ensures an almost perfect matching
or packing M (i.e. M covers all but a constant number of the vertices of H). Thus, in each
application we show that we can detect the ‘last obstructions’ to having a perfect matching
or packing efficiently.

1.1. Perfect matchings in hypergraphs. Given a k-graph H with an `-element vertex
set S (where 0 ≤ ` ≤ k − 1) we define dH(S) to be the number of edges containing S. The
minimum `-degree δ`(H) of H is the minimum of dH(S) over all `-element sets of vertices in
H. We refer to δk−1(H) as the minimum codegree of H. The following conjecture from [9, 28]
gives a minimum `-degree condition that ensures a perfect matching in a k-graph.

Conjecture 1.1. Let `, k ∈ N such that ` ≤ k− 1. Given any ε > 0, there is an n0 ∈ N such
that the following holds. Suppose H is a k-graph on n ≥ n0 vertices where k divides n. If

δ`(H) ≥ max

{
(1/2 + ε) ,

(
1−

(
1− 1

k

)k−`
+ ε

)}(
n

k − `

)
then H contains a perfect matching.

An ‘exact’ version of Conjecture 1.1 (without the error terms) was stated in [45]. There
are two types of extremal examples that show, if true, Conjecture 1.1 is asymptotically best
possible. The first is a so-called divisibility barrier : Let V1 be a set of n vertices and A,B a
partition of V1 where |A|, |B| are as equal as possible whilst ensuring |A| is odd. Let H1 be
the k-graph with vertex set V1 and edge set consisting of all those k-tuples that contain an
even number of vertices from A. Then δ`(H1) = (1/2 + o(1))

(
n
k−`
)

for all 1 ≤ ` ≤ k − 1 but

H1 does not contain a perfect matching. (Actually note that there is a family of divisibility
barrier constructions for this problem; see e.g. [45] for more details.) The second construction
is a so-called space barrier : Let V2 be a vertex set of size n and fix S ⊆ V2 with |S| = n/k−1.
Let H2 be the k-graph whose edges are all k-sets that intersect S. Then H2 does not contain

a perfect matching and δ`(H2) =
(

1−
(
1− 1

k

)k−`
+ o(1)

) (
n
k−`
)

for all 1 ≤ ` ≤ k − 1.

In recent years Conjecture 1.1 (and its exact counterpart) has received substantial attention
[1, 4, 9, 11, 21, 22, 27, 31, 34, 36, 37, 39, 40, 43, 44, 45]. In particular, the exact threshold is
known for all ` such that 0.42k ≤ ` ≤ k − 1 as well as for a handful of other values of (k, `).
For example, Rödl, Ruciński and Szemerédi [40] determined the codegree threshold for this
problem for sufficiently large k-graphs H on n vertices. This threshold is n/2− k+C where
C ∈ {3/2, 2, 5/2, 3} depends on the value of n and k.
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Such results give us classes of dense k-graphs for which we are certain to have a perfect
matching. This raises the question of whether one can lower the minimum `-degree condition
in Conjecture 1.1 whilst still ensuring it is decidable in polynomial time whether such a k-
graph H has a perfect matching: Let PM(k, `, δ) denote the problem of deciding whether
there is a perfect matching in a given k-graph on n vertices with minimum `-degree at least
δ
(
n
k−`
)
. Write PM(k, δ) := PM(k, k − 1, δ).

The above mentioned result of Rödl, Ruciński and Szemerédi [40] implies that PM(k, 1/2)
is in P. On the other hand, for k ≥ 3 Szymańska [42] proved that for δ < 1/k the problem
PM(k, δ) admits a polynomial-time reduction to PM(k, 0) and hence PM(k, δ) is also NP-
complete. Karpiński, Ruciński and Szymańska [18] proved that there exists an ε > 0 such
that PM(k, 1/2 − ε) is in P; they also raised the question of determining the complexity of
PM(k, δ) for δ ∈ [1/k, 1/2). For any δ > 1/k, Keevash, Knox and Mycroft [20] recently
proved that PM(k, δ) is in P . Then very recently this question was completely resolved by
the first author [10] who showed that PM(k, δ) is in P for any δ ≥ 1/k.

Note that the minimum codegree of the space barrier construction H2 above is δk−1(H2) =
n/k − 1. So in the case of minimum codegree, the threshold at which PM(k, δ) ‘switches’
from NP-complete to P corresponds to this space barrier. This leads to the question whether
the same phenomenon occurs in the case of minimum `-degree for ` ≤ k − 2. In support of
this, Szymańska [42] proved that PM(k, `, δ) is NP-complete when δ < 1−(1−1/k)k−`. This
led Keevash, Knox and Mycroft [20] to pose the following conjecture.

Conjecture 1.2 (Keevash, Knox and Mycroft [20]). PM(k, `, δ) is in P for every δ >
1− (1− 1/k)k−`.

As an application of Theorem 3.1 we verify Conjecture 1.2 in a range of cases. To state
our result, we first must introduce the notion of a perfect fractional matching: Let H be a
k-graph on n vertices. A fractional matching in H is a function w : E(H)→ [0, 1] such that
for each v ∈ V (H) we have that

∑
e3v w(e) ≤ 1. Then

∑
e∈E(H)w(e) is the size of w. If the

size of the largest fractional matching w in H is n/k then we say that w is a perfect fractional
matching. Given k, ` ∈ N such that ` ≤ k − 1, define c∗k,` to be the smallest number c such

that every k-graph H on n vertices with δ`(H) ≥ (c+o(1))
(
n−`
k−`
)

contains a perfect fractional
matching. We can now state our complexity result for perfect matchings.

Theorem 1.3. Given k, ` ∈ N such that 1 ≤ ` ≤ k − 1, define δ∗ := max{1/3, c∗k,`}. Given

any δ ∈ (δ∗, 1], PM(k, `, δ) is in P . That is, for every n-vertex k-graph H with minimum

`-degree at least δ
(
n−`
k−`
)
, there is an algorithm with running time O(nk

2
) which determines

whether H contains a perfect matching.

Alon, Frankl, Huang, Rödl, Ruciński, and Sudakov [1] conjectured that c∗k,` = 1 − (1 −
1/k)k−` for all `, k ∈ N. Thus, Theorem 1.3 verifies Conjecture 1.2 in all cases where c∗k,` =

1 − (1 − 1/k)k−` and c∗k,` ≥ 1/3. In particular, Kühn, Osthus and Townsend [30, Theorem

1.7] proved that c∗k,` = 1 − (1 − 1/k)k−` in the case when ` ≥ k/2 and the first author [11,

Theorem 1.5] proved that c∗k,` = 1− (1− 1/k)k−` in the case when ` = (k − 1)/2.
Note that for all 1 ≤ ` ≤ k − 1,(

k − 1

k

)k−`
<

(
1

e

)1− `
k

.

Thus, 1 − (1 − 1/k)k−` ≥ 1/3 if ` ≤ (1 + ln(2/3))k ≈ 0.5945k. (Here ln denotes the natural
logarithm function.) Altogether, this implies the following.
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Corollary 1.4. Conjecture 1.2 holds for all k, ` ∈ N such that (k−1)/2 ≤ ` ≤ (1+ln(2/3))k.

1.2. Perfect packings in graphs. Several complexity problems for perfect packings in
graphs have received attention. Given a graph F , we write |F | for its order and χ(F ) for
its chromatic number. For approximating the size of a maximal F -packing, Hurkens and
Schrijver [15] gave an (|F |/2 + ε)-approximation algorithm (where ε > 0 is arbitrary) which
runs in polynomial time. On the other hand, Kann [16] proved that the problem is APX-hard
if F has a component which contains at least three vertices. (In other words, it is impossible
to approximate the optimum solution within an arbitrary factor unless P=NP.) In contrast,
the results in [14] imply that the remaining cases of the problem can be solved in polynomial
time.

The following classical result of Hajnal and Szemerédi [8] characterises the minimum degree
that ensures a graph contains a perfect Kr-packing.

Theorem 1.5 (Hajnal and Szemerédi [8]). Every graph G whose order n is divisible by r
and whose minimum degree satisfies δ(G) ≥ (1− 1/r)n contains a perfect Kr-packing.

By considering a complete r-partite graph G with vertex classes of almost equal size, one
can see that the minimum degree condition in Theorem 1.5 cannot be lowered. Kierstead,
Kostochka, Mydlarz and Szemerédi [23] gave a version of Theorem 1.5 which also yields a
fast (polynomial time) algorithm for producing the perfect Kr-packing.

Up to an error term, the following theorem of Alon and Yuster [2] generalises Theorem 1.5.
Let M(n) be the time needed to multiply two n by n matrices with 0, 1 entries. (Here the
entries are viewed as elements of Z.) Determining M(n) is a challenging problem in theoretic
computer science, and the best known bound of M(n) = O(n2.3728639) was obtained by Le
Gall [32].

Theorem 1.6 (Alon and Yuster [2]). For every γ > 0 and each graph F there exists an
integer n0 = n0(γ, F ) such that every graph G whose order n ≥ n0 is divisible by |F | and
whose minimum degree is at least (1−1/χ(F ) +γ)n contains a perfect F -packing. Moreover,
there is an algorithm which finds this F -packing in time O(M(n)).

In [2], they also conjectured that the error term γn in Theorem 1.6 can be replaced by
a constant C(F ) > 0 depending only on F ; this has been verified by Komlós, Sárközy and
Szemerédi [25].

Theorem 1.7 (Komlós, Sárközy and Szemerédi [25]). For every graph F there exist integers
C < |F | and n0 = n0(F ) such that every graph G whose order n ≥ n0 is divisible by |F | and
whose minimum degree is at least (1−1/χ(F ))n+C contains a perfect F -packing. Moreover,
there is an algorithm which finds this F -packing in time O(nM(n)).

As observed in [2], there are graphs F for which the constant C(F ) cannot be omitted
completely. On the other hand, there are graphs F for which the minimum degree condition
in Theorem 1.7 can be improved significantly [19, 3], by replacing the chromatic number
with the critical chromatic number. The critical chromatic number χcr(F ) of a graph F is
defined as (χ(F )− 1)|F |/(|F | −σ(F )), where σ(F ) denotes the minimum size of the smallest
colour class in a colouring of F with χ(F ) colours. Note that χ(F ) − 1 < χcr(F ) ≤ χ(F )
and the equality holds if and only if every χ(F )-colouring of F has equal colour class sizes.
If χcr(F ) = χ(F ), then we call F balanced, otherwise unbalanced. Komlós [24] proved that
one can replace χ(F ) with χcr(F ) in Theorem 1.7 at the price of obtaining an F -packing
covering all but εn vertices. He also conjectured that the error term εn can be replaced with
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a constant that only depends on F [24]; this was confirmed by Shokoufandeh and Zhao [41]
(here we state their result in a slightly weaker form).

Theorem 1.8 (Shokoufandeh and Zhao [41]). For any F there is an n0 = n0(F ) so that if G
is a graph on n ≥ n0 vertices and minimum degree at least (1− 1/χcr(F ))n, then G contains
an F -packing that covers all but at most 5|F |2 vertices.

