Adaptivity and blowup detection for nonlinear evolution PDEs

Emmanuil Georgoulis

and

Department of Mathematics University of Leicester UK Department of Mathematics National Technical University of Athens Greece

Based on joint work with: A. Cangiani (Leicester), I. Kyza (Dundee), S. Metcalfe (Bern), Y. Sabawi (Leicester)

06.01.2016, Birmingham

Overview

- Motivation blowup detection
- Rigorous a posteriori bounds for semilinear parabolic problems, valid up to blowup time
- Adaptivity and estimation of blowup time and near blowup
- A. CANGIANI, E. H. GEORGOULIS, I. KYZA, S. METCALFE, *Adaptivity and blow-up detection for nonlinear evolution problems*, in review.
- adaptive (high-order) methods for non-polygonal interface problems
- A. CANGIANI, E. H. GEORGOULIS, Y. SABAWI, *Adaptive discontinuous Galerkin methods for non-polygonal interface problems*, in preparation.

A "simple" test case

 $u_t - \Delta u = u^2$, u(0, x) Gaussian \rightsquigarrow single point blowup

- blowup time estimation is interesting for applications (physical/chemical reactions, chemotaxis(?), etc.)
- a priori/analytical knowledge of blowup times is known for few model problems only
- a general enough error estimation framework could provide insight for interaction of non-linearities with other phenomena, such as advection, interfaces,etc.

Mass transfer through semi-permeable membranes

We consider a number of solutes subject to:

- diffusion and advection on both sides of the membrane
- nonlinear reactions with other solutes
- mass transfer across the membrane

(red = linear, green = nonlinear)

Cargo-Imp concentration in cell signal transduction

Simpler model problem...

Consider advection-diffusion-reaction PDE problem on a single domain $\Omega \subset \mathbb{R}^2$:

$$\partial_t u - \kappa \Delta u + \mathbf{a} \cdot \nabla u + f(u) = 0 \quad \text{in } \Omega \times (0, T],$$
$$u = 0 \quad \text{on } \partial \Omega \times (0, T],$$
$$u(\cdot, 0) = u_0 \quad \text{in } \Omega,$$

with $f(u) = -u^2$, $\kappa > 0$.

- analytical results on blowup times ?
- effect(s) of advection w.r.t. to blowup?
- inclusion of interfaces in the mix? (ongoing...)

For accessibility, in this talk, I shall mostly discuss the even simpler problem:

 $\partial_t u - \Delta u = u^2 \quad \text{in } \Omega \times (0, T],$ $u = 0 \quad \text{on } \partial\Omega \times (0, T],$ $u(\cdot, 0) = u_0 \quad \text{in } \Omega,$

Aim

Estimation of blowup time & space-time error control near blowup

Blowup detection & error control

A case for adaptivity:

- Extremely fine (space-time) local resolution needed to approach blowup time
- "Standard" a priori error analysis & uniform meshes: at time $t = T_{blowup} - \varepsilon$, constants $O(e^{1/\varepsilon})$ appear in bounds. $\varepsilon \to 0...$
- Problem of missing the blowup!

Dominant approach in the literature: rescaling/use of PDE 'similarity' properties to (*r*-)adapt/rescale discretisation parameters. Nakagawa ('75), Berger & Kohn ('89), Stuart & Floater ('90), Tourigny & Sanz-Serna ('92), Budd, Huang & Russell ('96) ...

Approach

Construction of adaptive algorithms via rigorous a posteriori error estimates

- Limited literature on a posteriori error control & adaptivity in this context. Karakashian & Plexousakis ('96), Kyza & Makridakis ('11)
- Conditional a posteriori error estimates: final estimates hold under some computationally verifiable conditions

Step back to ODEs...

ODE initial value problem: find $u : [0, T] \rightarrow \mathbb{R}$ such that

$$\frac{du}{dt} = f(u) := u^p, \quad \text{in } (0, T],$$
$$u(0) = u_0,$$

with $\mathbb{N} \ni p \ge 2$, so that the solution blows up in finite time, say T^* .

