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Well-posed op. eqs.

For X (real) sep. Hilbert space, let

• F : X ⊃ dom(F )→ X ′,

• F cont. Fréchet diff. in neighb. of a sol u of F (u) = 0,

• DF (u) ∈ Lis(X ,X ′), DF (u) = DF (u)′ > 0,

(so linearized eq. is SPD).
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• F : X ⊃ dom(F )→ X ′,

• F cont. Fréchet diff. in neighb. of a sol u of F (u) = 0,

• DF (u) ∈ Lis(X ,X ′), DF (u) = DF (u)′ > 0,

(so linearized eq. is SPD).

Ex.

• Ω ⊂ IRd, d ≤ 3, X = H1
0(Ω), F (u)(v) =

∫
Ω

gradu · grad v + u3v − fv dx

• F (u)(v) = 1
4π

∫
∂Ω

{ ∫
∂Ω

(u(y)−u(x))(v(y)−v(x))
|x−y|3 dy − v(x)f(x)

}
dx,

Ω ⊂ IR3, X = H
1
2(∂Ω)/R (hypersingular boundary integral equation).

2/38



Reformulation as a countable set of coupled scalar eqs

Let Ψ = {ψλ : λ ∈ ∇} Riesz basis for X , i.e., synthesis operator,

F : c 7→ c>Ψ :=
∑
λ∈∇

cλψλ ∈ Lis(`2(∇),X ),
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F : c 7→ c>Ψ :=
∑
λ∈∇

cλψλ ∈ Lis(`2(∇),X ),

and so its adjoint, the analysis operator,

F ′ : g 7→ g(Ψ) := [g(ψλ)]λ∈∇ ∈ Lis(X ′, `2(∇)).

Then with F = F ′FF : `2(Λ) ⊃ dom(F)→ `2(Λ), equiv. form.

F(u) = 0 ,

where u := F−1u.

Norm on `2(∇) will be denoted as ‖ · ‖.
‖u−w‖ h ‖u−Fw‖X .
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Adaptive wavelet Galerkin method
In its original form introduced by [Cohen, Dahmen, DeVore ’01, 02]

Alg (awgm).

% Let U ⊂ `2(Λ) be a neigh. of u, µ ∈ (0, 1], finite Λ0 ⊂ ∇.
for i = 0, 1, . . . do

solve ui ∈ U with supp ui ⊆ Λi s.t. F(ui)|Λi = 0
determine a smallest Λi+1 ⊃ Λi s.t. ‖F(ui)|Λi+1

‖ ≥ µ‖F(ui)‖
endfor
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Thm (convergence). ∃α < 1 s.t. when U and infv∈`2(Λ0) ‖u − v‖ suff.
small, ‖u− ui‖ . αi‖u− u0‖.

For affine F, use |||u − ui+1|||2 = |||u − ui|||2 − |||ui+1 − ui|||2, and saturation

|||ui+1 − ui||| & |||u− ui||| by ‘bulk chasing’. Perturb arg. for non-affine.
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As :=
{

u ∈ `2(∇) : ‖u‖As := sup
N∈N

Ns inf
{w : # supp w≤N}

‖u−w‖ <∞
}
.

Thm (optimal rate). If µ is suff. small, then if u ∈ As,

(# supp ui)
s‖u− ui‖ . 1.
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Practical awgm
Thm. With approx. eval. of F(ui) with rel. tolerance δ > 0 (suff. small
but fixed), awgm also converges with optimal rate.
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Thm. With approx. eval. of F(ui) with rel. tolerance δ > 0 (suff. small
but fixed), awgm also converges with optimal rate.

Thm (optimal comput. compl.). If cost to compute such approx.
residuals is

O(‖u− ui‖−1/s + # supp ui),

then

(cost to compute ui)
s‖u− ui‖ . 1.

This cost condition has been verified for large class of linear PDEs
and singular integral eqs using compactly supported wavelets that are
sufficiently smooth and have sufficiently many vanishing moments.