Then the question is, for which F can we replace χ(F ) with χcr(F ) in Theorem 1.7? Kühn
and Osthus [26, 29] answered this question completely. To state their result, we need some
definitions. Write k := χ(F ). Given a k-colouring c, let x1 ≤ · · · ≤ xk denote the sizes of the
colour classes of c and put D(c) = {xi+1 − xi | i ∈ [k − 1]}. Let D(F ) be the union of all
the sets D(c) taken over all k-colourings c. Denote by hcfχ(F ) the highest common factor
of all integers in D(F ). (If D(F ) = {0}, then set hcfχ(F ) := ∞.) Write hcfc(F ) for the
highest common factor of all the orders of components of F (for example hcfc(F ) = |F | if F
is connected). If χ(F ) 6= 2, then define hcf(F ) = 1 if hcfχ(F ) = 1. If χ(F ) = 2, then define
hcf(F ) = 1 if both hcfc(F ) = 1 and hcfχ(F ) ≤ 2. Then let

χ∗(F ) =

{
χcr(F ) if hcf(F ) = 1,

χ(F ) otherwise.

In particular we have χcr(F ) ≤ χ∗(F ).

Theorem 1.9 (Kühn and Osthus [26, 29]). There exist integers C = C(F ) and n0 = n0(F )
such that every graph G whose order n ≥ n0 is divisible by |F | and whose minimum degree
is at least (1− 1/χ∗(F ))n+ C contains a perfect F -packing.

Theorem 1.9 is best possible in the sense that the degree condition cannot be lowered up to
the constant C (there are also graphs F such that the constant cannot be omitted entirely).
Moreover, this also implies that, one can replace χ(F ) with χcr(F ) in Theorem 1.7 if and
only if hcf(F ) = 1. When hcf(F ) 6= 1 certain divisibility barrier constructions show that the
minimum degree condition in Theorem 1.9 (and thus Theorem 1.7) is best possible up to the
additive constant C (see [29]). On the other hand, the following space barrier construction
shows that one cannot replace χ∗(F ) with anything smaller than χcr(F ) in Theorem 1.9; that
is, when hcf(F ) 6= 1, Theorem 1.9 is best possible up to the additive constant C: Let G be
the complete χ(F )-partite graph on n vertices with σ(F )n/|F |−1 vertices in one vertex class,
and the other vertex classes of sizes as equal as possible. Then δ(G) = (1 − 1/χcr(F ))n − 1
and G does not contain a perfect F -packing.

Now let us return to the algorithmic aspect of this problem. Let Pack(F, δ) be the decision
problem of determining whether a graph G whose minimum degree is at least δ|G| contains
a perfect F -packing. When F contains a component of size at least 3, the result of Hell and
Kirkpatrick [14] shows that Pack(F, 0) is NP-complete. In contrast, Theorem 1.9 gives that
Pack(F, δ) is (trivially) in P for any δ ∈ (1− 1/χ∗(F ), 1]. In [26], Kühn and Osthus showed
that Pack(F, δ) is NP-complete for any δ ∈ [0, 1− 1/χcr(F )) if F is a clique of size at least
3 or a complete k-partite graph such that k ≥ 2 and the size of the second smallest vertex
class is at least 2.

Due to lack of knowledge on the range δ ∈ [0, 1 − 1/χ∗(F )) for general F , we still do not
understand Pack(F, δ) well in general. Indeed, even for (unbalanced) complete multi-partite
graphs F with hcf(F ) 6= 1, there is a substantial hardness gap for δ ∈ [1 − 1/χcr(F ), 1 −
1/χ∗(F )]. In particular, Yuster asked the following question in his survey [47].

Problem 1.10 (Yuster [47]). Is it true that Pack(F, δ) is NP-complete for all δ ∈ [0, 1 −
1/χ∗(F )) and any F which contains a component of size at least 3?
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Our next result provides an algorithm showing that Pack(F, δ) is in P when δ ∈ (1 −
1/χcr(F ), 1], which gives a negative answer to Problem 1.10 (as seen for any F such that
χcr(F ) < χ∗(F )). In fact, this gives the first nontrivial polynomial-time algorithm for the
decision problem Pack(F, δ). In particular, it eliminates the aforementioned hardness gap
for unbalanced complete multi-partite graphs F with hcf(F ) 6= 1 almost entirely.

Theorem 1.11. For any m-vertex k-chromatic graph F and δ ∈ (1−1/χcr(F ), 1], Pack(F, δ)
is in P . That is, for every n-vertex graph G with minimum degree at least δn, there is an

algorithm with running time O(nmax{2mk−1−1m+1,m(2m−1)m}), which determines whether G
contains a perfect F -packing.

In view of the aforementioned result of [26], Theorem 1.11 is asymptotically best possible
if F is a complete k-partite graph such that k ≥ 2 and the size of the second smallest cluster
is at least 2 (note that when F is balanced, the result is included in Theorem 1.6). On the
other hand, Theorem 1.11 complements Theorem 1.8 in the sense that when the minimum
degree condition guarantees an F -packing that covers all but constant number of vertices, we
can detect the ‘last obstructions’ efficiently.

We remark that Theorem 1.11 also appears in a conference paper of the first author [13].

1.3. Perfect packings in hypergraphs. Over the last few years there has been an interest
in obtaining degree conditions that force a perfect F -packing in k-graphs where k ≥ 3. In
general though, this appears to be a harder problem than the graph version. Indeed, far less
is known in the hypergraph case. See a survey of Zhao [48] for an overview of the known
results in the area. Our final application of Theorem 3.1 is related to a recent general result
of Mycroft [35].

Given a k-graph F and an integer n divisible by |F |, we define the threshold δ(n, F ) as the
smallest integer t such that every n-vertex k-graph H with δk−1(H) ≥ t contains a perfect
F -packing. Let F be a k-partite k-graph on vertex set U with at least one edge. Then a
k-partite realisation of F is a partition of U into vertex classes U1, . . . , Uk so that for any
e ∈ E(F ) and 1 ≤ j ≤ k we have |e ∩ Uj | = 1. Define

S(F ) :=
⋃
χ

{|U1|, . . . , |Uk|} and D(F ) :=
⋃
χ

{||Ui| − |Uj || : i, j ∈ [k]},

where in each case the union is taken over all k-partite realisations χ of F into vertex classes
U1, . . . , Uk of F . Then gcd(F ) is defined to be the greatest common divisor of the set D(F )
(if D(F ) = {0} then gcd(F ) is undefined). We also define

σ(F ) :=
minS∈S(F ) S

|V (F )|
,

and thus in particular, σ(F ) ≤ 1/k. Mycroft [35] proved the following:

δ(n, F ) ≤

 n/2 + o(n) if S(F ) = {1} or gcd(S(F )) > 1;
σ(F )n+ o(n) if gcd(F ) = 1;
max{σ(F )n, n/p}+ o(n) if gcd(S(F )) = 1 and gcd(F ) = d > 1,

(1.1)

where p is the smallest prime factor of d. Moreover, equality holds in (1.1) for all complete
k-partite k-graphs F , as well as a wide class of other k-partite k-graphs.

Mycroft [35] also showed that minimum codegree of at least σ(F )n+ o(n) in an n-vertex
k-graph H ensures an F -packing covering all but a constant number of vertices. The next two
results show that above this degree threshold, one can determine in polynomial time whether
H contains a perfect F -packing, whilst below the threshold the problem is NP-complete
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(for complete k-partite k-graphs F ). Given δ > 0 and a k-graph F , let Pack(F, δ) be the
decision problem of determining whether a k-graph H whose minimum codegree is at least
δ|H| contains a perfect F -packing.

Theorem 1.12. Let k ≥ 3 be an integer and let F be a complete k-partite k-graph. Then
Pack(F, δ) is NP-complete for any δ ∈ [0, σ(F )).

Theorem 1.13. Let k ≥ 3 be an integer and let F be an m-vertex k-partite k-graph. For any
δ ∈ (σ(F ), 1], Pack(F, δ) is in P . That is, for every n-vertex k-graph H with δk−1(H) ≥ δn,

there is an algorithm with running time O(nm(2m−1)m), which determines whether H contains
a perfect F -packing.

Note that when F is just an edge, a perfect F -packing is simply a perfect matching.
Further, in this case σ(F ) = 1/k. Thus, Theorem 1.13 is a generalisation of the perfect
matching result of Keevash, Knox and Mycroft [20].

1.4. A general tool for complexity results. To prove the results mentioned above, we
introduce a general structural theorem, Theorem 3.1. Given any k-graph F , Theorem 3.1
considers k-graphs H whose minimum `-degree is sufficiently large so as to ensure H contains
an almost perfect F -packing (that is an F -packing covering all but a constant number of
vertices in H). To state Theorem 3.1 we introduce a coset group which, loosely speaking,
is defined with respect to the ‘distribution’ of copies of F in H. In particular, Theorem 3.1
states that if this coset group Q has bounded size then we have a necessary and sufficient
condition for H containing a perfect F -packing. This condition can be easily checked in
polynomial time. This means if we have a class of k-graphs H (i) each of whose minimum
`-degree is sufficiently large and; (ii) each such H has a corresponding coset group Q of
bounded size, then we can determine in polynomial time whether an element H in this class
has a perfect F -packing.

Thus, in applications of Theorem 3.1 the key goal is to determine whether the corre-
sponding coset groups have bounded size. In our applications to Theorems 1.11 and 1.13
all k-graphs H considered will have a corresponding coset group Q of bounded size. On the
other hand, to prove Theorem 1.3 we show that a hypergraph H under consideration must
have a corresponding coset group Q of bounded size, or failing that, must have a perfect
matching.

The approach of using these auxiliary coset groups as a tool for such complexity results was
also used in [20, 10]; note that these applications were for perfect matchings in hypergraphs
of large minimum codegree. Theorem 3.1 provides a generalisation of this approach. Indeed,
Theorem 3.1 is applicable to perfect matching and packing problems in (hyper)graphs of
large minimum `-degree for any `. As such, we suspect Theorem 3.1 could have many more
applications in the area.

The paper is organised as follows. In the next section we prove Theorem 1.12. In Section 3
we introduce the general structural theorem (Theorem 3.1) as well as some notation and
definitions. We prove Theorem 3.1 in Sections 4 and 5. In Sections 6 and 7 we introduce some
tools that are useful for the applications of Theorem 3.1. We then prove Theorems 1.3, 1.11
and 1.13 in Sections 8, 9 and 10 respectively.

2. Proof of the hardness result

In this section we prove Theorem 1.12.
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Proof of Theorem 1.12. Our proof resembles the one of Szymańska [42, Theorem 1.7] and we
also use the following result from it. Let PMlin(k) be the subproblem of PM(k, 0) restricted
to k-uniform hypergraphs which are linear, that is, any two edges share at most one vertex.
Then it is shown in [42] that PMlin(3) is NP-complete.

Let K := K(k)(a1, . . . , ak) be the complete k-partite k-graph of order m with vertex classes
of size a1 ≤ · · · ≤ ak. We may assume that ak ≥ 2 as otherwise K is just a single edge and
Pack(K, δ) is NP-complete for δ ∈ [0, 1/k) as shown in [42]. We prove the theorem by the
following reductions.

PMlin(3)
(a)

≤ PMlin(m)
(b)

≤ Pack(K, 0)
(c)

≤ Pack(K, δ).