Three different one step schemes: set $U^0 := u_0$; for k = 1, ..., N, solve for U^k :

$$\frac{U^k-U^{k-1}}{\tau_k}=F(U^{k-1},U^k),$$

with F one of the following three classical approximations of f:

Explicit Euler
$$F(U^{k-1}, U^k) = f(U^{k-1}),$$

Implicit Euler $F(U^{k-1}, U^k) = f(U^k),$
RK2/Improved Euler $F(U^{k-1}, U^k) = \frac{1}{2} (f(U^{k-1}) + f(U^{k-1} + \tau_k f(U^{k-1}))).$

An a posteriori error estimate

Let $U : [0, T] \rightarrow \mathbb{R}$ p/w linear interpolant of $\{U^k\}$ at t^k , viz

$$U(t) := \ell_{k-1}(t)U^{k-1} + \ell_k(t)U^k, \qquad t \in (t^{k-1}, t^k],$$

Hence, on each interval $(t^{k-1}, t^k]$, we have

$$\frac{dU}{dt}=F(U^{k-1},U^k).$$

Therefore, on each time interval $(t^{k-1}, t^k]$, the error e := u - U satisfies

$$\frac{de}{dt} = f(u) - F(U^{k-1}, U^k) = f(U) + f'(u)e + \sum_{j=2}^p \frac{f^{(j)}(U)}{j!}e^j - F(U^{k-1}, U^k),$$

or, setting $\eta_k := f(U) - F(U^{k-1}, U^k)$, we have

$$\frac{de}{dt}=\eta_k+\Big(f'(U)+\sum_{j=2}^p\frac{f^{(j)}(U)}{j!}e^{j-1}\Big)e.$$

An a posteriori error estimate

Gronwall's inequality, therefore, implies

 $|e(t)| \leq H_k(t)G_k\phi_k,$

with
$$H_k(t) := \exp\left(\sum_{j=2}^p \int_{t^{k-1}}^t \frac{|f^{(j)}(U)|}{j!} |e|^{j-1} ds\right), \quad G_k := \exp\left(\int_{t^{k-1}}^{t^k} |f'(U)| ds\right),$$

and $\phi_k := |e(t^{k-1})| + \int_{t^{k-1}}^{t^k} |\eta_k| ds.$

Theorem (Conditional error estimate)

For k = 1, ..., N, the following a posteriori estimate holds:

$$\max_{t\in[t^{k-1},t^k]}|e(t)|\leq \delta_k G_k\phi_k,$$

provided that $\delta_k > 1$ is chosen so that

$$\sum_{j=2}^{p} (\delta_k G_k \phi_k)^{j-1} \int_{t^{k-1}}^{t^k} \frac{|f^{(j)}(U(s))|}{j!} \, \mathrm{d}s - \log(\delta_k) = 0.$$

Two algorithms: 1

Algorithm 1 ODE Algorithm 1 1: Input: f, F, u₀, τ₁, tol. 2: Compute U^1 from U^0 . 3: while $\int_{t^0}^{t^1} |\eta_1| \, \mathrm{d}s > \texttt{tol do}$ 4: $\tau_1 \leftarrow \tau_1/2.$ Compute U^1 from U^0 . $5 \cdot$ 6: end while 7: Compute δ_1 . 8: Set k = 0. 9: while δ_{k+1} exists do $k \leftarrow k+1.$ $10 \cdot$ 11: $\tau_{k+1} = \tau_k.$ Compute U^{k+1} from U^k . 12:while $\int_{t^k}^{t^{k+1}} |\eta_{k+1}| \, \mathrm{d}s > \texttt{tol } \mathbf{do}$ 13: $\tau_{k+1} \leftarrow \tau_{k+1}/2.$ 14: Compute U^{k+1} from U^k . $15 \cdot$ end while 16: Compute δ_{k+1} . $17 \cdot$ 18: end while 19: Output: k, t^k .

$$\eta_k := f(U) - F(U^{k-1}, U^k)$$

Absolute tolerance: tol

$$|T_{blowup} - T_{final}| \sim N^{-r}$$

Method	p = 2	p = 3
Implicit Euler	$r \approx 0.66$	$r \approx 0.79$
Explicit Euler	$r\approx 1.35$	$r \approx 1.60$
Improved Euler	$r\approx 1.2$	$r\approx 1.48$

