Adaptivity and blowup detection for nonlinear evolution PDEs

Emmanuil Georgoulis

Department of Mathematics University of Leicester UK
 Greece

Based on joint work with:
A. Cangiani (Leicester), I. Kyza (Dundee), S. Metcalfe (Bern), Y. Sabawi (Leicester)
06.01.2016, Birmingham

Overview

- Motivation - blowup detection
- Rigorous a posteriori bounds for semilinear parabolic problems, valid up to blowup time
- Adaptivity and estimation of blowup time and near blowup
A. Cangiani, E. H. Georgoulis, I. Kyza, S. Metcalfe, Adaptivity and blow-up detection for nonlinear evolution problems, in review.
- adaptive (high-order) methods for non-polygonal interface problems
A. Cangiani, E. H. Georgoulis, Y. Sabawi, Adaptive discontinuous Galerkin methods for non-polygonal interface problems, in preparation.

A "simple" test case

$$
u_{t}-\Delta u=u^{2}, \quad u(0, x) \text { Gaussian } \quad \rightsquigarrow \text { single point blowup }
$$

Motivation

- blowup time estimation is interesting for applications (physical/chemical reactions, chemotaxis(?), etc.)
- a priori/analytical knowledge of blowup times is known for few model problems only
- a general enough error estimation framework could provide insight for interaction of non-linearities with other phenomena, such as advection, interfaces,etc.

Mass transfer through semi-permeable membranes

We consider a number of solutes subject to:

- diffusion and advection on both sides of the membrane
- nonlinear reactions with other solutes
- mass transfer across the membrane
$($ red $=$ linear, green $=$ nonlinear $)$

Cargo.Imp concentration in cell signal transduction

Simpler model problem...

Consider advection-diffusion-reaction PDE problem on a single domain $\Omega \subset \mathbb{R}^{2}$:

$$
\begin{aligned}
\partial_{t} u-\kappa \Delta u+\mathbf{a} \cdot \nabla u+f(u) & =0 & & \text { in } \Omega \times(0, T] \\
u & =0 & & \text { on } \partial \Omega \times(0, T], \\
u(\cdot, 0) & =u_{0} & & \text { in } \Omega,
\end{aligned}
$$

with $f(u)=-u^{2}, \kappa>0$.

- analytical results on blowup times ?
- effect(s) of advection w.r.t. to blowup?
- inclusion of interfaces in the mix? (ongoing...)

For accessibility, in this talk, I shall mostly discuss the even simpler problem:

$$
\begin{aligned}
\partial_{t} u-\Delta u & =u^{2} & & \text { in } \Omega \times(0, T], \\
u & =0 & & \text { on } \partial \Omega \times(0, T], \\
u(\cdot, 0) & =u_{0} & & \text { in } \Omega,
\end{aligned}
$$

Aim

Estimation of blowup time \& space-time error control near blowup

Blowup detection \& error control

A case for adaptivity:

- Extremely fine (space-time) local resolution needed to approach blowup time
- "Standard" a priori error analysis \& uniform meshes: at time $t=T_{\text {blowup }}-\varepsilon$, constants $\mathrm{O}\left(\mathrm{e}^{1 / \varepsilon}\right)$ appear in bounds. $\varepsilon \rightarrow 0 \ldots$
- Problem of missing the blowup!

Dominant approach in the literature: rescaling/use of PDE 'similarity' properties to (r-)adapt/rescale discretisation parameters. Nakagawa ('75), Berger \& Kohn ('89), Stuart \& Floater ('90), Tourigny \& Sanz-Serna ('92), Budd, Huang \& Russell ('96) ...

Approach

Construction of adaptive algorithms via rigorous a posteriori error estimates

- Limited literature on a posteriori error control \& adaptivity in this context. Karakashian \& Plexousakis ('96), Kyza \& Makridakis ('11)
- Conditional a posteriori error estimates: final estimates hold under some computationally verifiable conditions

Step back to ODEs...