Reduction (a). In fact, we will show that PMlin(k)≤PMlin(k+ 1) for any k ≥ 3. Let H be a
linear k-graph with n vertices and s edges. We construct a linear (k + 1)-graph G by taking
k+1 disjoint copies Hi of H, i ∈ [k+1] and for every edge e in each copy Hi we add one vertex
vei to V (G), i.e., V (G) =

⋃
i∈[k+1](V (Hi)∪

⋃
e∈E(Hi)

{vei }). Thus |V (G)| = (k+ 1)(n+ s). For

every e ∈ E(H) the (k + 1)-tuple {vei : i ∈ [k + 1]} forms an edge of G. Moreover, we add to
E(G) all sets of the form e ∪ {vei } for all i ∈ [k + 1] and e ∈ E(Hi). Hence, G has (k + 2)s
edges and is linear by the definition.

Suppose H has a perfect matching M . Let Mi be the same matching in the copy Hi of
H, i ∈ [k + 1]. Then it is easy to see that G has a perfect matching M ′ = {e ∪ {vei }, e ∈
Mi, i ∈ [k + 1]} ∪ {fe = {ve1, . . . , vek+1} : e /∈ M}. On the other hand assume that G has a
perfect matching M ′ = {f1, . . . , fn+s}. For all v ∈ V (H1), let f(v) be such that f(v) ∈ M ′
and v ∈ f(v). But the only edges of G containing the vertices of H1 are of the form e∪{ve1},
so |{f(v) : v ∈ V (H1)}| = n/k and {f(v) ∩ V (H1) : v ∈ V (H1)} is a perfect matching of H1.
Therefore H also has a perfect matching.

Reduction (b). Given a linear m-graph H we build a k-graph G by replacing each edge of H
with a copy of K. If H has a perfect matching then G has a perfect K-packing. In turn, if G
has a perfect K-packing, then by the linearity of H, each copy of K corresponds to a single
edge of H and therefore the K-packing corresponds to a perfect matching of H. In fact, since
K is complete k-partite, there exists an ordering e1, . . . , et of E(K) (e.g., the lexicographic
ordering) such that for any 2 ≤ i ≤ t, there exists 1 ≤ j ≤ i− 1 such that |ei ∩ ej | ≥ 2. Then
by the linearity of H, each copy of K corresponds to a single edge of H.

Reduction (c). Let γ := σ(K) − δ = a1/m − δ and thus γ > 0. To achieve this, for each
instance H of Pack(K, 0) with n vertices such that m | n, we define a graph H ′ as follows. Let
H0 = H0(k, n, γ) be a k-graph, in which the vertex set is the union of two disjoint sets A∪B,
such that |A| = a1dn/γe and |B| = (m−a1)dn/γe. The edge set of H0 consists of all k-vertex
sets of A ∪ B which have a non-empty intersection with A. Observe that δk−1(H0) = |A|
and H0 has a perfect K-packing (in which each copy of K contains a1 vertices in A and
m − a1 vertices in B). Then let H ′ be the k-graph such that V (H ′) = V (H) ∪ V (H0) and
E(H ′) = E(H) ∪ E, where E consists of all k-sets that intersect A and thus E(H0) ⊆ E.
Clearly |V (H ′)| = n+mdn/γe and

δk−1(H
′) = |A| = a1dn/γe ≥

(a1
m
− a1
m2

γ
)
|V (H ′)| > δ|V (H ′)|.

If H has a perfect K-packing, so does H ′. Now suppose that H does not have a perfect K-
packing and H ′ has a perfect K-packing M . This means that there exists a copy of K in M
with its vertex set denoted by K ′, such that K ′∩A 6= ∅ and K ′∩V (H) 6= ∅. First assume that

K ′ ∩ B = ∅. Then since |A\K
′|

|B\K′| = |A\K′|
|B| < a1/(m− a1), the vertices of B cannot be covered
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completely by M , contradicting the existence of M . Otherwise K ′ ∩ B 6= ∅. Then clearly

1 ≤ |K ′ ∩B| ≤ m− a1 − 1 and |A ∩K ′| ≥ a1. Again, |A\K
′|

|B\K′| ≤
|A|−a1

|B|−(m−a1−1) < a1/(m− a1),
so the rest of the vertices of B cannot be covered completely by M , a contradiction. �

3. The general structural theorem

In order to state our general structural theorem, Theorem 3.1, we will now introduce some
definitions and notation.

3.1. Almost perfect packings. Let k, ` ∈ N where ` ≤ k − 1. Let F be an m-vertex k-
graph and D ∈ N. Define δ(F, `,D) to be the smallest number δ such that every k-graph H

on n vertices with δ`(H) ≥ (δ+ o(1))
(
n−`
k−`
)

contains an F -packing covering all but at most D

vertices. We write δ(k, `,D) for δ(F, `,D) when F is a single edge.

3.2. Lattices and solubility. One concept needed to understand the statement and proof of
Theorem 3.1 is that of lattices and solubility introduced by Keevash, Knox and Mycroft [20].
Let H be an n-vertex k-graph. We will work with a vertex partition P = {V1, . . . , Vd}
of V (H) for some integer d ≥ 1. In this paper, every partition has an implicit ordering
of its parts. The index vector iP(S) ∈ Zd of a subset S ⊆ V (H) with respect to P is
the vector whose coordinates are the sizes of the intersections of S with each part of P,
namely, iP(S)|i = |S ∩ Vi| for i ∈ [d], where v|i is defined as the ith digit of v. For any

v = {v1, . . . , vd} ∈ Zd, let |v| :=
∑d

i=1 vi. We say that v ∈ Zd is an r-vector if it has
non-negative coordinates and |v| = r.

Let F be an m-vertex k-graph and let µ > 0. Define IµP,F (H) to be the set of all i ∈ Zd

such that H contains at least µnm copies of F with index vector i and let LµP,F (H) denote

the lattice in Zd generated by IµP,F (H).

Let q ∈ N. A (possibly empty) F -packing M in H of size at most q is a q-solution for
(P, LµP,F (H)) (in H) if iP(V (H) \ V (M)) ∈ LµP,F (H); we say that (P, LµP,F (H)) is q-soluble
if it has a q-solution.

Given a partition P of d parts, we write Ldmax for the lattice generated by all m-vectors.
So Ldmax := {v ∈ Zd : m divides |v|}.

Suppose L ⊂ L|P|max is a lattice in Z|P|, where P is a partition of a set V . The coset group of

(P, L) is Q = Q(P, L) := L
|P|
max/L. For any i ∈ L|P|max, the residue of i in Q is RQ(i) := i + L.

For any A ⊆ V of size divisible by m, the residue of A in Q is RQ(A) := RQ(iP(A)).

3.3. Reachability and good partitions. Let F be an m-vertex k-graph and let H be an
n-vertex k-graph. We say that two vertices u and v in V (H) are (F, β, i)-reachable in H if
there are at least βnim−1 (im − 1)-sets S such that both H[S ∪ {u}] and H[S ∪ {v}] have
perfect F -packings. We refer to such a set S as a reachable (im−1)-set for u and v. We say a
vertex set U ⊆ V (H) is (F, β, i)-closed in H if any two vertices u, v ∈ U are (F, β, i)-reachable

in H. Given any v ∈ V (H), define ÑF,β,i(v,H) to be the set of vertices in V (H) that are
(F, β, i)-reachable to v in H.

Let β, c > 0 and t ∈ N. A partition P = {V1, . . . , Vd} of V (H) is (F, β, t, c)-good if the
following properties hold:

• Vi is (F, β, t)-closed in H for all i ∈ [d];
• |Vi| ≥ cn for all i ∈ [d].
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3.4. Statement of the general structural theorem. With these definitions to hand,
we are now able to state the general structural theorem. Throughout the paper, we write
0 < α � β � γ to mean that we can choose the constants α, β, γ from right to left. More
precisely, there are increasing functions f and g such that, given γ, whenever we choose some
β ≤ f(γ) and α ≤ g(β), all calculations needed in our proof are valid. Hierarchies of other
lengths are defined in the obvious way.

Theorem 3.1 (Structural Theorem). Let k, ` ∈ N where ` ≤ k− 1 and let F be an m-vertex
k-graph. Define D, q, t, n0 ∈ N and β, µ, γ, c > 0 where

1/n0 � β, µ� γ, c, 1/m, 1/D, 1/q, 1/t.

Let H be a k-graph on n ≥ n0 vertices where m divides n. Suppose that

(i) δ`(H) ≥ (δ(F, `,D) + γ)
(
n−`
k−`
)
;

(ii) P = {V1, . . . , Vd} is an (F, β, t, c)-good partition of V (H);
(iii) |Q(P, LµP,F (H))| ≤ q.

Then H contains a perfect F -packing if and only if (P, LµP,F (H)) is q-soluble.

At first sight Theorem 3.1 may seem somewhat technical. In particular, it may not be
clear the roles that conditions (i)–(iii) play. We will explain this in more detail now.

In the proof of (the backward implication of) Theorem 3.1 we will utilise the absorbing
method. This technique was initiated by Rödl, Ruciński and Szemerédi [38] and has proven
to be a powerful tool for finding spanning structures in graphs and hypergraphs. Fix an
integer i > 0 and a k-graph F . Let H be a k-graph. For a set S ⊆ V (H), we say a set
T ⊆ V (H) is an absorbing (F, i)-set for S if |T | = i and both H[T ] and H[T ∪ S] contain
perfect F -packings. Informally, we will refer to T as an absorbing set for S and say T absorbs
S.

Often in proofs employing the absorbing method the goal is to find some small set A such
that for any very small set of vertices S in H, A absorbs S. In particular, if one could
guarantee such a set A in Theorem 3.1 then we would ensure a perfect F -packing: By (i),
H \A would have an almost perfect F -packing. Then A can be used to absorb the uncovered
vertices to obtain a perfect F -packing.

Not all k-graphs satisfying the hypothesis of Theorem 3.1 will have a perfect F -packing; so
one cannot obtain such a set A in general. Instead, in the proof of Theorem 3.1 we will apply
the lattice-based absorbing method developed recently by the first author [10]: What one can
always guarantee in our case is a small family of absorbing sets Fabs with the property that
for every m-vertex set S ⊆ V (H) such that iP(S) ∈ IµP,F (H), there are many sets in Fabs
that do absorb S. This is made precise in Lemma 4.1 in Section 4. We remark that to obtain
Fabs it was crucial that condition (ii) in Theorem 3.1 holds.

Now suppose M is an almost perfect F -packing in H\V (Fabs). Let U denote the vertices in
H\V (Fabs) uncovered by M . If there is a partition S1, . . . , Ss of U such that iP(Si) ∈ IµP,F (H)
for each i, then by definition of Fabs we can absorb the vertices in U to obtain a perfect F -
packing in H. To find such a partition of U we certainly would need that iP(U) ∈ LµP,F (H).

This is where the property that (P, LµP,F (H)) is q-soluble is vital: by definition this allows

us to find an F -packing M1 of size at most q such that iP(V (H) \ V (M1)) ∈ LµP,F (H).
Roughly speaking, the idea is that by removing the vertices of M1 from H we now have a
more ‘balanced’ k-graph where (by following the steps outlined above) we do obtain a set of
uncovered vertices U that can be fully absorbed using the family Fabs. This step is a little
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involved; that is, some careful refinement of the uncovered set U is still needed to ensure
there is a partition S1, . . . , Ss of U such that iP(Si) ∈ IµP,F (H) for each i.

Condition (iii) is applied in both the forward and backward implication of Theorem 3.1. In
particular, this is precisely the condition required to show that if H has a perfect matching
then (P, LµP,F (H)) is q-soluble.

