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h-P discontinuous finite elements for electronic structure
calculation

We combine results from
• Numerical approximation of elliptic problems in non smooth domains
• Approximation of non linear eigenvalue problems

and apply them to the models used in quantum chemistry.

Outline of the presentation:
1. Motivation: models for electronic structure calculations
2. Convergence, regularity
3. Asymptotics of the solution and design of an optimal h-P space from a

priori estimates.
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Motivation The Schrödinger equation

Motivation: the Schrödinger equation

The Schrödinger equation

iℏ ∂
∂t

Ψ = − ℏ2

2m
∇2Ψ + VΨ

is set in a 1 + 3(N + M) dimensional space for a system of N electrons and M
nuclei. It is therefore hard to approach computationally, even for systems of
moderately small size.

A first approximation (Born-Oppenheimer) consists in considering the nuclei
as fixed particles, thus calculating only electronic wavefunctions.

Many methods have been proposed for the approximation of the electronic
wavefunctions: among them

• Hartree-Fock (and post Hartree-Fock) methods,
• methods based on density functional theory (Kohn-Sham local density

approximation, …).
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Motivation Models in computational quantum chemistry

Motivation: the Hartree-Fock approximation

IHF = inf
{

EHF(φ1, . . . , φN), φi ∈ H1(R3),
∫
R3
φiφj = δij

}

EHF =
N∑

i=1

∫
R3

|∇φi|2 +
∫
R3
ρΦV + 1

2

∫
R3×R3

ρΦ(x)ρΦ(y)
|x − y|

dxdy

− 1
2

∫
R3×R3

|τΦ(x, y)|2

|x − y|
dxdy

where

τΦ(x, y) =
N∑

i=1
φi(x)φi(y) ρΦ(x) = τΦ(x, x)
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Motivation Models in computational quantum chemistry

It can be shown that

φi = argmin
φ

{
⟨Fφ,φ⟩, φ ∈ H1(R3),

∫
R3

|φ|2 ≤ 1,
∫
R3
φiφj = 0, ∀j ̸= i

}
,

where F is the self adjoint operator

Fψ = −1
2∆ψ + Vψ +

(
ρΦ ⋆

1
|x|

)
ψ −

∫
R3

τΦ(x, y)
|x − y|

ψ(y)dy.

We therefore have the eigenvalue problem

Fφi = εiφi i = 1, . . . ,N

[Flad et al., 2008] showed that around the origin the solutions belong to (a
subset of) the countably normed spaces

K∞,γ =
{

u ∈ D′ : |x||α|−γ∂αu ∈ L2, |α| = s, ∀s ∈ N
}
.
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Motivation Drawbacks of classic methods

Classic finite element and spectral approximations

The eigenfunctions are thus not regular in the Sobolev spaces
Hk(Ω) = Wk,2(Ω), but share features with the solution of e.g. problems in non
convex polygonal domains or fraction elliptic problems.

The convergence speed of “classic” finite element and spectral methods is
bounded by the regularity of the solution in Sobolev spaces.

Classic finite element and spectral methods

If u ∈ Hs+1(Ω), the following approximation results hold:
• for finite element methods of degree r ≤ s and element size h:

∥u − uh∥H1(Ω) ≲ hr|u|Hr+1(Ω);

• for spectral methods of degree p:

∥u − uδ∥H1(Ω) ≲ p−s∥u∥Hs+1(Ω);
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The discontinuous h-P finite elements method Space and mesh

The discontinuous h-P finite elements method

Finite element space:

Xδ = {v ∈ L2(Ω) : v|S ∈ QkS(S), ∀S ∈ T }.

The mesh is geometrically refined by a factor σ
towards the center (where the singularity lies),
while the polynomial degree usually decreases
with a slope s.

Graded mesh, uniform slope:
At the refinement step ℓ, the elements in Iℓ will have edges of length σℓ, while
in the outermost element the polynomial degree will be k0 + ⌊sℓ⌋
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The discontinuous h-P finite elements method Discontinuous Galerkin

The discontinuous approach

We consider the bilinear form associated with the Laplace operator

d(u, v) = (∇u,∇v)Ω,

defined over X × X (with e.g. X = H1
0(Ω)) and define a bilinear form over

Xδ × Xδ

dδ(uδ, vδ) =
∑
S∈T

(∇uδ,∇vδ)S −
∑
e∈E

({{∇uδ}}, JvδK)e︸ ︷︷ ︸
consistency

−
∑
e∈E

({{∇vδ}}, JuδK)e︸ ︷︷ ︸
adjoint consistency

+
∑
e∈E

α
k2

e
he

(JuδK, JvδK)e︸ ︷︷ ︸
stability

.