ODE initial value problem: find $u:[0, T] \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
\frac{d u}{d t} & =f(u):=u^{p}, \quad \text { in }(0, T] \\
u(0) & =u_{0}
\end{aligned}
$$

with $\mathbb{N} \ni p \geq 2$, so that the solution blows up in finite time, say T^{*}.
Three different one step schemes: set $U^{0}:=u_{0}$; for $k=1, \ldots, N$, solve for U^{k} :

$$
\frac{U^{k}-U^{k-1}}{\tau_{k}}=F\left(U^{k-1}, U^{k}\right)
$$

with F one of the following three classical approximations of f :
Explicit Euler $\quad F\left(U^{k-1}, U^{k}\right)=f\left(U^{k-1}\right)$,
Implicit Euler $\quad F\left(U^{k-1}, U^{k}\right)=f\left(U^{k}\right)$,
RK2/Improved Euler $\quad F\left(U^{k-1}, U^{k}\right)=\frac{1}{2}\left(f\left(U^{k-1}\right)+f\left(U^{k-1}+\tau_{k} f\left(U^{k-1}\right)\right)\right)$.

An a posteriori error estimate

Let $U:[0, T] \rightarrow \mathbb{R} p / w$ linear interpolant of $\left\{U^{k}\right\}$ at t^{k}, viz

$$
U(t):=\ell_{k-1}(t) U^{k-1}+\ell_{k}(t) U^{k}, \quad t \in\left(t^{k-1}, t^{k}\right]
$$

Hence, on each interval $\left(t^{k-1}, t^{k}\right]$, we have

$$
\frac{d U}{d t}=F\left(U^{k-1}, U^{k}\right)
$$

Therefore, on each time interval $\left(t^{k-1}, t^{k}\right]$, the error $e:=u-U$ satisfies

$$
\frac{d e}{d t}=f(u)-F\left(U^{k-1}, U^{k}\right)=f(U)+f^{\prime}(u) e+\sum_{j=2}^{p} \frac{f^{(j)}(U)}{j!} e^{j}-F\left(U^{k-1}, U^{k}\right)
$$

or, setting $\eta_{k}:=f(U)-F\left(U^{k-1}, U^{k}\right)$, we have

$$
\frac{d e}{d t}=\eta_{k}+\left(f^{\prime}(U)+\sum_{j=2}^{p} \frac{f^{(j)}(U)}{j!} e^{j-1}\right) e
$$

An a posteriori error estimate

Gronwall's inequality, therefore, implies

$$
|e(t)| \leq H_{k}(t) G_{k} \phi_{k},
$$

with $H_{k}(t):=\exp \left(\sum_{j=2}^{p} \int_{t^{k-1}}^{t} \frac{\left|f^{(j)}(U)\right|}{j!}|e|^{j-1} \mathrm{~d} s\right), \quad G_{k}:=\exp \left(\int_{t^{k-1}}^{t^{k}}\left|f^{\prime}(U)\right| \mathrm{d} s\right)$,
and $\quad \phi_{k}:=\left|e\left(t^{k-1}\right)\right|+\int_{t^{k-1}}^{t^{k}}\left|\eta_{k}\right| \mathrm{d} s$.

Theorem (Conditional error estimate)

For $k=1, \ldots, N$, the following a posteriori estimate holds:

$$
\max _{t \in\left[t^{k-1}, t^{k}\right]}|e(t)| \leq \delta_{k} G_{k} \phi_{k}
$$

provided that $\delta_{k}>1$ is chosen so that

$$
\sum_{j=2}^{p}\left(\delta_{k} G_{k} \phi_{k}\right)^{j-1} \int_{t^{k-1}}^{t^{k}} \frac{\left|f^{(j)}(U(s))\right|}{j!} \mathrm{d} s-\log \left(\delta_{k}\right)=0
$$