In the next section we prove the absorbing lemma and in Section 5 we prove Theorem 3.1.

4. Absorbing lemma

The following result guarantees our collection Fabs of absorbing sets in the proof of Theo-
rem 3.1.

Lemma 4.1 (Absorbing Lemma). Suppose F is an m-vertex k-graph and

1/n� 1/c� β, µ� 1/m, 1/t,

and H is a k-graph on n vertices. Suppose P = {V1, . . . , Vd} is a partition of V (H) such that
for each i ∈ [d], Vi is (F, β, t)-closed. Then there is a family Fabs of disjoint tm2-sets with
size at most c log n such that for each A ∈ Fabs, H[A] contains a perfect F -packing and every
m-vertex set S with iP(S) ∈ IµP,F (H) has at least

√
log n absorbing (F, tm2)-sets in Fabs.

Proof. Our first task is to prove the following claim.

Claim 4.2. Any m-set S with iP(S) ∈ IµP,F (H) has at least µβm+1ntm
2

absorbing (F, tm2)-
sets.

Proof. For anm-set S = {y1, . . . , ym} with iP(S) ∈ IµP,F (H), we construct absorbing (F, tm2)-

sets for S as follows. We first fix a copy F ′ of F with vertex set W = {x1, . . . , xm} in
H such that iP(W ) = iP(S) ∈ IµP,F (H) and W ∩ S = ∅. Note that we have at least

µnm −mnm−1 > µ
2n

m choices for such F ′. Without loss of generality, we may assume that
for all i ∈ [m], xi, yi are in the same part of P. Since xi is (F, β, t)-reachable to yi, there are
at least βntm−1 (tm − 1)-sets Ti such that both H[Ti ∪ {xi}] and H[Ti ∪ {yi}] have perfect
F -packings. We pick disjoint reachable (tm − 1)-sets for each xi, yi, i ∈ [m] greedily, while
avoiding the existing vertices. Since the number of existing vertices is at most tm2 +m, we
have at least β

2n
tm−1 choices for such (tm− 1)-sets in each step. Note that W ∪T1 ∪ · · · ∪Tm

is an absorbing set for S. First, it contains a perfect F -packing because each Ti ∪ {xi} for
i ∈ [m] spans t vertex-disjoint copies of F . Second, H[W ∪ T1 ∪ · · · ∪ Tm ∪ S] also contains
a perfect F -packing because F ′ is a copy of F and each Ti ∪ {yi} for i ∈ [m] spans t vertex-

disjoint copies of F . There were at least µ
2n

m choices for W and at least β
2n

tm−1 choices for
each Ti. Thus we find at least

µ

2
nm × βm

2m
ntm

2−m × 1

(tm2)!
≥ µβm+1ntm

2

absorbing (F, tm2)-sets for S. �

We pick a family F of tm2-sets by including every tm2-subset of V (H) with probability

p = cn−tm
2

log n independently, uniformly at random. Then the expected number of elements
in F is p

(
n
tm2

)
≤ c

tm2 log n and the expected number of intersecting pairs of tm2-sets is at
most

p2
(
n

tm2

)
· tm2 ·

(
n

tm2 − 1

)
≤ c2(log n)2

n
= o(1).
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Then by Markov’s inequality, with probability at least 1−1/(tm2)−o(1), F contains at most
c log n sets and they are pairwise vertex disjoint.

For every m-set S with iP(S) ∈ IµP,F (H), let XS be the number of absorbing sets for S in
F . Then by Claim 4.2,

E(XS) ≥ pµβm+1ntm
2

= µβm+1c log n.

By Chernoff’s bound,

P
(
XS ≤

1

2
E(XS)

)
≤ exp

{
−1

8
E(XS)

}
≤ exp

{
−µβ

m+1c log n

8

}
= o(n−m),

since 1/c � β, µ � 1/m. Thus, with probability 1 − o(1), for each m-set S with iP(S) ∈
IµP,F (H), there are at least

1

2
E(XS) ≥ µβm+1c log n

2
>
√

log n

absorbing sets for S in F . We obtain Fabs by deleting the elements of F that are not absorbing
sets for any m-set S and thus |Fabs| ≤ |F| ≤ c log n. �

5. Proof of Theorem 3.1

5.1. Proof of the forward implication of Theorem 3.1. If H contains a perfect F -
packing M , then iP(V (H) \ V (M)) = 0 ∈ LµP,F (H). We will show that there exists an

F -packing M ′ ⊂ M of size at most q such that iP(V (H) \ V (M ′)) ∈ LµP,F (H) and thus

(P, LµP,F (H)) is q-soluble. Indeed, suppose M ′ ⊂ M is a minimum F -packing such that

iP(V (H) \ V (M ′)) ∈ LµP,F (H) and |M ′| = m′ ≥ q. Let M ′ = {e1, . . . , em′} and consider the

m′ + 1 partial sums

j∑
i=1

iP(ei) + LµP,F (H) =

j∑
i=1

RQ(P,LµP,F (H))(ei),

for j = 0, 1, . . . ,m′. Since |Q(P, LµP,F (H))| ≤ q ≤ m′, two of the sums must be equal. That

is, there exists 0 ≤ j1 < j2 ≤ m′ such that

j2∑
i=j1+1

iP(ei) ∈ LµP,F (H).

So the F -packing M ′′ := M ′ \ {ej1+1, . . . , ej2} satisfies that iP(V (H) \ V (M ′′)) ∈ LµP,F (H)

and |M ′′| < |M ′|, a contradiction.

5.2. Proof of the backward implication of Theorem 3.1. Suppose I is a set of m-
vectors of Zd and J is a (finite) set of vectors such that any i ∈ J can be written as a linear
combination of vectors in I, namely, there exist av(i) ∈ Z for all v ∈ I, such that

i =
∑
v∈I

av(i)v.

We denote by C(d,m, I, J) as the maximum of |av(i)|,v ∈ I over all i ∈ J .
The proof of the backward implication of Theorem 3.1 consists of a few steps. We first

fix an F -packing M1, a q-solution of (P, LµP,F (H)). We apply Lemma 4.1 to H and get

a family Fabs of tm2-sets of size at most c log n. Let F0 be the subfamily of Fabs that
do not intersect V (M1). Next we find a set M2 of disjoint copies of F , which includes
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(constantly) many copies of F for each m-vector in IµP,F (H). Now by definition of δ(F, `,D),

in H[V \ (V (F0) ∪ V (M1 ∪M2))] we find an F -packing M3 covering all but a set U of at
most D vertices. The remaining job is to ‘absorb’ the vertices in U . Roughly speaking, by
the solubility condition, we can release some copies of F in some members of F0 and M3,
such that the set Y ⊇ U of uncovered vertices satisfies that iP(Y ) ∈ LµP,F (H). Furthermore,
by releasing some copies of F in M2, we can partition the new set of uncovered vertices
as a collection of m-sets S such that iP(S) ∈ IµP,F (H) for each S. Then we can finish the
absorption by the absorbing property of F0.

Proof of the backward implication of Theorem 3.1. Define an additional constant C > 0 so
that

1/n0 � 1/C � β, µ.

Let H be as in the statement of the theorem. Moreover, assume that (P, LµP,F (H)) is q-

soluble. We first apply Lemma 4.1 to H and get a family Fabs of disjoint tm2-sets of size at
most C log n such that every m-set S of vertices with iP(S) ∈ IµP,F (H) has at least

√
log n

absorbing (F, tm2)-sets in Fabs.
Since (P, LµP,F (H)) is q-soluble, there exists an F -packing M1 of size at most q such that

iP(V (H) \ V (M1)) ∈ LµP,F (H). Note that V (M1) may intersect V (Fabs) in at most qm

absorbing sets of Fabs. Let F0 be the subfamily of Fabs obtained from removing the tm2-
sets that intersect V (M1). Let M0 be the perfect F -packing on V (F0) that is the union of
the perfect F -packings on each member of F0. Note that every m-set S of vertices with
iP(S) ∈ IµP,F (H) has at least

√
log n− qm absorbing sets in F0.

Next we want to ‘store’ some copies of F for each m-vector in IµP,F (H) for future use.

More precisely, let J be the set of all m′-vectors in LµP,F (H) such that 0 ≤ m′ ≤ qm+D and

set C ′ := C(d,m, IµP,F (H), J). We find an F -packing M2 in H \ V (M0 ∪M1) which contains

C ′ copies F ′ of F with iP(F ′) = i for every i ∈ IµP,F (H). So |M2| ≤
(
m+d−1
m

)
C ′ and the

process is possible because H contains at least µnm copies of F for each i ∈ IµP,F (H) and

|V (M0 ∪M1 ∪M2)| ≤ tm2C log n+ qm+
(
m+d−1
m

)
C ′m < µn.

Let H ′ := H \ V (M0 ∪M1 ∪M2) and n′ := |H ′|. So n′ ≥ n− µn and

δ`(H
′) ≥ δ`(H)− µnk−` ≥ (δ(F, `,D) + γ/2)

(
n′ − `
k − `

)
.

By the definition of δ(F, `,D) we have an F -packing M3 in H ′ covering all but at most D
vertices. Let U be the set of vertices in H ′ uncovered by M3.

Let Q := Q(P, LµP,F (H)). Recall that iP(V (H) \ V (M1)) ∈ LµP,F (H). Note that by

definition, the index vectors of all copies of F in M2 are in IµP,F (H). So we have iP(V (H) \
V (M1 ∪M2)) ∈ LµP,F (H), namely, RQ(V (H) \ V (M1 ∪M2)) = 0 + LµP,F (H). Thus,∑

F ′∈M0∪M3

RQ(V (F ′)) +RQ(U) = 0 + LµP,F (H).

Suppose RQ(U) = v0 + LµP,F (H) for some v0 ∈ Ldmax; so∑
F ′∈M0∪M3

RQ(V (F ′)) = −v0 + LµP,F (H).
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Claim 5.1. There exist F1, . . . , Fp ∈M0 ∪M3 for some p ≤ q − 1 such that∑
i∈[p]

RQ(V (Fi)) = −v0 + LµP,F (H). (5.1)

Proof. Assume to the contrary that F1, . . . , Fp ∈ M0 ∪ M3 is a minimum set of copies of
F such that (5.1) holds and p ≥ q. Consider the p + 1 partial sums

∑
i∈[j]RQ(V (Fi)) for

j = 0, 1, . . . , p, where the sum equals 0+LµP,F (H) when j = 0. Since |Q| ≤ q, two of the partial

sums must be equal, that is, there exist 0 ≤ p1 < p2 ≤ p such that
∑

p1<i≤p2 RQ(V (Fi)) =

0 +LµP,F (H). So we get a smaller collection of copies of F in M0 ∪M3 such that (5.1) holds,
a contradiction. �

So we have
∑

i∈[p] iP(V (Fi)) + iP(U) ∈ LµP,F (H). Let Y :=
⋃
i∈[p] V (Fi) ∪ U and thus

|Y | ≤ mp + D ≤ mq + D. We now complete the perfect F -packing by absorption. Since
iP(Y ) ∈ LµP,F (H), we have the following equation

iP(Y ) =
∑

v∈IµP,F (H)

avv,

where av ∈ Z for all v ∈ IµP,F (H). Since |Y | ≤ qm + D, by the definition of C ′, we have

|av| ≤ C ′ for all v ∈ IµP,F (H). Noticing that av may be negative, we can assume av = bv−cv
such that one of bv, cv is |av| and the other is zero for all v ∈ IµP,F (H). So we have∑

v∈IµP,F (H)

cvv + iP(Y ) =
∑

v∈IµP,F (H)

bvv.

