The complexity of perfect matchings and packings in dense graphs

Andrew Treglown
University of Birmingham
August 8th 2017

Joint work with
Jie Han (Sao Paulo)
In this talk we are interested in perfect matchings and packings in k-graphs H:

- **perfect matchings** = vertex-disjoint edges covering all of $V(H)$
- **perfect F-packings** = vertex-disjoint copies of F covering all of $V(H)$

- **Edmonds’ Algorithm**: can find a perfect matching in a graph (if it exists) in polynomial time
- If $k \geq 3$ decision problem is NP-complete (Karp; Garey and Johnson)
- Graph perfect packings: decision problem is NP-complete, unless the packing corresponds to a matching (Hell, Kirkpatrick)
In this talk we are interested in perfect matchings and packings in k-graphs H:

- **perfect matchings** = vertex-disjoint edges covering all of $V(H)$
- **perfect F-packings** = vertex-disjoint copies of F covering all of $V(H)$

- **Edmonds’ Algorithm**: can find a perfect matching in a graph (if it exists) in polynomial time
- If $k \geq 3$ decision problem is NP-complete (Karp; Garey and Johnson)
- Graph perfect packings: decision problem is NP-complete, unless the packing corresponds to a matching (Hell, Kirkpatrick)
Let H be a k-graph and $S \subseteq V(H)$.

- $d_H(S) = \# \text{ edges containing } S$;
- $\delta_\ell(H) = \min\{d_H(S) : |S| = \ell\}$ (for fixed $1 \leq \ell \leq k - 1$);
- $\delta_1(H) = \text{minimum vertex degree}$;
- $\delta_{k-1}(H) = \text{minimum codegree}$.
Let H be a k-graph and $S \subseteq V(H)$.

- $d_H(S) = \# \text{ edges containing } S$;
- $\delta_\ell(H) = \min \{d_H(S) : |S| = \ell\}$ (for fixed $1 \leq \ell \leq k - 1$);
- $\delta_1(H) = \text{ minimum vertex degree}$;
- $\delta_{k-1}(H) = \text{ minimum codegree}$.

Conjecture (Hàn, Person Schacht; Kühn, Osthus)

Given an n-vertex k-graph H and fixed $1 \leq \ell \leq k - 1$. If

$$\delta_\ell(H) \geq \max \left\{ \left(\frac{1}{2} + o(1) \right) \binom{n-\ell}{k-\ell}, \left(1 - (1 - \frac{1}{k})^{k-\ell} + o(1) \right) \binom{n-\ell}{k-\ell} \right\}$$

$$\implies \text{ perfect matching in } H.$$
Perfect matchings in k-graphs

Let H be a k-graph and $S \subseteq V(H)$.

- $d_H(S) = \# \text{ edges containing } S$;
- $\delta_\ell(H) = \min \{ d_H(S) : |S| = \ell \}$ (for fixed $1 \leq \ell \leq k - 1$);
- $\delta_1(H) = \text{ minimum vertex degree}$;
- $\delta_{k-1}(H) = \text{ minimum codegree}$.

Conjecture (Hàn, Person Schacht; Kühn, Osthus)

Given an n-vertex k-graph H and fixed $1 \leq \ell \leq k - 1$. If

$$\delta_\ell(H) \geq \max \left\{ \left(\frac{1}{2} + o(1) \right) \binom{n-\ell}{k-\ell}, \left(1 - (1 - \frac{1}{k})^{k-\ell} + o(1) \right) \binom{n-\ell}{k-\ell} \right\}$$

$$\implies \text{ perfect matching in } H.$$

Known for:

- $\ell = k - 1$ (Rödl, Ruciński, Szemerédi)
- $\ell \geq k/2$ (Pikhurko; T. and Zhao)
- $\ell \geq 0.42k$ (Han)
- some small values of k, ℓ.

Andrew Treglown

The complexity of perfect matchings and packings in dense gra
The decision problem

Let $\text{PM}(k, \ell, \delta)$ denote the decision problem of whether a k-graph H with $\delta_\ell(H) \geq \delta \binom{|H| - \ell}{k - \ell}$ contains a perfect matching.

Results:

- $\text{PM}(k, k - 1, 1/k)$ is in \mathbf{P}
 (Karpiński, Ruciński and Szymańska; Keevash, Knox and Mycroft; Han)

- $\text{PM}(k, \ell, \delta)$ is NP-complete if $\delta < (1 - (1 - 1/k)^{k-\ell})$
 (Szymańska)
The decision problem

Let $\text{PM}(k, \ell, \delta)$ denote the decision problem of whether a k-graph H with $\delta_\ell(H) \geq \delta(\frac{|H|}{k-\ell})$ contains a perfect matching.

Results:

- $\text{PM}(k, k-1, 1/k)$ is in P
 (Karpiński, Ruciński and Szymańska; Keevash, Knox and Mycroft; Han)
- $\text{PM}(k, \ell, \delta)$ is NP-complete if $\delta < (1 - (1 - 1/k)^{k-\ell})$
 (Szymańska)

Conjecture (Keevash, Knox, Mycroft)

$\text{PM}(k, \ell, \delta)$ is in P if $\delta > (1 - (1 - 1/k)^{k-\ell})$

Intuition: beyond ‘space barrier’ can decide in polynomial time
The decision problem

Conjecture (Keevash, Knox, Mycroft)

\[\text{PM}(k, \ell, \delta) \text{ is in } P \text{ if } \delta > (1 - (1 - 1/k)^{k-\ell}) \]

Theorem (Han and T.)

Conjecture true for

\[(k - 1)/2 \leq \ell \leq (1 + \log(2/3))k \approx 0.5945k \]

- Proof is one page consequence of a general black-box for matching and packing problems.
- If one solves the ‘almost’ perfect matching problem then our result immediately extends to all \(\ell \leq (1 + \log(2/3))k \).
Kühn and Osthus determined, up to an additive constant, the minimum degree threshold that forces a perfect F-packing for any fixed graph F.

Again there are two types of extremal example: space barriers and divisibility barriers.
Kühn and Osthus determined, up to an additive constant, the minimum degree threshold that forces a perfect F-packing for any fixed graph F.

Again there are two types of extremal example: space barriers and divisibility barriers.

Theorem (Han and T.)

"Above space barrier we can always decide in polynomial time whether a graph contains a perfect F-packing."

This answers a question of Yuster in the negative.