Two algorithms: 1

```
Algorithm 1 ODE Algorithm 1
    Input: \(f, F, u_{0}, \tau_{1}\), tol.
    2: Compute \(U^{1}\) from \(U^{0}\).
    3: while \(\int_{t^{0}}^{t^{1}}\left|\eta_{1}\right| \mathrm{d} s>\) tol do
    \(\tau_{1} \leftarrow \tau_{1} / 2\).
    Compute \(U^{1}\) from \(U^{0}\).
    end while
    Compute \(\delta_{1}\).
    Set \(k=0\).
    : while \(\delta_{k+1}\) exists do
        \(k \leftarrow k+1\).
        \(\tau_{k+1}=\tau_{k}\).
        Compute \(U^{k+1}\) from \(U^{k}\).
        while \(\int_{t^{k}}^{t^{k+1}}\left|\eta_{k+1}\right| \mathrm{d} s>\) tol do
        \(\tau_{k+1} \leftarrow \tau_{k+1} / 2\).
        Compute \(U^{k+1}\) from \(U^{k}\).
            end while
            Compute \(\delta_{k+1}\).
    end while
    Output: \(k, t^{k}\).
```

$$
\eta_{k}:=f(U)-F\left(U^{k-1}, U^{k}\right)
$$

Absolute tolerance: tol

$$
\left|T_{\text {blowup }}-T_{\text {final }}\right| \sim N^{-r}
$$

Method	$p=2$	$p=3$
Implicit Euler	$r \approx 0.66$	$r \approx 0.79$
Explicit Euler	$r \approx 1.35$	$r \approx 1.60$
Improved Euler	$r \approx 1.2$	$r \approx 1.48$

Two algorithms: 2

```
Algorithm 2 ODE Algorithm 2
    Input: \(f, F, u_{0}, \tau_{1}\), tol.
    Compute \(U^{1}\) from \(U^{0}\).
    while \(\int_{t^{0}}^{t^{1}}\left|\eta_{1}\right| \mathrm{d} s>\) tol do
        \(\tau_{1} \leftarrow \tau_{1} / 2\).
        Compute \(U^{1}\) from \(U^{0}\).
    end while
    Compute \(\delta_{1}\).
    tol \(=G_{1} *\) tol.
    Set \(k=0\).
    while \(\delta_{k+1}\) exists do
        \(k \leftarrow k+1\).
        \(\tau_{k+1}=\tau_{k}\).
        Compute \(U^{k+1}\) from \(U^{k}\).
        while \(\int_{t^{k}}^{t^{k+1}}\left|\eta_{k+1}\right| \mathrm{d} s>\) tol do
            \(\tau_{k+1} \leftarrow \tau_{k+1} / 2\).
            Compute \(U^{k+1}\) from \(U^{k}\).
        end while
        Compute \(\delta_{k+1}\).
        \(\mathrm{tol}=G_{k+1} * \mathrm{tol}\).
    end while
21: Output: \(k, t^{k}\).
```

$$
\eta_{k}:=f(U)-F\left(U^{k-1}, U^{k}\right)
$$

Relative tolerance: G_{k+1} *tol

```
\(\left|T_{\text {blowup }}-T_{\text {final }}\right| \sim N^{-r}\)
```

Method	$p=2$	$p=3$
Implicit Euler	$r \approx 1.00$	$r \approx 1.00$
Explicit Euler	$r \approx 1.45$	$r \approx 1.43$
Improved Euler	$r \approx 2.03$	$r \approx 2.03$

Back to PDEs: time semi-discretisation

$0:=t_{0}<t_{1}<\cdots<t_{N}=: T$ partition of $[0, T], \tau_{k}:=t_{k+1}-t_{k}$,
Implicit-Explicit (IMEX) Euler method: find $U^{k} \in H_{0}^{1}(\Omega), k=0,1, \ldots, N-1$:

$$
\frac{U^{k+1}-U^{k}}{\tau_{k}}-\Delta U^{k+1}=f\left(U^{k}\right), \text { with } U^{0}=u_{0}
$$

Why IMEX

- implicit on diffusion \Rightarrow stability
- explicit on nonlinear reaction \Rightarrow advantageous approximation near blowup