The set E is the set of all d − 1 dimensional inter-element boundaries, while
{{·}} and J·K are average and jump operators respectively.
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The discontinuous h-P finite elements method Approximation

Approximation results in the discontinuous h-P space
Let X = K∞,γ(Ω, C) ∩ H1(Ω). We introduce the space X(δ) = X + Xδ and the
norms

∥u∥2
DG =

∑
S∈T

∥∇u∥2
S +

∑
e∈E

N2
e

he
∥JuK∥2

e

|||u|||2DG = ∥u∥2
DG +

∑
K∈Dℓ

∑
e∈EK

he

k2
e
∥∇u∥2

e +
∑
K∈Iℓ

∑
e∈EK

k2
e |e|−1he∥∇u∥2

L1(e)

We now consider the space

Aγ =
{

v ∈ K∞,γ(Ω, C), |u|Kk,γ ≤ CAkk!
}

with |v|2Kk,γ =
∑

|α|=k ∥rk−γ∂αv∥2, r distance from the nearest singularity in C.
[Schötzau et al., 2013] showed that for a function u ∈ Aγ and a space Xδ with
N degrees of freedom,

inf
vδ∈Xδ

|||u − vδ|||DG ≲ exp(−bN1/(d+1)).
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Non linear eigenvalue problems with singular potential Model problem

The Gross-Pitaevskii equation

In a periodic domain Ω = (R/L)d we consider the problem of minimizing the
energy

E(v) = 1
2

∫
Ω

|∇v|2︸ ︷︷ ︸
d(v,v)

+1
2

∫
Ω

Vv2 + 1
2

∫
Ω

F(v2)

under the constraint ∥v∥ = 1. The unique minimizer u satisfies for λ ∈ R

X′⟨Auu − λu, v⟩X = 0 ∀v ∈ X

where
X′⟨Auv,w⟩X = d(u, v) +

∫
Ω

Vuv +
∫

Ω
F′(u2)vw.

The discrete counterparts are

⟨Auδ

δ uδ − λδuδ, vδ⟩ = 0 ∀vδ ∈ Xδ

⟨Auδ

δ vδ,wδ⟩ = dδ(vδ,wδ) +
∫

Ω
Vvδwδ +

∫
Ω

F′(u2
δ)vδwδ.
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Non linear eigenvalue problems with singular potential Regularity

Regularity

We may prove the following result for the problem under consideration:

Regularity of the solution

Let us suppose for the sake of simplicity that f(u2) = u2. Then, if u ∈ X is the
solution to the eigenvalue problem for a potential V ∈ Aγ(Ω, C),

u ∈ Aγ(Ω, C).

Note that singular potentials are allowed, and those give rise to solutions with
cusp-like singularities.

Sketch of the proof:
• ∥r|α|+2∂α+βu∥ ≤ ∥r|α|+2∂α∆u∥ + ∥

[
r|α|+2, ∆

]
∂αu∥ + ∥

[
∂β , r|α|+2] ∂αu∥, with

|β| = 2.
• Equation on the first term, then bounds on the three terms.
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Analysis of the error A priori estimates

Convergence

Convergence of the approximation
Let (u, λ) be the solution to the eigenvalue problem and let (uδ, λδ) be the h-P
discontinuous approximations. Then, under proper hypotheses on F,

∥u − uδ∥DG ≤ C inf
vδ∈Xδ

|||u − vδ|||DG

and
|λδ − λ| ≤ C

(
∥u − uδ∥2

DG + ∥u − uδ∥L2
)
.