Two algorithms: 2

Algorithm 2 ODE Algorithm 2 1: Input: $f, F, u_0, \tau_1, tol.$ 2: Compute U^1 from U^0 . 3: while $\int_{t^0}^{t^1} |\eta_1| \, \mathrm{d}s > \texttt{tol do}$ $\tau_1 \leftarrow \tau_1/2.$ 4: Compute U^1 from U^0 . 5: 6: end while 7: Compute δ_1 . 8: $tol = G_1 * tol.$ 9: Set k = 0. 10: while δ_{k+1} exists do $k \leftarrow k+1.$ 11: 12: $\tau_{k+1} = \tau_k.$ 13: Compute U^{k+1} from U^k . while $\int_{t^k}^{t^{k+1}} |\eta_{k+1}| \, \mathrm{d}s > \texttt{tol do}$ 14: $\tau_{k+1} \leftarrow \tau_{k+1}/2.$ 15:Compute U^{k+1} from U^k . 16:end while 17: 18: Compute δ_{k+1} . $\texttt{tol} = G_{k+1} * \texttt{tol}.$ 19: 20: end while 21: Output: k, t^k .

$$\eta_k := f(U) - F(U^{k-1}, U^k)$$

Relative tolerance: G_{k+1} *tol

$$|T_{blowup} - T_{final}| \sim N^{-r}$$

Method	p=2	p = 3
Implicit Euler	$r \approx 1.00$	$r \approx 1.00$
Explicit Euler	$r\approx 1.45$	$r \approx 1.43$
Improved Euler	$r\approx 2.03$	$r\approx 2.03$

 $0 := t_0 < t_1 < \cdots < t_N =: T$ partition of [0, T], $\tau_k := t_{k+1} - t_k$,

Implicit-Explicit (IMEX) Euler method: find $U^k \in H_0^1(\Omega)$, k = 0, 1, ..., N - 1:

$$\frac{U^{k+1}-U^k}{\tau_k}-\Delta U^{k+1}=f(U^k), \text{ with } U^0=u_0$$

Why IMEX

- implicit on diffusion \Rightarrow stability
- $\bullet~$ explicit on nonlinear reaction $\Rightarrow~$ advantageous approximation near blowup

Error equation

Let $U: [0, T] \to H^1_0(\Omega)$ linear interpolant of $\{U^k\}_k$.

Let e := u - U. Then, for $f(u) = u^2$, we have

 $\partial_t e - \Delta e = 2Ue + e^2 + r_{k+1}$

in $(t_k, t_{k+1}]$ with $r_{k+1} := [f(U) - f(U^k)] + (t_{k+1} - t)(U^{k+1} - U^k)/\tau_k$.

Energy estimate:

 $\frac{d}{dt} \|e(t)\|^2 + \|\nabla e(t)\|^2 \le 4\|U(t)\|_{L^{\infty}} \|e(t)\|^2 + 2\langle e^2, e\rangle + \|r_{k+1}(t)\|_{-1}^2$ Using $\langle e^2, e\rangle \le \|e\|_{L^{\infty}} \|e\|^2$, Gronwall's inequality gives $\max \|e(t)\|^2 \le \exp\left(2\int_{-T}^{T} [2\|U(t)\|_{L^{\infty}} + \|e(t)\|_{L^{\infty}} \right] dt \sum_{k=1}^{N-1} \int_{-1}^{t_{k+1}} \|r_{k+1}(t)\|^2$

 $\max_{0 \le t \le T} \|e(t)\|^2 \le \exp\left(2\int_0^T [2\|U(t)\|_{L^{\infty}} + \|e(t)\|_{L^{\infty}}] dt\right) \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \|r_{k+1}(t)\|_{-1}^2 dt$

- Is a fully a posteriori bound possible from this?
- Behaviour of the constant in the run up to blowup?

Exponent growth (Kyza & Makridakis ('11))

Gronwall exponent:

$$\int_{0}^{T} 2\|U(t)\|_{L^{\infty}} + \|e(t)\|_{L^{\infty}} dt$$

On run up to blowup time: $||u(t)||_{L^{\infty}} \sim rac{1}{(\mathcal{T}_{blowup} - t)}$ (Merle & Zaag ('00))

We can infer that we also have, approximately,

$$\||U(t)||_{L^{\infty}}, \|e(t)\|_{L^{\infty}} \sim rac{1}{(T_{blowup}-t)}$$

Hence, at $T := T_{blowup} - \varepsilon$, $\varepsilon > 0$, the exponent scales like

$$\int_{0}^{T_{blowup}-\varepsilon} \frac{1}{T_{blowup}-t} \, dt = \ln(\frac{T_{blowup}}{\varepsilon})$$

and, thus, the Gronwall constant scales like

$$\exp\Big(\int_0^{T_{blowup}-\varepsilon} \frac{1}{T_{blowup}-t} \, dt\Big) \sim \frac{C(T_{blowup})}{\varepsilon^q}$$

i.e., polynomial growth w.r.t ε ! Challenge: Leads to practical algorithm?