Error equation

Let $U:[0, T] \rightarrow H_{0}^{1}(\Omega)$ linear interpolant of $\left\{U^{k}\right\}_{k}$.
Let $e:=u-U$. Then, for $f(u)=u^{2}$, we have

$$
\partial_{t} e-\Delta e=2 U e+e^{2}+r_{k+1}
$$

in $\left(t_{k}, t_{k+1}\right]$ with $r_{k+1}:=\left[f(U)-f\left(U^{k}\right)\right]+\left(t_{k+1}-t\right)\left(U^{k+1}-U^{k}\right) / \tau_{k}$.
Energy estimate:

$$
\frac{d}{d t}\|e(t)\|^{2}+\|\nabla e(t)\|^{2} \leq 4\|U(t)\|_{L \infty}\|e(t)\|^{2}+2\left\langle e^{2}, e\right\rangle+\left\|r_{k+1}(t)\right\|_{-1}^{2}
$$

Using $\left\langle e^{2}, e\right\rangle \leq\|e\|_{L \infty}\|e\|^{2}$, Gronwall's inequality gives
$\max _{0 \leq t \leq T}\|e(t)\|^{2} \leq \exp \left(2 \int_{0}^{T}\left[2\|U(t)\|_{L^{\infty}}+\|e(t)\|_{L^{\infty}}\right] \mathrm{d} t\right) \sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}}\left\|r_{k+1}(t)\right\|_{-1}^{2} \mathrm{~d} t$

- Is a fully a posteriori bound possible from this?
- Behaviour of the constant in the run up to blowup?

Exponent growth (Kyza \& Makididksis (11))

Gronwall exponent:

$$
\int_{0}^{T} 2\|U(t)\|_{L^{\infty}}+\|e(t)\|_{L^{\infty}} d t
$$

On run up to blowup time: $\|u(t)\|_{L_{\infty}} \sim \frac{1}{\left(T_{\text {blowup }}-t\right)}$
(Merle \& Zaag ('00))
We can infer that we also have, approximately,

$$
\|U(t)\|_{L^{\infty}},\|e(t)\|_{L^{\infty}} \sim \frac{1}{\left(T_{\text {blowup }}-t\right)}
$$

Hence, at $T:=T_{\text {blowup }}-\varepsilon, \varepsilon>0$, the exponent scales like

$$
\int_{0}^{T_{\text {blowup }}-\varepsilon} \frac{1}{T_{\text {blowup }}-t} d t=\ln \left(\frac{T_{\text {blowup }}}{\varepsilon}\right)
$$

and, thus, the Gronwall constant scales like

$$
\exp \left(\int_{0}^{T_{\text {blowup }}-\varepsilon} \frac{1}{T_{\text {blowup }}-t} d t\right) \sim \frac{C\left(T_{\text {blowup }}\right)}{\varepsilon^{q}}
$$

i.e., polynomial growth w.r.t ε ! Challenge: Leads to practical algorithm?

Time-discrete scheme a posteriori bound of (Kyza \& Makridakis ('11))

fixed point arguments + semigroup theory \Longrightarrow a posteriori estimate

Conditional a posteriori error estimates

$$
\begin{aligned}
& \text { - } L^{\infty}\left(L^{\infty}\right):\|e\|_{L \infty}\left(L^{\infty}\right) \leq \mathrm{e}^{1 / 8+4} \int_{0}^{T}\|U(s)\| L_{\infty} \mathrm{ds} \sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}}\left\|r_{k+1}(s)\right\|_{L^{\infty}} \mathrm{d} s \\
& \text { - } L^{\infty}\left(L^{2}\right): \max _{0 \leq t \leq T}\|e(t)\|^{2} \leq \mathrm{e}^{1 / 8+4 \int_{0}^{T}\|U(s)\|_{L \infty} \mathrm{~d} s} \sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}}\left\|r_{k+1}(s)\right\|_{-1}^{2} \mathrm{~d} s
\end{aligned}
$$

provided τ_{k} are chosen so that

$$
\mathrm{e}^{4} \int_{0}^{T}\|U(s)\|_{\llcorner\infty \mathrm{d} s} \sum_{k=0}^{N-1} \int_{t_{k}}^{t_{k+1}}\left\|r_{k+1}(s)\right\|_{L \infty} \mathrm{~d} s \leq \frac{3}{16} \rho, \text { with } \rho<\frac{1}{16 T}
$$

Global condition! efficient time-adaptive algorithm? - More local conditions?

