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Residuals and dual norms Localization Fully adaptive solvers Laplace Nonlinear Laplace

Residual and its dual norm for Laplacian, uh ∈ H1
0 (Ω)

The Laplace problem

−∆u = f in Ω,

u = 0 on ∂Ω

polytope Ω ⊂ Rd , d ≥ 1, f ∈ L2(Ω)

Weak formulation
Find u ∈ H1

0 (Ω) such that

(∇u,∇v) = (f , v) ∀v ∈ H1
0 (Ω)

Residual R(uh) ∈ H−1(Ω)

and its dual norm

〈R(uh), v〉 := (f , v)− (∇uh,∇v), v ∈ H1
0 (Ω) weak form. misfit

‖R(uh)‖−1 := sup
v∈H1

0 (Ω), ‖∇v‖=1
〈R(uh), v〉 size of the misfit
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Equivalence energy error–dual norm of the residual

Theorem (Equivalence energy error–dual norm of the residual)

Let uh ∈ H1
0 (Ω). Then

‖R(uh)‖−1 = ‖∇(u − uh)‖.

=

localization︷ ︸︸ ︷{∑
K∈Th

‖∇(u − uh)‖2K

} 1
2

.

Proof.
residual and its dual norm definition

‖R(uh)‖−1 = sup
v∈H1

0 (Ω), ‖∇v‖=1
{(f , v)− (∇uh,∇v)}

weak solution definition
(f , v) = (∇u,∇v)

conformity ((u − uh) ∈ H1
0 (Ω)) and duality:

sup
v∈H1

0 (Ω), ‖∇v‖=1
(∇(u − uh),∇v) = ‖∇(u − uh)‖
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The nonconforming case, uh 6∈ H1
0 (Ω)

Theorem (Energy error in the nonconforming case)
Let uh 6∈ H1

0 (Ω). Then
‖∇(u−uh)‖2 = sup

v∈H1
0 (Ω); ‖∇v‖=1

{(f , v)−(∇uh,∇v)}2︸ ︷︷ ︸
‖R(uh)‖−1, dual norm of the residual

+ min
v∈H1

0 (Ω)
‖∇(v−uh)‖2.︸ ︷︷ ︸

distance of uh to H1
0 (Ω)

Proof.
define s ∈ H1

0 (Ω) by (projection)
(∇s,∇v) = (∇uh,∇v) ∀v ∈ H1

0 (Ω)
develop (Pythagoras)

‖∇(u − uh)‖2 = ‖∇(u − s)‖2 + ‖∇(s − uh)‖2
projection definition of s:

‖∇(s − uh)‖2 = min
v∈H1

0 (Ω)
‖∇(v − uh)‖2

norm characterization by duality, definition of s:
‖∇(u − s)‖2 = sup

v∈H1
0 (Ω); ‖∇v‖=1

(∇(u − ),∇v)2
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Nonlinear Laplacian

, uk ,i
h ∈W 1,p

0 (Ω) (Newton
linearization step k , algebraic solver step i)

Quasi-linear elliptic problem

−∇·σ(u,∇u) = f in Ω,

u = 0 on ∂Ω

p > 1, q := p
p−1 , f ∈ Lq(Ω)

example: p-Laplacian with σ(u,∇u) = |∇u|p−2∇u
Weak formulation
Find u ∈W 1,p

0 (Ω) such that

(σ(u,∇u),∇v) = (f , v) ∀v ∈W 1,p
0 (Ω)

Residual R(uk ,i
h ) ∈W 1,p

0 (Ω)
′
and its dual norm

〈R(uk ,i
h ), v〉 := (f , v)− (σ(uk ,i

h ,∇uk ,i
h ),∇v), v ∈W 1,p

0 (Ω)

‖R(uk ,i
h )‖

W 1,p
0 (Ω)

′ := sup
v∈W 1,p

0 (Ω); ‖∇v‖p=1

〈R(uk ,i
h ), v〉
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0 (Ω)
′
and its dual norm