Time-discrete scheme a posteriori bound of (Kyza & Makridakis ('11))

fixed point arguments + semigroup theory \implies a posteriori estimate Conditional a posteriori error estimates • $L^{\infty}(L^{\infty})$: $\|e\|_{L^{\infty}(L^{\infty})} \leq e^{1/8+4\int_{0}^{T} \|U(s)\|_{L^{\infty}} ds} \sum_{l=1}^{N-1} \int_{t_{l}}^{t_{k+1}} \|r_{k+1}(s)\|_{L^{\infty}} ds$ • $L^{\infty}(L^2)$: $\max_{0 \le t \le T} \|e(t)\|^2 \le e^{1/8+4\int_0^T \|U(s)\|_{L^{\infty}} ds} \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \|r_{k+1}(s)\|_{-1}^2 ds$ provided τ_k are chosen so that $e^{4\int_{0}^{T}||U(s)||_{L^{\infty}} \mathrm{d}s} \sum_{t}^{N-1} \int_{t}^{t_{k+1}} ||r_{k+1}(s)||_{L^{\infty}} \mathrm{d}s \leq \frac{3}{16}
ho, \text{ with }
ho < \frac{1}{16T}$

Global condition! efficient time-adaptive algorithm? - More local conditions?

- For fully-discrete L^{∞} -norm a posteriori bounds for resp. elliptic problem are needed in this framework.
- growth range u^p , p > 1.

A new a posteriori bound (fully discrete bound also available)

New conditional estimate

$$\max_{t_k \leq t \leq t_{k+1}} \|e(t)\|^2 \leq \delta_{k+1} \mathrm{e}^{4\int_{t_k}^{t_{k+1}} \|U(s)\|_{L^{\infty}} \, \mathrm{d}s} \left[\|e(t_k)\|^2 + \int_{t_k}^{t_{k+1}} \|r_{k+1}(s)\|_{-1}^2 \, \mathrm{d}s \right]$$

with e(0) = 0, where $\delta_{k+1} > 1$ is chosen to satisfy

$$\beta^2 \delta_{k+1} \mathrm{e}^{4\int_{t_k}^{t_{k+1}} \|U(s)\|_{L^{\infty}} \, \mathrm{d}s} \left[\|e(t_k)\|^2 + \int_{t_k}^{t_{k+1}} \|r_{k+1}(s)\|_{-1}^2 \, \mathrm{d}s \right] \tau_k - \ln \delta_{k+1} = 0$$

Ingredients:

- Gagliardo–Nirenberg inequality: $\langle e^2, e \rangle(t) \leq \beta \|e(t)\|^2 \|\nabla e(t)\|$
- a new local on each time-step continuation argument

("global" continuation arguments in this spirit: Kessler, Nochetto & Schmidt ('04), Bartels ('05), Cangiani, G. & Jensen ('13))

Condition – discussion

Condition satisfied only if

$$\beta^2 \mathrm{e}^{4\int_{t_k}^{t_{k+1}} \|U(s)\|_{L^{\infty}} \, \mathrm{d}s} \left[\|e(t_k)\|^2 + \int_{t_k}^{t_{k+1}} \|r_{k+1}(s)\|_{-1}^2 \, \mathrm{d}s \right] \tau_k < \frac{1}{\mathrm{e}}$$

This implies *restriction on time-steps* τ_k , i.e., conditional estimates.

Is condition practical?

• Say
$$t_{k+1} = T_{blowup} - \varepsilon$$
, then $e^{4 \int_{t_k}^{t_{k+1}} \|U(s)\|_{L^{\infty}} ds} \sim \left(\frac{\tau_k + \varepsilon}{\varepsilon}\right)^q$
• $\int_{t_n}^{t_{n+1}} \|r_{n+1}(s)\|_{-1}^2 ds$ estimable via a posteriori bounds

 δ_{n+1} computed via, e.g., Newton's method.