- For fully-discrete L^{∞}-norm a posteriori bounds for resp. elliptic problem are needed in this framework.
- growth range $u^{p}, p>1$.

A new a posteriori bound (fully discrete bound also available)

New conditional estimate

$$
\max _{t_{k} \leq t \leq t_{k+1}}\|e(t)\|^{2} \leq \delta_{k+1} \mathrm{e}^{4 \int_{t_{k}}^{t_{k+1}}\|U(s)\|_{L \infty} \mathrm{~d} s}\left[\left\|e\left(t_{k}\right)\right\|^{2}+\int_{t_{k}}^{t_{k+1}}\left\|r_{k+1}(s)\right\|_{-1}^{2} \mathrm{~d} s\right]
$$

with $e(0)=0$, where $\delta_{k+1}>1$ is chosen to satisfy

$$
\beta^{2} \delta_{k+1} \mathrm{e}^{4} \int_{t_{k}}^{t_{k+1}}\|U(s)\|\left\llcorner\infty \mathrm{d} s\left[\left\|e\left(t_{k}\right)\right\|^{2}+\int_{t_{k}}^{t_{k+1}}\left\|r_{k+1}(s)\right\|_{-1}^{2} \mathrm{~d} s\right] \tau_{k}-\ln \delta_{k+1}=0\right.
$$

Ingredients:

- Gagliardo-Nirenberg inequality: $\left\langle e^{2}, e\right\rangle(t) \leq \beta\|e(t)\|^{2}\|\nabla e(t)\|$
- a new local on each time-step continuation argument
("global" continuation arguments in this spirit: Kessler, Nochetto \& Schmidt ('04), Bartels ('05), Cangiani, G. \& Jensen ('13))

Condition - discussion

Condition satisfied only if

$$
\beta^{2} \mathrm{e}^{4 \int_{t_{k}}^{t_{k+1}}\|U(s)\|_{L \infty} \mathrm{~d} s}\left[\left\|e\left(t_{k}\right)\right\|^{2}+\int_{t_{k}}^{t_{k+1}}\left\|r_{k+1}(s)\right\|_{-1}^{2} \mathrm{~d} s\right] \tau_{k}<\frac{1}{\mathrm{e}}
$$

This implies restriction on time-steps τ_{k}, i.e., conditional estimates.
Is condition practical?

- Say $t_{k+1}=T_{\text {blowup }}-\varepsilon$, then $\mathrm{e}^{4 \int_{t_{k}}^{t_{k+1}}\|U(s)\|_{\llcorner\infty} \mathrm{ds}} \sim\left(\frac{\tau_{k}+\varepsilon}{\varepsilon}\right)^{q}$
- $\int_{t_{n}}^{t_{n+1}}\left\|r_{n+1}(s)\right\|_{-1}^{2}$ ds estimable via a posteriori bounds
δ_{n+1} computed via, e.g., Newton's method.

Semilinear advection-diffusion problem with blowup

$$
\begin{array}{ll}
u_{t}-\epsilon \Delta u+\mathbf{a} \cdot \nabla u=u^{2}+g & \text { in } \Omega \times(0, T] \\
u=0 & \text { on } \partial \Omega \times(0, T] \\
u(\cdot, 0)=u_{0} & \text { in } \Omega,
\end{array}
$$

Spatial discretisation: Discontinuous Galerkin (dG) method with upwind flux. dG IMEX method: find $U_{h}^{k+1} \in \mathbb{V}_{h}^{k+1}$ s.t.