〈R(uk ,i
h ), v〉 := (f , v)− (σ(uk ,i

h ,∇uk ,i
h ),∇v), v ∈W 1,p

0 (Ω)

‖R(uk ,i
h )‖

W 1,p
0 (Ω)

′ := sup
v∈W 1,p

0 (Ω); ‖∇v‖p=1

〈R(uk ,i
h ), v〉
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The nonlinear Laplace equation
The game
Is it possible to localize the dual norm of the residual

‖R(uk ,i
h )‖

W 1,p
0 (Ω)

′ ≈

{∑
a∈Vh

‖R(uk ,i
h )‖q

W 1,p
0 (ωa)′

} 1
q

?

Vh vertices, ωa patches of elements of a partition Th of Ω;
the constant hidden in ≈ must not depend on p, Ω, and the
regularity of u.

How to give tight and robust computable bounds on
‖R(uk ,i

h )‖
W 1,p

0 (Ω)
′ on each Newton step k and algebraic step i?

How to steer adaptively (adaptive stopping criteria, adaptive
mesh refinement) the inexact Newton solver?
How to take into account nonconforming discretizations?

Eisenstat and Walker (1994), Deuflhard (1996), Chaillou and Suri (2006, 2007), Kim (2007)
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Localization dual norms
Setting

V := W 1,p
0 (Ω), p > 1, bounded linear functional R ∈ V ′

localized energy space V a := W 1,p
0 (ωa) for a ∈ Vh

restriction of R to (V a)′ (zero extension of v ∈ V a),

〈R, v〉(V a)′,V a := 〈R, v〉V ′,V v ∈ V a

‖R‖(V a)′ := sup
v∈V a; ‖∇v‖p,ωa =1

〈R, v〉(V a)′,V a

Theorem (Localization of ‖R‖V ′)
There holds

‖R‖V ′≤(d +1)
1
p Ccont,PF

∑
a∈Vh

‖R‖q(V a)′


1
q

if 〈R, ψa〉 = 0 ∀a ∈ V int
h ,∑

a∈Vh

‖R‖q(V a)′


1
q

≤ (d + 1)
1
q ‖R‖V ′ .
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Localization of the dual residual norm

Upper bound (needs vanishing lowest modes).

partition of unity, the linearity of R, orthogonality wrt ψa:

〈R, v〉=
∑
a∈Vh

〈R, ψav〉 =
∑

a∈V int
h

〈R, ψa(v − Π0,ωav)〉+
∑

a∈Vext
h

〈R, ψav〉

stability:

‖∇(ψa(v − Π0,ωav))‖p,ωa ≤ Ccont,PF‖∇v‖p,ωa

Hölder inequality:

〈R, v〉 ≤ Ccont,PF

∑
a∈Vh

‖R‖q(V a)′


1
q
∑

a∈Vh

‖∇v‖pp,ωa


1
p

overlapping of the patches:∑
a∈Vh

‖∇v‖pp,ωa =
∑

K∈Th

∑
a∈VK

‖∇v‖pp,K ≤ (d + 1)

‖∇v‖p
p︷ ︸︸ ︷∑

K∈Th

‖∇v‖pp,K
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Localization of the dual residual norm

Lower bound (unconditioned).
p-Laplacian lifting of the residual on the patch ωa:
ra ∈ V a = W 1,p

0 (ωa) such that

(|∇ra|p−2∇ra,∇v)ωa = 〈R, v〉 ∀v ∈ V a

energy equality:

‖∇ra‖pp,ωa = (|∇ra|p−2∇ra,∇ra)ωa = 〈R, ra〉 = ‖R‖q(V a)′

setting r :=
∑

a∈Vh
ra ∈ V :∑

a∈Vh

‖R‖q(V a)′ =
∑
a∈Vh

〈R, ra〉 = 〈R, r〉 ≤ ‖R‖V ′‖∇r‖p

overlapping of the patches:

‖∇r‖pp ≤ (d + 1)p−1
∑
a∈Vh

‖∇ra‖pp,ωa
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Numerical results