This equation means that given any family F consisting of disjoint
∑

v cv m-setsWv
1 , . . . ,W

v
cv ⊆

V (H) \ Y for v ∈ IµP,F (H) such that iP(Wv
i ) = v for all i ∈ [cv], we can regard V (F)∪ Y as

the union of bv m-sets Sv
1 , . . . , S

v
bv

such that iP(Sv
j ) = v, j ∈ [bv] for all v ∈ IµP,F (H). Since

cv ≤ C ′ for all v and V (M2) ∩ Y = ∅, we can choose the family F as a subset of M2. In
summary, starting with the F -packing M0∪M1∪M2∪M3 leaving U uncovered, we delete the
copies F1, . . . , F` of F from M0 ∪M3 given by Claim 5.1 and then leave Y =

⋃
i∈[p] V (Fi)∪U

uncovered. Then we delete the family F of copies of F from M2 and leave V (F) ∪ Y uncov-

ered. Finally, we regard V (F) ∪ Y as the union of at most
(
m+d−1

d

)
C ′ + qm+D ≤

√
log n/2

m-sets S with iP(S) ∈ IµP,F (H).
Note that by definition, Y may intersect at most qm + D absorbing sets in F0, which

cannot be used to absorb those sets we obtained above. Since each m-set S has at least√
log n− qm >

√
log n/2 + qm+D absorbing (F, tm2)-sets in F0, we can greedily match each

S with a distinct absorbing (F, tm2)-set FS ∈ F0 for S. Replacing the F -packing on V (FS)
in M0 by the perfect F -packing on H[FS ∪ S] for each S gives a perfect F -packing in H. �

6. Useful tools

In this section we collect together some results that will be used in our applications of
Theorem 3.1. When considering `-degree together with `′-degree for some `′ 6= `, the following
proposition is very useful (the proof is a standard counting argument, which we omit).

Proposition 6.1. Let 0 ≤ ` ≤ `′ < k and H be a k-graph. If δ`′(H) ≥ x
(
n−`′
k−`′

)
for some

0 ≤ x ≤ 1, then δ`(H) ≥ x
(
n−`
k−`
)
.
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For the statements of the next three results, recall the definitions introduced in Section 3.3.
Moreover, for any S ⊆ V (H), let N(S) := {T ⊆ V (H)\S : T ∪S ∈ E(H)}, and for simplicity,
we write N(x) for N({x}).
Lemma 6.2 ([33], Lemma 4.2). Let k,m ≥ 2 be integers and γ > 0. Let K be a k-partite
k-graph of order m. There exists 0 < α � γ such that the following holds for sufficiently
large n. For any k-graph H of order n, two vertices x, y ∈ V (H) are (K,α, 1)-reachable to
each other if the number of (k−1)-sets S ∈ N(x)∩N(y) with |N(S)| ≥ γn is at least γ2

(
n
k−1
)
.

The following lemma gives us a sufficient condition for ensuring a partition P = {V1, . . . , Vr}
of a k-graph H such that for any i ∈ [r], Vi is (F, β, 2c−1)-closed in H.

Lemma 6.3. Given δ′ > 0, integers c, k,m ≥ 2 and 0 < α � 1/c, δ′, 1/m, there exists a
constant β > 0 such that the following holds for all sufficiently large n. Let F be an m-vertex
k-graph. Assume H is an n-vertex k-graph and S ⊆ V (H) is such that |ÑF,α,1(v,H)∩S| ≥ δ′n
for any v ∈ S. Further, suppose every set of c + 1 vertices in S contains two vertices that

are (F, α, 1)-reachable in H. Then in time O(n2
c−1m+1) we can find a partition P of S

into V1, . . . , Vr with r ≤ min{c, 1/δ′} such that for any i ∈ [r], |Vi| ≥ (δ′ − α)n and Vi is
(F, β, 2c−1)-closed in H.

We will use the following simple result in the proof of Lemma 6.3.

Proposition 6.4. [33, Proposition 2.1] Let F be a fixed k-graph on m vertices. For ε, β > 0
and an integer i ≥ 1, there exists a β0 = β0(ε, β,m, i) > 0 and an integer n0 = n0(ε, β,m, i)
satisfying the following. Suppose H is a k-graph of order n ≥ n0 and there exists a vertex
x ∈ V (H) with |ÑF,β,i(x,H)| ≥ εn. Then for all 0 < β′ ≤ β0, ÑF,β,i(x,H) ⊆ ÑF,β′,i+1(x,H).

Next we prove Lemma 6.3, whose proof is almost identical to the proof of [10, Lemma 3.8].

Proof of Lemma 6.3. Let ε := α/c. We choose constants satisfying the following hierarchy

1/n� β = βc−1 � βc−2 � · · · � β1 � β0 � ε� 1/c, δ′, 1/m.

Let F and H be as in the statement of the lemma. Throughout this proof, given v ∈ V (H)

and i ∈ [c − 1], we write ÑF,βi,2i(v,H) as Ñi(v) for short. Note that for any v ∈ V (H),

|Ñ0(v)| = |ÑF,β0,1(v,H)| ≥ |ÑF,α,1(v,H)| ≥ δ′n because β0 < α. We also write 2i-reachable
(or 2i-closed) for (F, βi, 2

i)-reachable (or (F, βi, 2
i)-closed). By Proposition 6.4 and the choice

of βis, we may assume that Ñi(v) ⊆ Ñi+1(v) for all 0 ≤ i < c− 1 and all v ∈ V (H). Hence,
if W ⊆ V (H) is 2i-closed in H for some i ≤ c− 1, then W is 2c−1-closed.

We may assume that there are two vertices in S that are not 2c−1-reachable to each other,
as otherwise S is 2c−1-closed in H and we obtain the desired (trivial) partition P = {S}.
Let r be the largest integer such that there exist v1, . . . , vr ∈ S such that no pair of them
are 2c+1−r-reachable in H. Note that r exists by our assumption and 2 ≤ r ≤ c. Fix such
v1, . . . , vr ∈ S; by Proposition 6.4, we can assume that any pair of them are not 2c−r-reachable
in H. Consider Ñc−r(vi) for all i ∈ [r]. Then we have the following facts.

(i) Any v ∈ S \ {v1, . . . , vr} must lie in Ñc−r(vi) for some i ∈ [r], as otherwise v, v1, . . . , vr
contradicts the definition of r.

(ii) |Ñc−r(vi) ∩ Ñc−r(vj)| < εn for any i 6= j. Indeed, otherwise there are at least
εn

(2c+1−rm− 1)!
(βc−rn

2c−rm−1 − n2c−rm−2)(βc−rn2
c−rm−1 − 2c−rmn2

c−rm−2)

reachable (2c+1−rm−1)-sets for vi, vj . This follows because there are at least εn vertices

w ∈ Ñc−r(vi) ∩ Ñc−r(vj), at least βc−rn
2c−rm−1 − n2c−rm−2 reachable (2c−rm− 1)-sets
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T for vi and w that do not contain vj , and at least βc−rn
2c−rm−1 − 2c−rmn2

c−rm−2

reachable (2c−rm − 1)-sets for vj and w that avoid {vi} ∪ T ; finally, we divide by
(2c+1−rm−1)! to eliminate the effect of over-counting. Since βc+1−r � ε, βc−r, 1/c, 1/m,

this gives at least βc+1−rn
2c+1−rm−1 reachable (2c+1−rm−1)-sets for vi, vj , contradicting

the assumption that vi, vj are not 2c+1−r-reachable to each other.

Note that (ii) and |Ñc−r(vi) ∩ S| ≥ |Ñ0(vi) ∩ S| ≥ δ′n for i ∈ [r] imply that rδ′n −
(
r
2

)
εn ≤

|S| ≤ n. So we have r ≤ (1 + c2ε)/δ′. Since ε ≤ α � δ′, 1/c, we have r ≤ 1/δ′ and thus,
r ≤ min{c, 1/δ′}.

For i ∈ [r], let Ui := ((Ñc−r(vi)∪{vi})∩S)\
⋃
j∈[r]\{i} Ñc−r(vj). Note that for i ∈ [r], Ui is

2c−r-closed in H. Indeed, if there exist u1, u2 ∈ Ui that are not 2c−r-reachable to each other,
then {u1, u2} ∪ ({v1, . . . , vr} \ {vi}) contradicts the definition of r.

Let U0 := S\(U1∪· · ·∪Ur). By (i) and (ii), we have |U0| ≤
(
r
2

)
εn. We will move each vertex

of U0 greedily to Ui for some i ∈ [r]. For any v ∈ U0, since |(Ñ0(v)∩S)\U0| ≥ δ′n−|U0| ≥ rεn,
there exists i ∈ [r] such that v is 1-reachable to at least εn vertices in Ui. In this case we
add v to Ui (we add v to an arbitrary Ui if there are more than one such i). Let the

resulting partition of S be V1, . . . , Vr. Note that we have |Vi| ≥ |Ui| ≥ |Ñc−r(vi)∩S| − rεn ≥
|Ñ0(vi) ∩ S| − cεn ≥ (δ′ − α)n. Observe that in each Vi, the ‘farthest’ possible pairs are
those two vertices both from U0, which are 2c−r+1-reachable to each other. Thus, each Vi is
2c−r+1-closed, so 2c−1-closed because r ≥ 2.

We estimate the running time as follows. First, for every two vertices u, v ∈ S, we determine
if they are 2i-reachable for 0 ≤ i ≤ c − 1. This can be done by testing if any (2im − 1)-set

T ∈
(V (H)\{u,v}

2im−1
)

is a reachable set for u and v, namely, if both H[T ∪{u}] and H[T ∪{v}] have
perfect F -packings or not, which can be checked by listing the edges on them, in constant time.

If there are at least βin
2im−1 reachable (2im−1)-sets for u and v, then they are 2i-reachable.

Since we need time O(n2
c−1m−1) to list all (2c−1m− 1)-sets for each pair u, v of vertices, this

can be done in time O(n2
c−1m+1). Second, we search the set of vertices v1, . . . , vr such that

no pair of them are 2c+1−r-reachable for all 2 ≤ r ≤ c. With the reachability information at
hand, this can be done in time O(nc). We then fix the largest r as in the proof. If such r
does not exist, then we get P = {S} and output P. Otherwise, we fix any r-set v1, . . . , vr
such that no pair of them are 2c+1−r-reachable. We find the partition {U0, U1, . . . , Ur} by

identifying Ñc−r(vi) for i ∈ [r], in time O(n). Finally we move vertices of U0 to U1, . . . , Ur,

depending on |Ñ0(v) ∩ Ui| for v ∈ U0 and i ∈ [r], which can be done in time O(n2). Thus,

the running time for finding a desired partition is O(n2
c−1m+1). �

7. Tools for Theorem 1.3

In the following section we prove Theorem 1.3. Here we collect together some useful
notation and results for this proof.

Let H be a k-graph. In the case of perfect matchings (i.e. when F is an edge) we

write (β, i)-reachable, (β, i)-closed and Ñβ,i(v,H) for (F, β, i)-reachable (F, β, i)-closed and

ÑF,β,i(v,H) respectively.
The following result is a weaker version of Lemma 5.6 in [30].