$$
\left\langle\frac{U_{h}^{k+1}-U_{h}^{k}}{\tau_{k}}, V_{h}\right\rangle+B\left(t_{k+1} ; U_{h}^{k+1}, V_{h}\right)=\left\langle f\left(U_{h}^{k}\right)+g^{k}, V_{h}\right\rangle \quad \forall V_{h} \in \mathbb{V}_{h}^{k+1}
$$

Continuation Argument + Elliptic Reconstruction
Conditional a posteriori error estimate in the $L^{\infty}\left(L^{2}\right)$-norm for dG IMEX
For elliptic reconstruction see Makridakis \& Nochetto ('03), Lakkis \& Makridakis ('06), G. Lakkis \& Virtanen ('11), Cangiani, G., \& Metcalfe ('14)

Key attribute of the approach: Flexibility on the elliptic operator!

A simple test case: reaction-diffusion problem

$$
\Omega=(-4,4) \times(-4,4), u_{0}(x, y)=10 \mathrm{e}^{-2\left(x^{2}+y^{2}\right)} \leadsto \text { single point blowup }
$$

- space-time adaptive algorithm
- when condition fails, restarts with smaller timestep

A simple test case

tol	\# time-steps	T	$\left\\|U_{h}(T)\right\\|_{L^{\infty}}$	Estimator
$(0.125)^{10}$	6956	0.21228	238.705	33426.7
$(0.125)^{11}$	14008	0.21375	343.078	36375.0
$(0.125)^{12}$	28151	0.21478	496.885	66012.8
$(0.125)^{13}$	35580	0.21549	722.884	157300.0

plots depict: p_{k} vs. $\frac{1}{T^{*}-t}$

Observed rates of convergence

- $\left\|U_{h}(t)\right\|_{L \infty}$ appears to blow up at the expected rate on the run-up to T^{*}
- we have $\left|T^{*}-T\right| \sim N^{-1 / 2}$
- shortcoming of energy method?
- semigroup techniques?
- Estimator blows up at faster rate, but delivers optimal blowup rate for the numerical solution regardless!

Numerical experiment - advection-diffusion problem

$$
\Omega=(-4,4) \times(-4,4), \kappa=1, \mathbf{a} \equiv(1,1)^{\mathrm{T}}, g \equiv 1, u_{0} \equiv 0
$$

tol	\# time-steps	T	$\left\\|U_{h}(T)\right\\|_{L^{\infty}}$
1	4	0.78125	0.886245
0.125	10	0.976562	1.32178
$(0.125)^{2}$	54	1.31836	3.26904
$(0.125)^{3}$	119	1.41602	5.10672
$(0.125)^{4}$	252	1.48163	8.05863
$(0.125)^{5}$	520	1.51711	11.8193
$(0.125)^{6}$	1064	1.54467	18.1385
$(0.125)^{7}$	2158	1.56224	27.4045
$(0.125)^{8}$	4354	1.57402	41.3737
$(0.125)^{9}$	8792	1.58243	64.4503
$(0.125)^{10}$	17713	1.58770	99.1902
$(0.125)^{11}$	35580	1.59092	145.785
$(0.125)^{12}$	71352	1.59299	211.278

Numerical experiment - blowup on 1D manifold

$$
\Omega=(-8,8)^{2}, \kappa=1, \mathbf{a}=(0,0)^{T}, f_{0}=0
$$

'volcano' type initial condition be given by $u_{0}=10\left(x^{2}+y^{2}\right) \exp \left(-\left(x^{2}+y^{2}\right) / 2\right)$

Numerical experiment - blowup on 1D manifold

$\Omega=(-8,8)^{2}, \kappa=1, \mathbf{a}=(0,0)^{T}, f_{0}=0$
'volcano' type initial condition be given by $u_{0}=10\left(x^{2}+y^{2}\right) \exp \left(-\left(x^{2}+y^{2}\right) / 2\right)$