Model problems

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = uD on ∂Ω

Ω = (0,1)× (0,1) and, for p = 1.5 and 10,

u(x , y) = −p−1
p

(
(x − 1

2)2 + (y − 1
2)2
) p

2(p−1)
+ p−1

p

(
1
2

) p
p−1

Ω = (−1,1)× (−1,1) \ [0,1]× [−1,0] and, for p = 4,

u(r , θ) = r
7
8 sin(θ 7

8)

three successive uniformly refined meshes
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Effectivity indices of the localization bounds
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Mesh refinement level
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upper bound, p = 4
lower bound, p = 4
upper bound, p = 1.5
lower bound, p = 1.5
upper bound, p = 10
lower bound, p = 10
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Local and global residual distributions, p = 1.5

Local Global
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Local and global residual distributions, p = 10

Local Global
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Local and global residual distributions, p = 4

Local Global
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Residuals and dual norms Localization Fully adaptive solvers Setting Reliability St. crit. & eff. Applications Numerics

Abstract assumptions
Numerical approximation

simplicial mesh Th, linearization step k , algebraic step i
uk ,i

h ∈V (Th) := {v ∈ Lp(Ω), v |K ∈W 1,p(K ) ∀K ∈Th} 6⊂ V

Assumption A (Total flux reconstruction)

There exists σk ,i
h ∈ Hq(div,Ω) and ρk ,i

h ∈ Lq(Ω) such that

∇·σk ,i
h = fh − ρk ,i

h︸︷︷︸
algebraic
remainder

.

Assumption B (Discretization, linearization, and alg. fluxes)

There exist fluxes dk ,i
h , lk ,ih ,ak ,i

h ∈ [Lq(Ω)]d such that

(i) σk ,i
h = dk ,i

h + lk ,ih + ak ,i
h ;

(ii) as the linear solver converges, ‖ak ,i
h ‖q → 0;

(iii) as the nonlinear solver converges, ‖lk ,ih ‖q → 0.
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Estimate distinguishing error components

Theorem (Estimate distinguishing different error components)
Let

u ∈ V be the weak solution,
uk ,i

h ∈ V (Th) be arbitrary,
Assumptions A and B hold.

Then there holds

‖R(uk ,i
h )‖

W 1,p
0 (Ω)

′+NC≤ηk ,i
disc+ ηk ,i

lin︸︷︷︸
‖lk,ih ‖q

+ ηk ,i
alg︸︷︷︸

‖ak,i
h ‖q

+ ηk ,i
rem︸︷︷︸

hΩ‖ρk,i
h ‖q

+ ηk ,i
quad+ηosc,

with ηk ,i
· :=

{∑
K∈Th

(
ηk ,i
·,K
)q
}1/q

and

ηk ,i
disc,K := 2

1
p

(
‖σ(uk ,i

h ,∇uk ,i
h )+dk ,i

h ‖q,K +

{∑
e∈EK

h1−q
e ‖[[uk ,i

h ]]‖qq,e

} 1
q
)
.
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Stopping criteria and efficiency

Global stopping criteria (≈ Becker, Johnson, and Rannacher (1995), Arioli (2000’s))

ηk ,i
rem ≤ γrem max

{
ηk ,i

disc, η
k ,i
lin , η

k ,i
alg

}
,

ηk ,i
alg ≤ γalg max

{
ηk ,i

disc, η
k ,i
lin

}
, γrem, γalg, γlin ≈ 0.1

ηk ,i
lin ≤ γlinη

k ,i
disc

Local stopping criteria

stop whenever:

ηk ,i
rem,K ≤ γrem,K max

{
ηk ,i

disc,K , η
k ,i
lin,K , η

k ,i
alg,K

}
∀K ∈ Th,

ηk ,i
alg,K ≤ γalg,K max

{
ηk ,i

disc,K , η
k ,i
lin,K

}
∀K ∈ Th,

ηk ,i
lin,K ≤ γlin,Kη

k ,i
disc,K ∀K ∈ Th

γrem,K , γalg,K , γlin,K ≈ 0.1
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Assumptions for efficiency

Assumption C (Piecewise polynomials, meshes, quadrature)

The approximation uk ,i
h is piecewise polynomial. The meshes

Th are shape-regular. The quadrature error is negligible.