Such bases for the common Sob. spaces are
available on general polygonal domains and
consist of piecewise polynomial wavelets.
Wavelet ψλ on ‘level’ |λ| ∈ IN has
diam suppψλ h 2−|λ|.
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Usual residual evaluation ([CDD01])

For F (u) = Au− f , approximate both F ′AFui and F ′f separately within
absolute tolerance 1

2δ‖u− ui‖.
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2δ‖u− ui‖.

Ex (Poisson). Terms read as
[ ∫

Ω
grad Ψ · grad Ψ

]
ui and

∫
Ω
fΨ.

Assuming d̃ vanishing moments, rhs approximation based on

|
∫

Ω

fψλ| ≤ ‖ψλ‖L2(Ω) inf
p∈P

d̃−1

‖f − p‖L2(suppψλ).

Similar arg. shows that stiffness is ‘near-sparse’. Restricting it to fixed
‘band’ gives right complexity, but not suff. accuracy.
u ∈ As means that vector is ‘near-sparse’. One has ‖ui‖As . ‖u‖As.
Approximate jth column of stiffness with accuracy proportional to |(ui)j|.

Realizes cost condition. Quantitatively expensive.
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An alternative residual evaluation
Ex.

{
−u′′ + u3 = f on (0, 1),

u(0) = u(1) = 0.
Piecew. pol. wav. basis Ψ for H1

0(0, 1).

F(ui) =
[ ∫ 1

0
u′iψ
′
λ + (u3

i − f)ψλ dx
]
λ∈∇=

[ ∫ 1

0
(−u′′i + u3

i − f)︸ ︷︷ ︸ψλ dx]λ∈∇,
(where ui := Fui) assuming Ψ ⊂ H2(0, 1).
For simpl., let f be polynomial (ignore data oscillation).
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and its repr. c w.r.t. a single-scale basis Φi can be found in lin. compl.
(wavelet-to-single scale transf).

Dropping from F(ui) all λ whose levels exceed the level of Ti|suppψλ by a
fixed constant k = k(δ) gives a relative error δ.
With Λi,δ the remaining set of indices, let Φi,δ be a single-scale basis for

span Ψ|Λi,δ. Compute F(ui)|Λi,δ by computing [
∫ 1

0
ΦiΦi,δdx]c, followed by

a single-scale-to-wavelet transf. Total cost h #Λi,δ h Λi.
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Dropping from F(ui) all λ whose levels exceed the level of Ti|suppψλ by a
fixed constant k = k(δ) gives a relative error δ.
With Λi,δ the remaining set of indices, let Φi,δ be a single-scale basis for

span Ψ|Λi,δ. Compute F(ui)|Λi,δ by computing [
∫ 1

0
ΦiΦi,δdx]c, followed by

a single-scale-to-wavelet transf. Total cost h #Λi,δ h Λi.

Cost condition satisfied. Quantitatively more efficient. Generalizes to non-
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Nonlinear least squares

To relax Ψ ⊂ H2 (C1 wavs) to at most continuity, write 2nd order PDE as
1st order system.
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To relax Ψ ⊂ H2 (C1 wavs) to at most continuity, write 2nd order PDE as
1st order system. Recall awgm setting

• F : X ⊃ dom(F )→ X ′,

• F cont. Fréchet diff. in neighb. of a sol u of F (u) = 0,

• DF (u) ∈ Lis(X ,X ′), DF (u) = DF (u)′ > 0.

Let

• G : X ⊃ dom(G)→ Y ′,

• G 2x cont. Fréchet diff. in neighb. of a sol u of G(u) = 0,

• DG(u) ∈ L(X ,Y ′) iso with range, i.e., ‖DG(u)(v)‖Y ′ h ‖v‖X .

Necess. u = argminv∈dom(G)
1
2‖G(v)‖2Y ′, and so (E-L), F (u) = 0, where

F : X ⊃ dom(F )→ X ′

F (u)(v) := 〈DG(u)(v), G(u)〉Y ′.

Having Riesz basis ΨX for X , awgm applies.
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Nonlinear least squares

Problem when 〈 , 〉Y ′ is not evaluable: Equip Y with Riesz basis ΨY, and
Y ′ with equiv. norm ‖F ′f‖ (= ‖f(ΨY)‖). Then

F (u)(v) := DG(u)(v)(ΨY)>G(u)(ΨY),

and so F(·) (= F ′XFFX ) = DG(·)>G(·), where G = F ′YGFX .