Lemma 7.1. [30] Let k ≥ 2 and 1 ≤ ` ≤ k − 1 be integers, and let ε > 0. Suppose that for
some b, c ∈ (0, 1) and some n0 ∈ N, every k-graph H on n ≥ n0 vertices with δ`(H) ≥ cnk−`
has a fractional matching of size (b+ ε)n. Then there exists an n′0 ∈ N such that any k-graph
H on n ≥ n′0 vertices with δ`(H) ≥ (c+ ε)nk−` contains a matching of size at least bn.
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Note that δ(k, k−1, k) = c∗k,k−1 = 1/k by the results in [40]. The following theorem follows

from [12, Theorem 1.7] and [12, Proposition 1.11] when 2 ≤ ` ≤ k − 1 and follows from the
Strong Absorbing Lemma in [9, Lemma 2.4] and the definition of c∗k,` when ` = 1.

Theorem 7.2. For 1 ≤ ` ≤ k − 1, δ(k, `, k) ≤ max{1/3, c∗k,`}.

In fact, it is not hard to show that δ(k, `, k) = c∗k,` for any 1 ≤ ` ≤ k− 1, but Theorem 7.2
is enough for this paper.

8. Proof of Theorem 1.3

Let δ ∈ (δ∗, 1] and define

0 < 1/n0 � 1/c� µ� β � α′ � η � α� γ � (δ − δ∗), 1/k.

Let H be as in the statement of Theorem 1.3. Note that we may assume n ≥ n0 and k | n since
else the result is trivial (recall the use of big-O notation in the statement of the theorem). So

δ`(H) ≥ (δ∗ + γ)

(
n− `
k − `

)
≥ (1/3 + γ)

(
n− `
k − `

)
(8.1)

and in particular, by Proposition 6.1,

δ1(H) ≥ (1/3 + γ)

(
n− 1

k − 1

)
. (8.2)

Notice that by (8.2),

(∗) Every set of three vertices of V (H) contains two vertices that are (α, 1)-reachable.

Note that when ` = 1, we are just in a subcase of [1, Theorem 1.1]; in this case we must
have a perfect matching. So we may assume that ` > 1.

We now split the argument into two cases.

8.1. There exists v ∈ V (H) such that |Ñα,1(v,H)| ≤ ηn. In this case, we will show that H

must contain a perfect matching. Let W := {v}∪ Ñα,1(v,H) and thus |W | ≤ ηn+1. For any

two vertices u, u′ ∈ V (H) \W , since u, u′ /∈ Ñα,1(v,H), by (∗), u and u′ are (α, 1)-reachable,
i.e., V (H) \W is (α, 1)-closed in H. Let H1 := H \W and n1 := |H1|. Since η � α we have
that V (H) \W = V (H1) is (α/2, 1)-closed in H1.

By Lemma 4.1 (with d = 1) there is a set T ⊆ V (H1) (take T := V (Fabs)) such that |T | ≤
ck2 log n1 and both H1[T ] and H1[T ∪ S] contain perfect matchings for any set S ⊆ V (H1)
where |S| ∈ kN and |S| ≤

√
log n1. We greedily construct a matching M in H such that

|M | ≤ ηn+ 1; W ⊆ V (M); and V (M) ∩ T = ∅. Let H2 := H \ (V (M) ∪ T ) and n2 := |H2|.
Note that H2 is a subgraph of H1. By (8.1), the definition of δ∗ and Theorem 7.2,

δ`(H2) ≥ (δ∗ + γ/2)

(
n2 − `
k − `

)
≥ (δ(k, `, k) + γ/2)

(
n2 − `
k − `

)
.

Thus, by definition of δ(k, `, k), H2 contains a matching M1 covering all but at most k vertices
of H2. Let S denote the leftover set of vertices. (So S = ∅ or |S| = k.) Then H[T ∪S] contains
a perfect matching M2. Altogether, M ∪M1 ∪M2 is a perfect matching in H, as desired.
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8.2. Every vertex v ∈ V (H) satisfies |Ñα,1(v,H)| ≥ ηn. Thus, since α′ � α, every vertex

v ∈ V (H) satisfies |Ñα′,1(v,H)| ≥ ηn. Apply Lemma 6.3 to H (with α′, 2, η playing the roles
of α, c and δ′ respectively) to find a partition P of V (H) into V1, . . . , Vr with r ≤ 2 such that
for any i ∈ [r], |Vi| ≥ ηn/2 and Vi is (β, 2)-closed in H, in time O(n2k+1).

Our aim is to apply Theorem 3.1 to H. First, by Theorem 7.2 and (8.1), we have that

δ`(H) ≥ (δ(k, `, k) + γ)
(
n−`
k−`
)
. Second, by definition, P is an (E, β, 2, η/2)-good partition of

V (H), where E is a k-graph on k vertices consisting of a single edge.
Write L := LµP,E(H) and Q := Q(P, LµP,E(H)). We will show that |Q| ≤ k. Clearly,

if r = 1, then |Q| = 1. So we may assume r = 2. First assume that IµP,E(H) contains

two distinct elements, say, (a, b), (a′, b′) ∈ IµP,E(H) with a 6= a′. Thus (a − a′, b − b′) =

(a − a′, a′ − a) ∈ LµP,E(H). Any coset (x, y) + L in Q must contain some element (x′, y′) so

that x′+ y′ = k. Consider two vectors (n1, n2), (n
′
1, n
′
2) ∈ L2

max where n1 +n2 = n′1 +n′2 = k.
If n1 ≡ n′1 (mod |a−a′|) then these two vectors lie in the same coset in Q. (Indeed, by adding
a multiple of (a−a′, a′−a) to (n1, n2) one can obtain (n′1, n

′
2).) Altogether this implies there

are at most |a− a′| cosets, i.e., |Q| ≤ |a− a′| ≤ k.
Second, assume that IµP,E(H) contains exactly one element, say IµP,E(H) = {(a, b)}, where

a + b = k. Note that it must hold that a ≥ ` and b ≥ `. Indeed, if a < `, then the
number of edges that contain an `-set of index vector (`, 0) is at most 2kµnk. Thus, by
averaging and since µ � η � 1/k, there exists an `-set S of index vector (`, 0) such that

dH(S) ≤
(
k
`

)
2kµnk/

(|V1|
`

)
≤ √µnk−` < δ`(H), a contradiction. The same argument shows

that b ≥ `. Then for 0 ≤ `1 ≤ `, consider the `-vectors (`1, `2). By averaging, for each
0 ≤ `1 ≤ `, there exists an `-set S`1 of index vector (`1, `2) such that

dH(S`1) ≤
(
|V1| − `1
a− `1

)(
|V2| − `2
b− `2

)
+

(
k
`

)
2kµnk(|V1|

`1

)(|V2|
`2

) ≤ ( |V1|
a− `1

)(
|V2|
b− `2

)
+
√
µnk−`.

Recall the identity
∑

0≤i≤t
(
n1

i

)(
n2

t−i
)

=
(
n1+n2

t

)
, so we have∑

0≤`1≤`
dH(S`1) ≤

(
n

k − `

)
+ k
√
µnk−` ≤

(
n− `
k − `

)
+ 2k

√
µnk−`.

Since ` ≥ 2 and a, b ≥ `, the above sum contains at least three terms. As µ � γ � 1/k,

there exists `1 such that dH(S`1) ≤ 1
3

(
n−`
k−`
)

+ 2k
√
µnk−` < (13 + γ)

(
n−`
k−`
)
, contradicting (8.1).

That is, the case when IµP,E(H) contains one element does not occur.

Therefore we can apply Theorem 3.1 to H with D = q = k, t = 2 and c = η/2 and thus
conclude that H contains a perfect matching if and only if (P, LµP,E(H)) is k-soluble.

The algorithm. Now we state our algorithm. First, for every two vertices u, v ∈ V (H),
we determine if they are (α, 1)-reachable, which can be done by testing if any (k − 1)-set is
a reachable set in time O(nk−1). So this step can be done in time O(nk+1). Then we check

if |Ñα,1(v,H)| ≥ ηn for every v ∈ V (H). With the reachability information, this can be

tested in time O(n2). If |Ñα,1(v,H)| < ηn for some v ∈ V (H), then we output PM and halt.

Otherwise we run the algorithm with running time O(n2k+1) provided by Lemma 6.3 and get
a partition P. By Theorem 3.1, it remains to test if (P, LµP,E(H)) is k-soluble. This can be

done by testing whether any matching M of size at most k is a solution of (P, LµP,E(H)), in

time O(nk
2
). If there is a solution M for (P, LµP,E(H)), output PM; otherwise output NO.

The overall running time is O(nk
2
).



THE COMPLEXITY OF PERFECT MATCHINGS AND PACKINGS IN DENSE HYPERGRAPHS 19

9. The perfect graph packing result

In this section we prove Theorem 1.11. Let F be an m-vertex k-chromatic graph. By the
definition of χcr(F ), we have

1

χcr(F )
=
m− σ(F )

(k − 1)m
≤ m− 1

(k − 1)m
. (9.1)

We will apply the following variant of Lemma 6.2, which can be easily derived from the
original version by defining a k-graph G′ where each k-set forms a hyperedge if and only if
it spans a copy of Kk in G. For any vertex u ∈ V (G), let W (u) denote the collection of
(k− 1)-sets S such that S ⊆ N(u) and such that S spans a clique in G. For a set T ⊆ V (G),
let N(T ) :=

⋂
v∈T N(v).

Lemma 9.1. [33] Let k,m ∈ N and γ′ > 0. There exists α = α(k,m, γ′) > 0 such that the
following holds for sufficiently large n. Let F be a k-chromatic graph on m vertices. For any
n-vertex graph G, two vertices x, y ∈ V (G) are (F, α, 1)-reachable if the number of (k−1)-sets
S ∈W (x) ∩W (y) with |N(S)| ≥ γ′n is at least (γ′)2

(
n
k−1
)
.

We apply Lemma 9.1 to prove the following result.

Proposition 9.2. Let k,m, n ≥ 2 be integers and α, γ > 0 where 0 < 1/n � α � γ �
1/m, 1/k. Let F be a k-chromatic graph on m vertices and let G be an n-vertex graph with

δ(G) ≥ (1− 1/χcr(F ) + γ)n. Then for any v ∈ V (G), |ÑF,α,1(v,G)| ≥ (1/m+ γ/2)n.

Proof. For each (k − 1)-set S, since δ(G) ≥ (1− 1/χcr(F ) + γ)n, by (9.1) we have |N(S)| ≥
(1/m + (k − 1)γ)n. Then by Lemma 9.1, for any distinct u, v ∈ V (G), u ∈ ÑF,α,1(v,G) if
|W (u) ∩W (v)| ≥ γ2

(
n
k−1
)
. By double counting, we have∑

S∈W (v)

(|N(S)| − 1) ≤ |ÑF,α,1(v,G)| · |W (v)|+ n · γ2
(

n

k − 1

)
.