Assumption D (Approximation property)
For all K ∈ Th, there holds

‖σ(uk ,i
h ,∇uk ,i

h ) + dk ,i
h ‖q,K ≤ C

{ ∑
K ′∈TK

hq
K ′‖f +∇·σ(uk ,i

h ,∇uk ,i
h )‖qq,K ′

+
∑

e∈Eint
K

he‖[[σ(uk ,i
h ,∇uk ,i

h )·ne]]‖qq,e

+
∑
e∈EK

h1−q
e ‖[[uk ,i

h ]]‖qq,e

} 1
q

.
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Global efficiency
Theorem (Global efficiency)
Let the Assumptions C and D be satisfied. Let the global
stopping criteria hold. Then,

ηk ,i
disc + ηk ,i

lin + ηk ,i
alg + ηk ,i

rem ≤ C
(
‖R(uk ,i

h )‖
W 1,p

0 (Ω)
′ + NC

)
,

where C is independent of σ and q.

Theorem (Local efficiency)
Let the Assumptions C and D be satisfied. Let the local
stopping criteria hold. Then, for all K ∈ Th,

ηk ,i
disc,K +ηk ,i

lin,K +ηk ,i
alg,K +ηk ,i

rem,K ≤ C
∑

a∈VK

(
‖R(uk ,i

h )‖W 1,p
0 (ωa)′

+NC

)
.

robustness with respect to the nonlinearity
‖R(uk ,i

h )‖
W 1,p

0 (Ω)
′ + NC is localizable
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Nonconforming finite elements for the p-Laplacian

Discretization
Find uh ∈ Vh such that

(σ(∇uh),∇vh) = (f , vh) ∀vh ∈ Vh.

σ(∇uh) = |∇uh|p−2∇uh

Vh 6⊂ V the Crouzeix–Raviart space
leads to the system of nonlinear algebraic equations

A(U) = F
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Linearization

Linearization
Find uk

h ∈ Vh such that

(σk−1(∇uk
h ),∇ψe) = (f , ψe) ∀e ∈ E int

h .

u0
h ∈ Vh yields the initial vector U0

fixed-point linearization

σk−1(ξ) := |∇uk−1
h |p−2ξ

Newton linearization

σk−1(ξ) := |∇uk−1
h |p−2ξ + (p − 2)|∇uk−1

h |p−4

(∇uk−1
h ⊗∇uk−1

h )(ξ −∇uk−1
h )

leads to the system of linear algebraic equations

Ak−1Uk = F k−1
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Algebraic solution

Algebraic solution
Find uk ,i

h ∈ Vh such that

(σk−1(∇uk ,i
h ),∇ψe) = (f , ψe)− Rk ,i

e ∀e ∈ E int
h .

algebraic residual vector Rk ,i = {Rk ,i
e }e∈E int

h

discrete system

Ak−1Uk = F k−1 − Rk ,i
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Flux reconstructions

Definition (Construction of (dk ,i
h + lk ,ih ))

For all K ∈ Th,

(dk ,i
h +lk ,ih )|K :=−σk−1(∇uk ,i

h )|K +
f |K
d

(x−xK )−
∑
e∈EK

Rk ,i
e

d |De|
(x−xK )|Ke ,

where Rk ,i
e = (f , ψe)− (σk−1(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of dk ,i
h )

For all K ∈ Th,

dk ,i
h |K := −σ(∇uk ,i

h )|K +
f |K
d

(x− xK )−
∑
e∈EK

R̄k ,i
e

d |De|
(x− xK )|Ke ,

where R̄k ,i
e := (f , ψe)− (σ(∇uk ,i

h ),∇ψe) ∀e ∈ E int
h .