Rem. If, however, Y = Y1 × · · · × YN , then only those Yi with a non-evaluable inner

product have to be equipped with Riesz bases.

This setting not covered by approach of first writing system in wavelet coordinates, and

then forming (nonlinear) normal equations.
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First order system least squares
Ex. −∆u = f on Ω, u = 0 at ∂Ω.

G : (u, ~p) 7→ (div ~p+f, ~p−gradu) : H1
0(Ω)×H(div; Ω)︸ ︷︷ ︸

X

→ L2(Ω)× L2(Ω)
d︸ ︷︷ ︸

Y ′
.
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〈grad ΨH1
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[〈div Ψdiv,div ~pi + f︸ ︷︷ ︸〉L2(Ω) + 〈Ψdiv, ~pi − gradui︸ ︷︷ ︸〉L2(Ω)d

]
.

Pros:

• efficient ‘alternative residual evaluation’ applies without additional
smoothness requirements on wavelets.

• lower order (nonlinear) terms can be added (as with any least squares
formulation).

• least squares minimalisation in Y ′ = L2(Ω)d+1 (convenient). 10/38



First order system least squares

Numerics

L-shaped domain Ω ⊂ IR2. Bases for H1
0(Ω) and H(div; Ω) consisting of

cont. piecewise linears and lowest order RT-functions, resp.

−∆u+N(u) = f on Ω, u = 0 at ∂Ω, where N(u) = u3 or N(u) = sinu.
f = 1

100 101 102 103 104 105 106
10−3

10−2

10−1

100

Figure 1: Norm of residual vs. number of wavelets in log-log scale, for
N(u) = u3 (black, upper curve) or N(u) = sinu (blue, lower curve). The
hypotenuse of the triangle has a slope of −1

2. 11/38



Numerics
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Figure 2: Centers of the supports of the wavelets in H1
0(Ω) for the

approximation of u (left, 930 wavelets), or the wavelets in H(div; Ω) for
the approximation of ~p (right, 631 wavelets) produced by awgm after 39
iterations for N(u) = u3.
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Numerics

Figure 3: Approximate solutions for N(u) = u3 (left) or N(u) = sinu
(right), as a linear combination of approximately 200 wavelets. Note the
difference in vertical scale in both pictures.
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Numerics

Figure 3: Approximate solutions for N(u) = u3 (left) or N(u) = sinu
(right), as a linear combination of approximately 200 wavelets. Note the
difference in vertical scale in both pictures.

Cons current first order system formulation:

• Requires wavelet basis for H(div; Ω). Realized in two dims only.

• For −4u+N(u) = f , needed N : H1
0(Ω)→ L2(Ω) and f ∈ L2(Ω).

• Not a ‘canonical’ approach.
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First order system least squares (revisited)
Ex. −∆u = f on Ω, u = 0 at ∂Ω.

G : (u, ~p) 7→ (f−grad ′ ~p, ~p−gradu) : H1
0(Ω)× L2(Ω)

d︸ ︷︷ ︸
X

→ H
−1

(Ω)× L2(Ω)
d︸ ︷︷ ︸

Y ′
.

DG(u, ~p) = DG ∈ Lis(X ,Y ′). Least-squares minimalisation, E-L ;F (u, ~p) = 0,

where F : X → X ′ reads F (u, ~p)(w, ~q) = 〈DG(u, ~p)(v, ~q), G(u, ~p)〉Y ′.

Equip H1
0(Ω) with Riesz basis ΨH1

0 , and repl. ‖ · ‖H−1(Ω) by ‖F ′
H1

0
· ‖.
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First order system least squares (revisited)
Ex. −∆u = f on Ω, u = 0 at ∂Ω.

G : (u, ~p) 7→ (f−grad ′ ~p, ~p−gradu) : H1
0(Ω)× L2(Ω)

d︸ ︷︷ ︸
X

→ H
−1

(Ω)× L2(Ω)
d︸ ︷︷ ︸

Y ′
.