Note that any S in the above inequality is a (k − 1)-set, thus |N(S)| ≥ (1/m + (k − 1)γ)n.
On the other hand, using the minimum degree condition, it is easy to see that |W (v)| ≥

1
mk−1

(
n
k−1
)
. Since γ � 1/m, 1/k, we have

|ÑF,α,1(v,G)| ≥ (1/m+ (k − 1)γ)n− 1− γ2nk

|W (v)|
≥ (1/m+ γ/2)n. �

The following proposition shows that |Q(P, LµP,F (G))| is bounded from above.

Proposition 9.3. Let t, r, k,m, n0 ∈ N where k ≥ 2 and let β, µ, γ > 0 so that

1/n0 � β, µ� γ � 1/m, 1/t.

Let F be an unbalanced m-vertex k-chromatic graph. Suppose G is a graph on n ≥ n0 vertices
such that δ(G) ≥ (1− 1/χcr(F ) + γ)n with an (F, β, t, 1/m)-good partition P where |P| = r.
Then |Q(P, LµP,F (G))| ≤ (2m− 1)r.

We need the following simple counting result, which, for example, follows from the result
of Erdős [6] on supersaturation.

Proposition 9.4. Given γ′ > 0, `1, . . . , `k ∈ N, there exists µ > 0 such that the following
holds for sufficiently large n. Let T be an n-vertex graph with a vertex partition V1 ∪ · · · ∪Vd.
Suppose i1, . . . , ik ∈ [d] are not necessarily distinct and T contains at least γ′nk copies of
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Kk with vertex set {v1, . . . , vk} such that v1 ∈ Vi1, . . . , vk ∈ Vik . Then T contains at least

µn`1+···+`k copies of K(2)(`1, . . . , `k) whose jth part is contained in Vij for all j ∈ [k].

We write uj for the ‘unit’ 1-vector that has 1 in coordinate j and 0 in all other coordinates.

Proof of Proposition 9.3. Write L := LµP,F (G). It suffices to show that for any element

v ∈ Lrmax, there exists v′ = (v′1, . . . , v
′
r) ∈ Lrmax such that −(m − 1) ≤ v′i ≤ m − 1 for all

i ∈ [r] and v + L = v′ + L. In particular, the number of such v′ is at most (2m− 1)r. Since
F is unbalanced, there exists a k-colouring with colour class sizes a1 ≤ · · · ≤ ak and a1 < ak.
Set a := ak − a1 < m.

Let P = {V1, . . . , Vr} be the partition of V (G) given in the statement of the proposition.
Define a graph P on the vertex set [r] such that (i, j) ∈ E(P ) if and only if e(G[Vi, Vj ]) ≥ γn2.
We claim that if i and j are connected by a path in P , then a(ui − uj) ∈ L. Indeed, first
assume that (i, j) ∈ E(P ). For each edge uv in G[Vi, Vj ], since

δ(G) ≥ (1− 1/χcr(F ) + γ)n
(9.1)

≥
(

1− m− 1

(k − 1)m
+ γ

)
n,

it is easy to see that uv is contained in at least 1
mk−2

(
n
k−2
)

copies of Kk in G. So there are at

least γn2 · 1
mk−2

(
n
k−2
)
/
(
k
2

)
copies of Kk in G intersecting both Vi and Vj . By averaging, there

exists a k-array (i1, . . . , ik), ij ∈ [r] where i1 = i and ik = j such that G contains at least

1

rk−2
γn2 · 1

mk−2

(
n

k − 2

)
/

(
k

2

)
≥ γ

mk−2rk−2k!
nk

copies of Kk with vertex set {v1, . . . , vk} such that v1 ∈ Vi1 , . . . , vk ∈ Vik . By applying
Proposition 9.4 with `i := ai for each i ∈ [k], we get that there are at least µnm copies of

K(2)(a1, . . . , ak) in G whose jth part is contained in Vij for all j ∈ [k]. We apply Propo-
sition 9.4 again, this time with `i := ai for all 2 ≤ i ≤ k − 1 and `1 := ak, `k := a1 and
thus conclude that there are at least µnm copies of K(2)(ak, a2, . . . , ak−1, a1) (with a1 and
ak exchanged) in G whose jth part is contained in Vij for all j ∈ [k]. Taking subtraction of
index vectors of these two types of copies gives that a(ui − uj) ∈ L. Furthermore, note that
if i and j are connected by a path in P , we can apply the argument above to every edge in
the path and conclude that a(ui − uj) ∈ L, so the claim is proved.

We now distinguish two cases.

Case 1: k ≥ 3. In this case, we first show that P is connected. Indeed, we prove that
for any bipartition A ∪ B of [r], there exists i ∈ A and j ∈ B such that (i, j) ∈ E(P ). Let
VA :=

⋃
i∈A Vi and VB :=

⋃
j∈B Vj . Without loss of generality, assume that |VA| ≤ n/2. Since

δ(G) ≥ 1+(k−2)m
(k−1)m n ≥ (1/2 + 1/(2m))n, the number of edges in G that are incident to VA is

at least

|VA| ·
(

1

2
+

1

2m

)
n−

(
|VA|

2

)
≥
(
|VA|

2

)
+

n

4m
|VA| ≥

(
|VA|

2

)
+ γn2|A||B|,

where the last inequality follows since |A||B| ≤ r2/4, |Vi| ≥ n/m for each i ∈ [r] and
γ � 1/m. By averaging, there exists i ∈ A and j ∈ B such that e(G[Vi, Vj ]) ≥ γn2 and thus
(i, j) ∈ E(P ).

Now let v = (v1, . . . , vr) ∈ Lrmax. We fix an arbitrary m-vector w ∈ L and let v1 :=
v− (|v|/m)w. So |v1| = 0 and v1 +L = v+L. Since P is connected, the claim above implies
that for any i, j ∈ [r], a(ui − uj) ∈ L.
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We now apply the following algorithm to v1. Suppose v1i is the coordinate of v1 with |v1i |
maximised. If |v1i | ≤ a ≤ m− 1 we terminate the algorithm. Otherwise, since |v1| = 0, there
is some coordinate v1j of v1 where the difference between v1i and v1j is more than a. We now

redefine v1 by (i) subtracting a(ui − uj) ∈ L from v1 if v1i > a or (ii) adding a(ui − uj) ∈ L
to v1 if v1i < a. Note that still |v1| = 0.

We repeat this algorithm until we obtain a vector v′ = (v′1, . . . , v
′
r) so that |v′| = 0 and

−(m− 1) ≤ −a ≤ v′i ≤ a ≤ m− 1 for all i ∈ [r]. Note v′ was obtained from v1 by repeatedly
adding and subtracting elements of L to v1. Since initially v1 + L = v + L we have that
v′ + L = v + L, as desired.

Case 2: k = 2. In this case we cannot guarantee that P is connected (we may even have
some isolated vertices). First let i be an isolated vertex in P . By the definition of P , we
know that e(G[Vi, V \ Vi]) ≤ (r − 1)γn2. Since δ(G) ≥ n/m,

e(G[Vi]) ≥
1

2
(|Vi|n/m− (r − 1)γn2) ≥ 1

4m
|Vi|2.

Applying Proposition 9.4 on Vi shows that there are at least µnm copies of K(2)(a1, a2) in
G[Vi], i.e., mui ∈ L. Second, if (i, j) ∈ E(P ), then applying Proposition 9.4 to G[Vi, Vj ] gives
that a1ui + a2uj ∈ L. So in both cases, for any component C in P , there exists an m-vector
w ∈ L such that w|[d]\C = 0.

Now let v = (v1, . . . , vr) ∈ Lrmax. Consider the connected components C1, C2, . . . , Cq of P ,
for some 1 ≤ q ≤ r. By the conclusion in the last paragraph, there exists v1 ∈ Lrmax such
that v − v1 ∈ L (i.e. v + L = v1 + L) and for each component Ci, 0 ≤ |v1|Ci | ≤ m − 1.
(We obtain v1 from v by adding or subtracting from it a multiple of the vector w given by
the last paragraph, for each component C.) By using an analogous algorithm to the one in
Case 1, we can obtain the desired vector v′ from v1. Indeed, using the vectors w given by
the last paragraph, within each nontrivial component Ci, we can ‘balance’ the coordinates,
as in Case 1. In particular, note that if (i, j) ∈ E(P ) then both a1ui + a2uj , a2ui + a1uj ∈ L
and so a(ui − uj) ∈ L. �

Now we are ready to prove Theorem 1.11.

Proof of Theorem 1.11. We first note that it suffices to prove Theorem 1.11 in the case when
F is unbalanced. Indeed, if F is balanced then χ(F ) = χcr(F ) and so the result follows
(trivially) from Theorem 1.6.

Given any δ ∈ (1 − 1/χcr(F ), 1] let µ, α, γ > 0 so that 0 < µ � α � γ � (δ − 1 +
1/χcr(F )), 1/m, 1/k. Apply Lemma 6.3 with c := mk−1, δ′ := 1/m + γ/2 to obtain some
β > 0. We may assume β � α. Finally choose n0 ∈ N such that 1/n0 � β, µ. Altogether we
have

1/n0 � β, µ� α� γ � (δ − 1 + 1/χcr(F )), 1/m, 1/k.

Let G be an n-vertex graph as in the statement of Theorem 1.11. We may assume that n ≥ n0
and m divides n since else the result is trivial. Note that δ(G) ≥ δn ≥ (1− 1/χcr(F ) + γ)n.

By Proposition 9.2, for any v ∈ V (G), |ÑF,α,1(v,G)| ≥ δ′n. The degree condition and
Lemma 9.1 imply that, for distinct u, v ∈ V (G), u and v are (F, α, 1)-reachable if |W (u) ∩
W (v)| ≥ γ2

(
n
k−1
)
. Further, for any u ∈ V (G), the minimum degree condition implies that

|W (u)| ≥ 1
c

(
n−1
k−1
)

(recall c := mk−1). So any set of c+1 vertices in V (G) contains two vertices

that are (F, α, 1)-reachable (here we use that (c + 1)/c − 1 ≥
(
c+1
2

)
γ2). Thus, we can apply

Lemma 6.3 to G to obtain a partition P = {V1, . . . , Vr} of V (G) in time O(n2
c−1m+1). Note



22 THE COMPLEXITY OF PERFECT MATCHINGS AND PACKINGS IN DENSE HYPERGRAPHS

that |Vi| ≥ (δ′−α)n ≥ n/m for all i ∈ [r]. Also r ≤ 1/δ′ ≤ m and each Vi is (F, β, 2c−1)-closed
in H. Thus, P is an (F, β, 2c−1, 1/m)-good partition of V (G).

Note that Theorem 1.8 shows that δ(F, 1, 5m2) ≤ 1 − 1/χcr(F ) and thus δ(G) ≥ (1 −
1/χcr(F )+γ)n ≥ (δ(F, 1, 5m2)+γ)n. Moreover, Proposition 9.3 shows that |Q(P, LµP,F (G))| ≤
(2m−1)r. So by Theorem 3.1 with D := 5m2 and q := (2m−1)r, we conclude that G contains
a perfect F -packing if and only if (P, LµP,F (G)) is (2m− 1)r-soluble.