Similar results have been obtained in [Cancès et al., 2010] in the simpler case
of a continuous approximation. The main difference for this case stems from
the fact that the approximation is not conforming, i.e., Xδ ̸⊂ X, thus λδ ̸≥ λ.
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Analysis of the error Numerical experiments

Results visualized
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Analysis of the error Numerical experiments

Numerical experiments
In the one dimensional case, with periodic domain Ω = [−1, 1]/2Z and the
singularity at the center, with potential V(x) = −|x|−3/4,

0 1−1
we get the convergence results

√
N

5 6 7 8 9 10 11 12

E
rr

or

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

∝ exp(−0.7
√
N)

∝ exp(
−1.4

√
N)

∝ exp(
−1.6

√

N)

λ

L2

DG
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Asymptotics

Asymptotics of the solution: iterative scheme

We consider the iterative scheme

−∆un+1 − 1
|x|γ

un+1 + u2
nun+1 − bPunun+1 = λn+1un+1

where
• γ > 0 such that |x|−γ ∈ L1(Ω),
• Pun is the projector on un,
• b > 0 is a shift parameter that enforces the convergence.

We can prove that
• ∥un∥H1(Ω) is bounded, and
•
∑

n∈N ∥un+1 − un∥ is bounded.
Therefore, un converges towards a solution of the nonlinear Gross-Pitaevskii
equation, with f(u2) = u2.
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Asymptotics

Asymptotics of the solution: Mellin transform
We consider the eigenvalue problem

−∆un+1 − 1
|x|γ

un+1 + u2
nun+1 − bPunun+1 = λn+1un+1.

Using the Mellin transform

û(z) = (Mu) (z) =
∫ ∞

0
rz−1u(r)dr

(
M−1û

)
(r) =

∫
ℜz=β

r−zû(z)dz

and an hypothesis on un, we get (dropping the subscript ·n+1)

z(z + 1)û(z) ≃ û(z + 2 − γ) + λû(z + 2) +
∑
j∈N

⌊j/2⌋∑
k=0

ajkû(z + 2 + j − kγ).

The opposites of the poles of the Mellin transform are the exponents of the
asymptotic expansion: for x → 0

u ∼ C + x + x2−γ + . . .
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Asymptotics

One dimensional error analysis

[Gui and Babuska, 1985] showed that for u ∼ xα (x → 0), given a scaling factor
σ and a polynomial increase s

∥u − Π(u)∥ ≃ C(σ)

( m∑
i=2

σ(2α−1)(1−i)r2(1+s(i−1))

(1 + s(i − 1))2α

)1/2

,

where one part is bigger in the element at the singularity and the other tends
to be bigger in outer elements.
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Asymptotics

One dimensional error analysis

[Gui and Babuska, 1985] showed that for u ∼ xα (x → 0), given a scaling factor
σ and a polynomial increase s

∥u − Π(u)∥ ≃ C(σ)

( m∑
i=2

σ(2α−1)(1−i)r2(1+s(i−1))

(1 + s(i − 1))2α

)1/2

,

where one part is bigger in the element at the singularity and the other tends
to be bigger in outer elements.

s
0.5 1 1.5 2

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

Exponential coefficient

L2
DG
theory H1
theory L2

Since u′(x) ∼ xα−1, we can prove (and show
numerically) that the speed of convergence of
the two norms of the approximation error
reach their minima for different values of the
parameters.
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Asymptotics

Slope optimization
Back to Gross-Pitaevskii:

−∆u − 1
|x|γ

u + u3 = λu.

We consider the behaviour of the “exponential coefficient” κ in

∥u − uδ∥ ≲ exp
(
κ

√
N
)

with respect to the slope s.

s
0.5 1 1.5

-1.4

-1.2

-1

-0.8

-0.6

-0.4

Exponential coefficient estimate, σ = 0.50

L2
DG
λ

L2 a priori
DG a priori
λ a priori
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Asymptotics

Slope optimization: different potentials
Behaviour for different values of γ in

−∆u − 1
|x|γ

u + u3 = λu.

s
0.5 1 1.5 2 2.5 3 3.5

κ

-1.6

-1.4

-1.2

-1

-0.8

-0.6

Exponential coefficient estimate, σ = 0.17

γ = 4/9

γ = 8/9

γ = 6/9

Figure: κ for the DG norm of the error. Dashed line: theory; continuous line:
numerical results.
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Conclusions

Conclusions and perspectives

• The approximate eigenfunctions and eigenvalues converge with
exponential speed to the exact solution.

• The analysis may be applied to the Gross-Pitaevskii and the
Thomas-Fermi-von Weizsäcker models, but should be extended to more
complex models.

• Given the asymptotics of the solution to the problem considered, the
mesh and finite dimensional space can be optimized a priori and
estimates for the convergence speed can be derived, mainly where the
error near the singularity is bigger.
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