DG(u, ~p) = DG ∈ Lis(X ,Y ′). Least-squares minimalisation, E-L ;F (u, ~p) = 0,

where F : X → X ′ reads F (u, ~p)(w, ~q) = 〈DG(u, ~p)(v, ~q), G(u, ~p)〉Y ′.

Equip H1
0(Ω) with Riesz basis ΨH1

0 , and repl. ‖ · ‖H−1(Ω) by ‖F ′
H1

0
· ‖.

F (ui, ~pi)(v, ~q) = 〈~q,grad ΨH1
0〉L2(Ω)d

[
〈ΨH1

0 , f〉L2(Ω) − 〈grad ΨH1
0 , ~pi〉L2(Ω)d

]
+ 〈~q − grad v, ~pi − gradui〉L2(Ω)d

= 〈~q,grad ΨH1
0〉L2(Ω)d

[
〈ΨH1

0 , f + div ~pi〉L2(Ω)d
]

+ 〈~q − grad vi, ~pi − gradui〉L2(Ω)d

if ~pi ∈ H(div; Ω).
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First order system least squares (revisited)

awgm: Equip H1
0(Ω), L2(Ω)d with Riesz bases ΨH1

0 , ΨLd2, where ΨLd
2 ⊂

H(div ;Ω). Then

F(ui,pi) = 〈grad ΨH1
0 ,gradui − ~pi︸ ︷︷ ︸〉L2(Ω)d

〈ΨLn2 ,grad ΨH1
0〉L2(Ω)d〈ΨH1

0 ,div ~pi + f︸ ︷︷ ︸〉L2(Ω)d + 〈ΨLn2 , ~pi − gradui︸ ︷︷ ︸〉L2(Ω)d

 .
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First order system least squares (revisited)

awgm: Equip H1
0(Ω), L2(Ω)d with Riesz bases ΨH1

0 , ΨLd2, where ΨLd
2 ⊂

H(div ;Ω). Then

F(ui,pi) = 〈grad ΨH1
0 ,gradui − ~pi︸ ︷︷ ︸〉L2(Ω)d

〈ΨLn2 ,grad ΨH1
0〉L2(Ω)d〈ΨH1

0 ,div ~pi + f︸ ︷︷ ︸〉L2(Ω)d + 〈ΨLn2 , ~pi − gradui︸ ︷︷ ︸〉L2(Ω)d

 .
Pros:

• efficient ‘alternative residual evaluation’ applies under mild condition.

• wavelet bases available in general settings (no basis for H(div; Ω)
required)

• lower order (nonlinear) terms N : H1
0(Ω) → H−1(Ω) can be added.

f ∈ H−1(Ω) allowed.

• ‘canonical’ approach: Well-posedness of first order formulation follows
from that of second order formulation. Applies equally well to time
evolution problems.
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Parabolic problems

Ω ⊂ IRd, I = (0, T ). 
∂u
∂t −4u = g on I× Ω,

u = 0 on I× ∂Ω,
u(0, ·) = 0 on Ω.

• −4 can be read as semi-linear elliptic operator.

• other (inhom) initial or boundary conditions are allowed.
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Parabolic problems

Ω ⊂ IRd, I = (0, T ). 
∂u
∂t −4u = g on I× Ω,

u = 0 on I× ∂Ω,
u(0, ·) = 0 on Ω.

• −4 can be read as semi-linear elliptic operator.

• other (inhom) initial or boundary conditions are allowed.

Standard appr.: Approx. ∂u
∂t (t, ·) by, say u(t,·)−u(t−h,·)

h , and solve seq. of
elliptic problems for 0 < t1 < t2 < · · · < tM = T

{
−4u(ti, ·)− (ti − ti−1)−1u(ti, ·) = (ti − ti−1)−1u(ti−1, ·) + g(ti, ·) on Ω

u(ti, ·) = 0 on ∂Ω
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Parabolic problems

Ω ⊂ IRd, I = (0, T ). 
∂u
∂t −4u = g on I× Ω,

u = 0 on I× ∂Ω,
u(0, ·) = 0 on Ω.