Definition (Construction of ak ,i
h )

Set ak ,i
h := (dk ,i+ν

h + lk ,i+νh )− (dk ,i
h + lk ,ih ) for (adaptively chosen)

ν > 0 additional algebraic solvers steps; Rk ,i+ν  ρk ,i
h .
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Verification of the assumptions

Lemma (Assumptions A and B)
Assumptions A and B hold.

Comments

‖ak ,i
h ‖q,K→0 as the linear solver converges by definition

‖lk ,ih ‖q,K→0 as the nonlinear solver converges by the
construction of lk ,ih

Lemma (Assumptions C and D)
Assumptions C and D hold.

Comments

quadrature error is zero
dk ,i

h is close to σ(∇uk ,i
h ): approximation properties of the

Raviart–Thomas–Nédélec spaces
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Summary

Discretization methods

conforming finite elements
nonconforming finite elements
discontinuous Galerkin
various finite volumes
mixed finite elements

Linearizations

fixed point
Newton

Linear solvers

independent of the linear solver

. . . all Assumptions A to D verified
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Numerical experiment I

Model problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = uD on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(x , y) = −p−1
p

(
(x − 1

2)2 + (y − 1
2)2
) p

2(p−1)
+ p−1

p

(
1
2

) p
p−1

tested values p = 1.5 and 10
Crouzeix–Raviart nonconforming finite elements
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Analytical and approximate solutions

0

0.5

1

0

0.5

1

−0.06

−0.04

−0.02

0

0.02

0.04

xy

u

−0.06

−0.04

−0.02

0

0.02

0.04

Case p = 1.5

0

0.5

1

0

0.5

1

−0.1

0

0.1

0.2

0.3

0.4

xy
u

−0.1

0

0.1

0.2

0.3

0.4

Case p = 10

M. Vohralík Fully adaptive solvers via localization 28 / 45



Residuals and dual norms Localization Fully adaptive solvers Setting Reliability St. crit. & eff. Applications Numerics

Error and estimators as a function of CG iterations,
p = 10, 6th level mesh, 6th Newton step.
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Error and estimators as a function of Newton
iterations, p = 10, 6th level mesh
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Error and estimators, p = 10
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Effectivity indices, p = 10

10
1

10
2

10
3

10
4

10
5

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of faces

U
pp

er
 a

nd
 lo

w
er

 d
ua

l e
rr

or
 e

ffe
ct

iv
ity

 in
di

ce
s

10
1

10
2

10
3

10
4

10
5

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of faces

U
pp

er
 a

nd
 lo

w
er

 d
ua

l e
rr

or
 e

ffe
ct

iv
ity

 in
di

ce
s

10
1

10
2

10
3

10
4

10
5

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of faces

U
pp

er
 a

nd
 lo

w
er

 d
ua

l e
rr

or
 e

ffe
ct

iv
ity

 in
di

ce
s effectivity ind. up

effectivity ind. low

Newton inexact Newton ad. inexact Newton

M. Vohralík Fully adaptive solvers via localization 32 / 45



Residuals and dual norms Localization Fully adaptive solvers Setting Reliability St. crit. & eff. Applications Numerics

Error distribution, p = 10
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Newton and algebraic iterations, p = 10
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Error and estimators as a function of CG iterations,
p = 1.5, 6th level mesh, 1st Newton step.
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Error and estimators as a function of Newton
iterations, p = 1.5, 6th level mesh
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Error and estimators, p = 1.5
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Effectivity indices, p = 1.5
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Newton and algebraic iterations, p = 1.5
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Numerical experiment II

Model problem

p-Laplacian

∇·(|∇u|p−2∇u) = f in Ω,

u = uD on ∂Ω

weak solution (used to impose the Dirichlet BC)

u(r , θ) = r
7
8 sin(θ 7

8)

p = 4, L-shape domain, singularity in the origin
(Carstensen and Klose (2003))
Crouzeix–Raviart nonconforming finite elements
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Error distribution on an adaptively refined mesh
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Estimated and actual errors and the effectivity index
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Energy error and overall performance
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