ttol $^{+}$	Time Steps	Estimator	Final Time	$\left\\|U_{h}(T)\right\\|_{L^{\infty}(\Omega)}$
8	3	15	0.06250	10.371
1	10	63	0.09375	14.194
0.125	36	211	0.11979	21.842
$(0.125)^{2}$	86	533	0.13412	31.446
$(0.125)^{3}$	190	971	0.14388	45.122
$(0.125)^{4}$	404	1358	0.15072	64.907
$(0.125)^{5}$	880	5853	0.15601	98.048
$(0.125)^{6}$	1853	10654	0.15942	146.162
$(0.125)^{7}$	3831	21301	0.16176	219.423
$(0.125)^{8}$	7851	143989	0.16336	332.849
$(0.125)^{9}$	16137	287420	0.16442	505.236
$(0.125)^{10}$	32846	331848	0.16512	769.652
$(0.125)^{11}$	66442	626522	0.16558	1175.21

Notation

Consider an open polygonal domain $\Omega \subset \mathbb{R}^{d}$ subdivided into two subdomains Ω_{1} and Ω_{2} :

$$
\begin{aligned}
& \Omega=\Omega_{1} \cup \Omega_{2} \cup \Gamma_{\mathrm{i}} \\
& \Gamma_{\mathrm{i}}=\bar{\Omega}_{1} \cap \bar{\Omega}_{2}
\end{aligned}
$$

and set $\mathcal{H}^{1}:=\left[H^{1}\left(\Omega_{1} \cup \Omega_{2}\right)\right]^{n}, n \in \mathbb{N}$. PDE system:

$$
\begin{aligned}
\mathbf{u}_{t}-\nabla \cdot(A \nabla \mathbf{u}-U \mathbf{B})+\mathbf{F}(\mathbf{u}) & =\mathbf{0} \quad \text { in }(0, T] \times\left(\Omega_{1} \cup \Omega_{2}\right), \\
\mathbf{u}(0, x) & =\mathbf{u}_{0}(x) \quad \text { on }\{0\} \times \Omega, \\
\mathbf{u} & =\mathbf{g}_{\mathrm{D}} \text { on } \Gamma_{\mathrm{D}}, \\
\left(A \nabla \mathbf{u}-\chi^{-} U \mathbf{B}\right) \mathbf{n} & =\mathbf{g}_{\mathrm{N}} \text { on } \Gamma_{\mathrm{N}},
\end{aligned}
$$

where χ^{-}the (vector-valued) characteristic function of the inflow part of $\partial \Omega$ and $U:=\operatorname{diag}(\mathbf{u})$. On Γ_{i} we impose:

$$
\begin{aligned}
& \left.(A \nabla \mathbf{u}-U \mathbf{B}) \mathbf{n}\right|_{\Omega^{1}}=\mathbf{P}(\mathbf{u})\left(\mathbf{u}^{2}-\mathbf{u}^{1}\right)-\{U\}_{w} R \mathbf{B n}^{1} \\
& \left.(A \nabla \mathbf{u}-U \mathbf{B}) \mathbf{n}\right|_{\Omega^{2}}=\mathbf{P}(\mathbf{u})\left(\mathbf{u}^{1}-\mathbf{u}^{2}\right)-\{U\}_{w} R \mathbf{B n}^{2}
\end{aligned}
$$

Reflective membranes - time-dependent sharp features

- a DG method \& a priori analysis with solution boundedness assumption Cangiani, G., Jensen ('13)
- No analytical information - numerics?

A posteriori error bounds for dG on curved geometries

$\Omega \subset \mathbb{R}^{d}, d=2,3 . \Omega=\Omega_{1} \cup \Omega_{2} \cup \Gamma^{t r}$, with $\Gamma^{t r}:=\left(\partial \Omega_{1} \cap \partial \Omega_{2}\right) \backslash \partial \Omega$ Lipschitz.

$$
\begin{aligned}
-\Delta u & =f, & & \text { in } \Omega_{1} \cup \Omega_{2}, \\
u & =0, & & \text { on } \partial \Omega, \\
\mathbf{n}^{1} \cdot \nabla u_{1} & =\left.C_{t r}\left(u_{2}-u_{1}\right)\right|_{\Omega_{1}} & & \text { on } \bar{\Omega}_{1} \cap \Gamma^{t r}, \\
\mathbf{n}^{2} \cdot \nabla u_{2} & =\left.C_{t r}\left(u_{1}-u_{2}\right)\right|_{\Omega_{2}} & & \text { on } \bar{\Omega}_{2} \cap \Gamma^{t r},
\end{aligned}
$$

where $u_{i}=\left.u\right|_{\Omega_{i} \cap \Gamma^{t r}}, i=1,2, C_{t r}$ a given permeability constant.