• −4 can be read as semi-linear elliptic operator.

• other (inhom) initial or boundary conditions are allowed.

Standard appr.: Approx. ∂u
∂t (t, ·) by, say u(t,·)−u(t−h,·)

h , and solve seq. of
elliptic problems for 0 < t1 < t2 < · · · < tM = T

{
−4u(ti, ·)− (ti − ti−1)−1u(ti, ·) = (ti − ti−1)−1u(ti−1, ·) + g(ti, ·) on Ω

u(ti, ·) = 0 on ∂Ω

• How to distribute optimally ‘grid points’ over space and time?

• Even if you can, approximation not effective for singularities that are local in space and

time.

• Inherently sequential.

• When the whole time evolution is needed, as with problems of optimal control or in

visualizations, huge amount of storage.
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Space-time variational formulation

(Gu)(v) :=
∫

I

∫
Ω
∂u
∂tv + gradu · grad v dx dt−

∫
I

∫
Ω
gv dx dt = 0.

DG(u) = DG ∈ Lis
(
L2(I;H1

0(Ω)) ∩H1
0,{0}(I;H

−1(Ω))︸ ︷︷ ︸
X :=

, L2(I;H1
0(Ω))︸ ︷︷ ︸

Y :=

′
)

.

After selecting Riesz ΨX , ΨY for X , Y, apply awgm to DG>G(u) = 0.

(even better first to write it as a well-posed first order system)
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Tensor product bases

Let ΘX , ΘY, and ΣX , ΣY be collections of temporal or spatial functions
such that, normalized in the corresponding norms,

ΘX is a Riesz basis forL2(I) and forH1
0,{0}(I),

ΘY ” L2(I),
ΣX ” H1

0(Ω) ” H−1(Ω),
ΣY ” H1

0(Ω).

Then, normalized,

ΘX ⊗ ΣX is a Riesz basis forL2(I;H1
0(Ω)),H1

0,{0}(I;H−1(Ω)), and so for X ,

ΘY ⊗ ΣY ” Y.
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Best possible rates

If ΘX and ΣX are of orders pt and px, then best possible approximation
rate in X is min(pt − 1, px−1

d ).
Rate requires boundedness of certain mixed derivatives of sol in Lp for some
p < 2 (p = 2 required for sparse-grids). Approx. classes can be characterized as

tensor products of Besov spaces.

For pt−1 ≥ px−1
d , best rate is equal to best possible approx. rate in H1

0(Ω)
using ΣX .
So thanks to tensor product basis, no penalty because of additional time
dimension.
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First test on an ODE{
du(t)
dt + νu(t) = g(t) (t ∈ I),

u(0) = u0,

(Gu)(v) :=
∫

I
−u(t)dv(t)

dt + νu(t)v(t)dt−
∫

I
g(t)v(t)dt− u0v(0) = 0.

Prop. With X := L2(I) and Y(ν) := H1
0,{T}(I), equipped with ‖ · ‖Y(ν) :=√

ν2‖ · ‖2L2(I) + | · |2
H1(I)

, the operator DG ∈ Lis(X ,Y(ν)′) and ‖DG‖ ≤
√

2, ‖DG−1‖ ≤
√

2.

Num. results for ν = 1, g = 1 on (0, 1
3), g = 2 on (1

3, 1).
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ODE

Uniform, non-adaptive refinements, i.e. collect all wavelets up to some
level.

Rate = 1.5
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ODE

Adaptive refinements, i.e. awgm

Rate = 3
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Some approximations

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

1 wavelet

23/38



Some approximations

2 wavelets
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Some approximations

3 wavelets

25/38



Some approximations

4 wavelets
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Some approximations

5 wavelets (all scaling functions are now in)
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Some approximations

15 wavelets
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ODE

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 4: For u0 = 1 and #ui = 202, the non-zero coefficients of ui.
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Numerical results heat eqn

100 101 102 103 104 105
10!15

10!10

10!5

100

105

Figure 5: Heat eqn. in d = 1 spatial dimension, right-hand side g = 1
and initial condition u0 = 0. ‖G(ui)‖/‖G(0)‖ vs. N = #supp ui for the
awgm (solid), full-grid (dashed) and sparse-grid method (dashed-dotted).