The algorithm. Now we state the algorithm and estimate the running time. We run

the algorithm with running time O(n2
mk−1−1m+1) provided by Lemma 6.3 and obtain a

partition P of V (G). By Theorem 3.1, it remains to test if (P, LµP,F (G)) is (2m − 1)r-

soluble. This can be done by testing whether any F -packing M of size at most (2m − 1)r

is a q-solution of (P, LµP,F (G)), in time O(nm(2m−1)r) = O(nm(2m−1)m). If there is a q-

solution M for (P, LµP,F (G)), output YES; otherwise output NO. The overall running time

is O(nmax{2mk−1−1m+1,m(2m−1)m}). �

10. Packing k-partite k-uniform hypergraphs

In this section we prove Theorem 1.13. For this we will first collect together a few useful
results. Throughout this section we consider a (not necessarily complete) k-partite k-graph
F on m vertices, and let a be the minimum of the size of the smallest vertex class over all
k-partite realisations of V (F ). Let K(F ) ⊇ F be a complete k-partite k-graph on m vertices
such that the smallest vertex class has a vertices. We will also write σ(F ) := a/m.

The next proposition is a supersaturation result of Erdős [6].

Proposition 10.1. Let η > 0, k, r ∈ N and let K := K(k)(a1, . . . , ak) be the complete k-
partite k-graph with a1 ≤ · · · ≤ ak vertices in each class. there exists 0 < µ � η such that
the following holds for sufficiently large n. Let H be an k-graph on n vertices with a vertex
partition V1 ∪ · · · ∪ Vr. Consider not necessarily distinct i1, . . . , ik ∈ [r]. Suppose H contains
at least ηnk edges e = {v1, . . . , vk} such that v1 ∈ Vi1, . . . , vk ∈ Vik . Then H contains at least
µna1+···+ak copies of K whose jth part is contained in Vij for all j ∈ [k].

We also use the following result of Mycroft [35, Theorem 1.5] which forces an almost perfect
F -packing.

Theorem 10.2. [35] Let F be a k-partite k-graph. There exists a constant D = D(F ) such
that for any α > 0 there exists an n0 = n0(F, α) such that any k-graph H on n ≥ n0 vertices
with δk−1(H) ≥ σ(F )n+ αn admits an F -packing covering all but at most D vertices of H.

The following proposition shows that Q(P, LµP,F (H)) has bounded size.

Proposition 10.3. Let t, r, k, n0 ∈ N so that k ≥ 3 and β, µ, γ > 0 so that

1/n0 � β, µ� γ, 1/m, 1/t, 1/r.

Let F be a k-partite k-graph on m vertices. Suppose H is a k-graph on n ≥ n0 vertices such
that δk−1(H) ≥ (σ(F ) + γ)n with an (F, β, t, 1/m)-good partition P where |P| = r. Then
|Q(P, LµP,F (H))| ≤ (2m− 1)r.

Proof. Write L := LµP,F (H). It suffices to show that for any element v ∈ Lrmax, there exists

v′ = (v′1, . . . , v
′
r) ∈ Lrmax such that −(m− 1) ≤ v′i ≤ m− 1 for all i ∈ [r] and v − v′ ∈ L. In

particular, the number of such v′ is at most (2m− 1)r.
Let P = {V1, . . . , Vr} be the partition of V (H) given in the statement of the proposition.

Fix any i ∈ [r] and consider all edges that contain at least k − 1 vertices from Vi. Since
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δk−1(H) ≥ (a/m+ γ)n, there are at least 1
k

( |Vi|
k−1
)
(a/m+ γ)n such edges. By averaging, there

exists ji ∈ [r] (it may be that ji = i) such that H contains at least

1

r
· 1

k

(
|Vi|
k − 1

)
(a/m+ γ)n ≥ 1

mkk!r
nk

edges with vertex set {v1, . . . , vk} such that v1 ∈ Vji and {v2, . . . , vk} ⊆ Vi. (Here we used

|Vi| ≥ n/m and 1/n � γ.) By applying Proposition 10.1, since µ � 1/(mkk!r), we get that
there are at least µnm copies of K(F ) in H whose vertex class of size a is contained in Vji
and other vertex classes are contained in Vi. This means that (m− a)ui + auji ∈ L for each
i ∈ [r].

Now let v = (v1, . . . , vr) ∈ Lrmax and let l(v) :=
∑

i∈[r] |vi|. We do the following process

iteratively. For an intermediate step, let v∗ = (v∗1, . . . , v
∗
r ) be the current vector and take

i ∈ [r] such that |v∗i | is the maximised over all i ∈ [r]. We thus subtract (m − a)ui + auji
from v∗ if v∗i ≥ m − a or add (m − a)ui + auji to v∗ if v∗i ≤ a −m. Note that this process
will end because after each step l(v∗) =

∑
i∈[r] |v∗i | decreases by at least m − 2a > 0. This

means that we will reach a vector v′ = (v′1, . . . , v
′
r) ∈ Lrmax such that −(m− 1) ≤ v′i ≤ m− 1

for all i ∈ [r] and v − v′ ∈ L. So we are done. �

Proof of Theorem 1.13. Let D := D(F ) be given by Theorem 10.2. Given any δ ∈ (σ(F ), 1]
let µ, α, γ > 0 so that 0 < µ � α � γ � (δ − σ(F )), 1/D, 1/m. Apply Lemma 6.3 with
c := m, δ′ := 1/m + γ/2 to obtain some β > 0. We may assume β � α. Finally choose
n0 ∈ N such that 1/n0 � β, µ. Altogether we have

1/n0 � β, µ� α� γ � (δ − σ(F )), 1/D, 1/m.

Let H be an n-vertex k-graph as in the statement of Theorem 1.13. Note that we may assume
that n ≥ n0 and m divides n since else the result is trivial. We have that δk−1(H) ≥ δn ≥
(σ(F ) + γ)n. By Proposition 6.1, we have δ1(H) ≥ δ

(
n−1
k−1
)
≥ (σ(F ) + γ)

(
n−1
k−1
)
.

First, for every v ∈ V (H), we give a lower bound on |ÑF,α,1(v,H)|. Note that for any
(k − 1)-set S ⊆ V (H), we have |N(S)| ≥ (σ(F ) + γ)n. Then by Lemma 6.2, for any distinct

u, v ∈ V (H), u ∈ ÑF,α,1(v,H) if |N(u) ∩N(v)| ≥ γ2
(
n
k−1
)
. By double counting, we have∑

S∈N(v)

(|N(S)| − 1) < |ÑF,α,1(v,H)| · |N(v)|+ n · γ2
(

n

k − 1

)
.

Note that |N(v)| ≥ δ1(H) ≥ δ
(
n−1
k−1
)
. Since γ � δ, 1/k, we have that

|ÑF,α,1(v,H)| > (σ(F ) + γ)n− 1− γ2nk

|N(v)|
≥ (σ(F ) + γ/2)n ≥

(
1

m
+
γ

2

)
n. (10.1)

Next we claim that every set A of m + 1 vertices in V (H) contains two vertices that are

(F, α, 1)-reachable in H. Indeed, since δ1(H) ≥ δ
(
n−1
k−1
)
, the degree sum of any m+ 1 vertices

is at least (m+ 1)δ
(
n−1
k−1
)
. Since γ � 1/m, we have

(m+ 1)δ

(
n− 1

k − 1

)
>

(
1 +

(
m+ 1

2

)
γ

)(
n

k − 1

)
.

Thus, there exist distinct u, v ∈ A such that |N(u) ∩ N(v)| ≥ γ
(
n
k−1
)
, and so they are

(F, α, 1)-reachable by Lemma 6.2.
By (10.1) and the above claim, we can apply Lemma 6.3 to H with the constants chosen

at the beginning of the proof. We get a partition P = {V1, . . . , Vr} of V (H) such that r ≤ m
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and for any i ∈ [r], |Vi| ≥ (σ(F )+γ/2−α)n ≥ n/m and Vi is (F, β, 2m−1)-closed in H. Thus,
P is a (F, β, 2m−1, 1/m)-good partition of V (H).

Note that Theorem 10.2 shows that δ(F, k − 1, D) ≤ σ(F ) and thus δk−1(H) ≥ (σ(F ) +
γ)n ≥ (δ(F, k − 1, D) + γ)n. Moreover, Proposition 10.3 shows that |Q(P, LµP,F (H))| ≤
(2m− 1)r. So by Theorem 3.1, with q := (2m− 1)r, we conclude that H contains a perfect
F -packing if and only if (P, LµP,F (H)) is (2m− 1)r-soluble.

The algorithm. Now we state the algorithm and estimate the running time. We run the

algorithm with running time O(n2
m−1m+1) provided by Lemma 6.3 and obtain a partition

P of V (H). By Theorem 3.1, it remains to test if (P, LµP,F (H)) is (2m − 1)r-soluble. This

can be done by testing whether any F -packing M in H of size at most (2m − 1)r is a q-

solution of (P, LµP,F (H)), in time O(nm(2m−1)r) = O(nm(2m−1)m). If there is a q-solution M

for (P, LµP,F (H)), output YES; otherwise output NO. Since m ≥ 3 and thus 2m−1m + 1 <

m(2m− 1)m, the overall running time is O(nm(2m−1)m). �

11. Concluding remarks

In this paper we introduced a general structural theorem (Theorem 3.1) which can be used
to determine classes of (hyper)graphs for which the decision problem for perfect F -packings
is polynomial time solvable. We then gave three applications of this result. It would be
interesting to find other applications of Theorem 3.1.

In light of Conjecture 1.2 it is likely that one can replace the condition that δ∗ = max{1/3, c∗k,`}
in Theorem 1.3 with δ∗ = c∗k,`. Theorem 3.1 is likely to be useful for this. However, note that

in the proof of Theorem 1.3, the condition δ∗ ≥ 1/3 ensured that the partition P of V (H)
consisted of at most 2 vertex classes. We then showed that our hypergraph H contained a
perfect matching or that the coset group Q had bounded size. In particular, since |P| ≤ 2 it
was relatively straightforward to show that |Q| was bounded. However, if we no longer have
that δ∗ ≥ 1/3 we may have that P consists of many classes. Thus, determining that Q has
bounded size is likely to be substantially harder in this case.

In Theorems 1.3, 1.11 and 1.13 we provided algorithms for determining whether a hyper-
graph contains a perfect matching or packing. It would be interesting to obtain analogous
results which produce a perfect matching or packing if such a structure exists.
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[3] O. Cooley, D. Kühn and D. Osthus. Perfect packings with complete graphs minus an edge. European J.

Combin., 28(8):2143–2155, 2007.
[4] A. Czygrinow and V. Kamat. Tight co-degree condition for perfect matchings in 4-graphs. Electron. J.

Combin., 19(2):Paper 20, 16, 2012.
[5] J. Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.
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[18] M. Karpiński, A. Ruciński and E. Szymańska. Computational complexity of the perfect matching problem
in hypergraphs with subcritical density. Internat. J. Found. Comput. Sci., 21(6):905–924, 2010.

[19] K. Kawarabayashi. K−4 -factor in a graph. J. Graph Theory, 39(2):111–128, 2002.
[20] P. Keevash, F. Knox and R. Mycroft. Polynomial-time perfect matchings in dense hypergraphs. Adv. in

Math., 269:265–334, 2015.
[21] I. Khan. Perfect matchings in 3-uniform hypergraphs with large vertex degree. SIAM J. Discrete Math.,

27(2):1021–1039, 2013.
[22] I. Khan. Perfect matchings in 4-uniform hypergraphs. J. Combin. Theory Ser. B, 116:333–366, 2016.
[23] H.A. Kierstead, A.V. Kostochla, M. Mydlarz and E. Szemerédi, A fast algorithm for equitable coloring.
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