Conclusions

- 'Energy methods' for error control are relevant and competitive for nonlinear evolution problems
- Error control for curved interfaces/boundaries

Some references

图
A．Cangiani，E．H．Georgoulis，M．Jensen，Discontinuous Galerkin methods mass－transfer through semi－permeable membranes，SIAM J．Numer．Anal．，51，pp． 2911－2934（2013）．
R A．Cangiani，E．H．Georgoulis，I．Kyza，S．Metcalfe，Adaptivity and blow－up detection for nonlinear evolution problems，in review．
國
A．Cangiani，E．H．Georgoulis，S．Metcalfe，An a posteriori error estimator for discontinuous Galerkin methods for non－stationary convection－diffusion problems，IMA J．Numer．Anal．，34，pp．1578－1597（2014）．
囯 A．Cangiani，E．H．Georgoulis，Y．Sabawi，Adaptive discontinuous Galerkin methods for non－polygonal interface problems，in preparation．
圊 S．Metcalfe，Adaptive discontinuous Galerkin methods for nonlinear parabolic problems，PhD Thesis，University of Leicester（2015）．
E．E．Heorgoulis，O．Lakkis，and J．M．Virtanen A posteriori error control for discontinuous Galerkin methods for parabolic problems，SIAM J．Numer．Anal． 49，pp．427－458（2011）．

Computation of numerical blowup time and blowup rate

Let t^{*} denote a numerical blowup time. We implement a set numerical experiments (corresponding to different tolerances) producing $U_{h}^{\ell}, \ell=1, \cdots L$ approximations to the exact solution u. Assume that

$$
\left\|U_{h}^{\ell}\left(t_{n}\right)\right\|_{L \infty} \sim\left(\frac{1}{t^{*}-t_{n}}\right)^{p}
$$

(1) Since $f(u)=u^{2}$, assume that $p=1$, and use $\left\|U_{h}^{L}\left(t_{N-1}\right)\right\|_{L \infty},\left\|U_{h}^{L}(T)\right\|_{L \infty}$ to calculate

$$
\left.\begin{array}{rl}
\left\|U_{h}^{L}\left(t_{N-1}\right)\right\|_{L \infty} & =C_{L} \frac{1}{t^{*}-t_{N-1}} \\
\left\|U_{h}^{L}(T)\right\|_{L \infty} & =C_{L} \frac{1}{t^{*}-T}
\end{array}\right\} \Rightarrow t^{*}=\frac{T\left\|U_{h}^{L}(T)\right\|_{L \infty}-t_{N-1}\left\|U_{h}^{L}\left(t_{N-1}\right)\right\|_{L \infty}}{\left\|U_{h}^{L}\left(t_{N-1}\right)\right\|_{L \infty}-\left\|U_{h}^{L}\left(t_{N-1}\right)\right\|_{L^{\infty}}}
$$

- For the considered example, $t^{*}=0.21705$
(2) Consider $t^{*}(=0.21705)$ as the numerical blowup time. We use $\left\|U_{h}^{\ell}(t)\right\|_{L^{\infty}}, \ell \neq L$ to compute the numerical blowup time:

$$
p_{n}:=\frac{\ln \left(\left\|U_{h}^{\ell}\left(t_{n+1}\right)\right\|_{L \infty} /\left\|U_{h}^{\ell}\left(t_{n}\right)\right\|_{L \infty}\right)}{\ln \left(\left(t^{*}-t_{n}\right) /\left(t^{*}-t_{n+1}\right)\right)}
$$

- We expect $p_{n} \rightarrow 1$ as $n \rightarrow N$, for the considered model problem