The dotted line is a multiple of N−5(logN)51
2.
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Numerical results heat eqn
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Figure 6: Heat eqn. in d = 1 spatial dimension, right-hand side g = 1
and initial condition u0 = 1. ‖G(ui)‖/‖G(0)‖ vs. N = #supp ui for the

awgm (solid). The dotted line is a multiple of N−5(logN)51
2.
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Numerical results heat eqn
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Figure 7: Heat eqn. in d = 1 spatial dimension and right-hand side g = 1.
Centers of the supports of the wavelets selected by the awgm. Left u0 = 0
and #ui = 13420. Right u0 = 1 and #ui = 13917. A zoom in near t = 0
is given at the bottom row.

32/38



(N)SE
∂u
∂t − ν∆xu +∇x p = f on I × Ω,

divx u = g on I × Ω,
u = 0 on I × ∂Ω,

u(0, ·) = 0 on Ω,∫
Ω
p dx = 0.

(1)

Can be reduced to parabolic for velocities, but then arising spaces will be
spaces of divergence-free functions. We enforce incompressibility constraint
via Lagrange multiplier. Saddle point form.
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(N)SE
∂u
∂t − ν∆xu +∇x p = f on I × Ω,

divx u = g on I × Ω,
u = 0 on I × ∂Ω,

u(0, ·) = 0 on Ω,∫
Ω
p dx = 0.

(1)

Can be reduced to parabolic for velocities, but then arising spaces will be
spaces of divergence-free functions. We enforce incompressibility constraint
via Lagrange multiplier. Saddle point form.

Space-time variational form: With

c(u,v) :=

∫
I

∫
Ω

∂u
∂t · v + ν∇xu : ∇xv dxdt,

d(p,v) := −
∫
I

∫
Ω

p div v dxdt,

f(v) :=

∫
I

∫
Ω

f · v dxdt,

g(q) :=

∫
I

∫
Ω

g q dxdt,

(2)

find (u, p) in some suitable space, such that
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(N)SE

G(u, p)(v, q) := c(u,v) + d(p,v) + d(q,u)− f(v) + g(q) = 0

for all (v, q) from another suitable space.
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(N)SE

G(u, p)(v, q) := c(u,v) + d(p,v) + d(q,u)− f(v) + g(q) = 0

for all (v, q) from another suitable space. For δ ∈ {0, T},

H̆s
0,{δ}(I) := [L2(I), H1

0,{δ}(I)]s,

Ĥs(Ω) := [L2(Ω), H2(Ω) ∩H1
0(Ω)]s

2
,

H̄s(Ω) := [(H1(Ω)/IR)′, H1(Ω)/IR)]s+1
2
,

U s
δ := L2(I; Ĥ2s(Ω)n) ∩ H̆s

0,{δ}(I;L2(Ω)n),

Ps
δ :=

(
L2(I; H̄2s−1(Ω)′) ∩ H̆1−s

0,{δ}(I; H̄1(Ω)′)
)′
.

Thm. For Ω ⊂ IRd a bounded Lipschitz domain, and s ∈ (1
4,

3
4), it holds

that
DG ∈ Lis(U s

0 ×Ps
T , (U

1−s
T ×P1−s

0 )′).
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(N)SE

G(u, p)(v, q) := c(u,v) + d(p,v) + d(q,u)− f(v) + g(q) = 0

for all (v, q) from another suitable space. For δ ∈ {0, T},

H̆s
0,{δ}(I) := [L2(I), H1

0,{δ}(I)]s,

Ĥs(Ω) := [L2(Ω), H2(Ω) ∩H1
0(Ω)]s

2
,

H̄s(Ω) := [(H1(Ω)/IR)′, H1(Ω)/IR)]s+1
2
,

U s
δ := L2(I; Ĥ2s(Ω)n) ∩ H̆s

0,{δ}(I;L2(Ω)n),

Ps
δ :=

(
L2(I; H̄2s−1(Ω)′) ∩ H̆1−s

0,{δ}(I; H̄1(Ω)′)
)′
.

Thm. For Ω ⊂ IRd a bounded Lipschitz domain, and s ∈ (1
4,

3
4), it holds

that
DG ∈ Lis(U s

0 ×Ps
T , (U

1−s
T ×P1−s

0 )′).

All arising spaces can be ‘conveniently’ equipped with wavelet Riesz bases,
and awgm applies (preferably to reformulation as first order system)

Generalizes to NSE for d = 2; for d = 3 we need ‘s’ > 3
4 which requires

more smooth or convex domains, and C1-wavelets. 34/38



Proof of Thm.

Recall saddle-point structure DG(u, p)(v, q) := c(u,v) + d(p,v) + d(q,u).
Boundedness is easy.

The right-inverse div+ of div constructed in [Bog79] satisfies both div+ ∈
L(H̄−1(Ω), L2(Ω)n) and, for s ∈ [0, 3

4), div+ ∈ L(H̄2s−1(Ω), Ĥ2s(Ω)n),

and so I ⊗ div+ ∈ L((P1−s
0 )′,U s

0 ). This implies that for s ∈ [0, 3
4),

I ⊗ div ∈ L(U s
0 , (P

1−s
0 )′) is surjective, i.e.,

inf
0 6=q∈P1−s

0

sup
0 6=u∈U s

0

d(u, q)

‖u‖U s
0
‖q‖P1−s

0

> 0,

and analogously, for s ∈ (1
4, 1],

inf
0 6=p∈Ps

T

sup
0 6=v∈U 1−s

T

d(v, p)

‖v‖U 1−s
T
‖p‖Ps

T

> 0.

Remains to show that (Cu)(v) := c(u,v) boundedly inv. between

{u ∈ U s
0 : d(P1−s

0 ,u) = 0} and
(
{v ∈ U 1−s

T : d(Ps
T ,v) = 0}

)′
.
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Proof of Thm.

Again the existence of div+ as constructed in [Bog79] shows that for
(ς, δ) ∈ {(s, 0), (1− s, T )}

{w ∈ U ς
δ : d(P1−ς

δ ,w) = 0}

' L2(I; Ĥ2ς(div 0; Ω)) ∩ H̆ς
0,{δ}(I; Ĥ0(div 0; Ω)) =: U ς

δ (div 0),

i.e. the order of interpolation and taking divergence-free parts can be
reversed.
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Proof of Thm.

Again the existence of div+ as constructed in [Bog79] shows that for
(ς, δ) ∈ {(s, 0), (1− s, T )}

{w ∈ U ς
δ : d(P1−ς

δ ,w) = 0}

' L2(I; Ĥ2ς(div 0; Ω)) ∩ H̆ς
0,{δ}(I; Ĥ0(div 0; Ω)) =: U ς

δ (div 0),

i.e. the order of interpolation and taking divergence-free parts can be
reversed.

With (Au)(v) := ν
∫

Ω
∇u : ∇v dx on Ĥ1(div 0; Ω)× Ĥ1(div 0; Ω), elliptic

regularity shows that for ς ∈ [0, 3
4), Ĥ2ς(div 0; Ω) ' [Ĥ0(div 0; Ω), D(A)]ς

and so

U ς
δ (div 0) ' L2(I; [Ĥ0(div 0; Ω), D(A)]ς)∩H̆ς

0,{δ}(I; Ĥ0(div 0; Ω)) =: Ũ ς
δ (div 0)

Finally,
C ∈ Lis(Ũ ς

0 (div 0), (Ũ 1−ς
T (div 0))′) (ς ∈ [0, 1]),

follows from interpolation and this result for ς ∈ {0, 1}, which results are
known as maximal regularity of evolution equations.
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Summary

• Adaptive wavelet methods solve well-posed operator equations at optimal
rates, in linear comput. complexity

• Quantitative improvements by writing the problem as a first order system

• Promising applications for solving time evolution problems
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• Adaptive wavelet methods solve well-posed operator equations at optimal
rates, in linear comput. complexity

• Quantitative improvements by writing the problem as a first order system

• Promising applications for solving time evolution problems

Thanks for your attention/patience!
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