Semilinear advection-diffusion problem with blowup

$$\begin{split} u_t - \epsilon \Delta u + \mathbf{a} \cdot \nabla u &= u^2 + g & \text{in } \Omega \times (0, T], \\ u &= 0 & \text{on } \partial \Omega \times (0, T], \\ u(\cdot, 0) &= u_0 & \text{in } \Omega, \end{split}$$

Spatial discretisation: Discontinuous Galerkin (dG) method with upwind flux.

dG IMEX method: find $U_h^{k+1} \in \mathbb{V}_h^{k+1}$ s.t.

$$\langle rac{U_h^{k+1}-U_h^k}{ au_k},V_h
angle+B(t_{k+1};U_h^{k+1},V_h)=\langle f(U_h^k)+g^k,V_h
angle \quad orall V_h\in \mathbb{V}_h^{k+1}$$

Continuation Argument + Elliptic Reconstruction

Conditional a posteriori error estimate in the $L^{\infty}(L^2)$ -norm for dG IMEX

For elliptic reconstruction see Makridakis & Nochetto ('03), Lakkis & Makridakis ('06), G. Lakkis & Virtanen ('11), Cangiani, G., & Metcalfe ('14)

Key attribute of the approach: Flexibility on the elliptic operator!

A simple test case: reaction-diffusion problem

 $\Omega = (-4,4) \times (-4,4), u_0(x,y) = 10e^{-2(x^2+y^2)} \rightsquigarrow$ single point blowup

- space-time adaptive algorithm
- when condition fails, restarts with smaller timestep

A simple test case

tol	# time-steps	Т	$\ U_h(T)\ _{L^{\infty}}$	Estimator
$(0.125)^{10}$	6956	0.21228	238.705	33426.7
$(0.125)^{11}$	14008	0.21375	343.078	36375.0
$(0.125)^{12}$	28151	0.21478	496.885	66012.8
$(0.125)^{13}$	35580	0.21549	722.884	157300.0

- $\|U_h(t)\|_{L^\infty}$ appears to blow up at the expected rate on the run-up to \mathcal{T}^*
- we have $|T^* T| \sim N^{-1/2}$
 - shortcoming of energy method?
 - semigroup techniques?
- Estimator blows up at faster rate, but delivers optimal blowup rate for the numerical solution regardless!

Numerical experiment – advection-diffusion problem

$$arOmega=(-4,4) imes(-4,4),\ \kappa=1,\ \mathbf{a}\equiv(1,1)^{\mathrm{T}},\ g\equiv1,\ u_{0}\equiv0$$

tol	# time-steps	T	$ U_h(T) _{L^{\infty}}$
1	4	0.78125	0.886245
0.125	10	0.976562	1.32178
$(0.125)^2$	54	1.31836	3.26904
$(0.125)^3$	119	1.41602	5.10672
$(0.125)^4$	252	1.48163	8.05863
(0.125) ⁵	520	1.51711	11.8193
$(0.125)^{6}$	1064	1.54467	18.1385
$(0.125)^7$	2158	1.56224	27.4045
(0.125) ⁸	4354	1.57402	41.3737
(0.125) ⁹	8792	1.58243	64.4503
$(0.125)^{10}$	17713	1.58770	99.1902
$(0.125)^{11}$	35580	1.59092	145.785
$(0.125)^{12}$	71352	1.59299	211.278

Numerical experiment - blowup on 1D manifold

 $\Omega = (-8,8)^2$, $\kappa = 1$, $\mathbf{a} = (0,0)^T$, $f_0 = 0$

'volcano' type initial condition be given by $u_0 = 10(x^2 + y^2) \exp(-(x^2 + y^2)/2)$

Numerical experiment - blowup on 1D manifold

$$\Omega = (-8,8)^2$$
, $\kappa = 1$, $\mathbf{a} = (0,0)^T$, $f_0 = 0$

'volcano' type initial condition be given by $u_0 = 10(x^2 + y^2) \exp(-(x^2 + y^2)/2)$

ttol ⁺	Time Steps	Estimator	Final Time	$ U_h(T) _{L^{\infty}(\Omega)}$
8	3	15	0.06250	10.371
1	10	63	0.09375	14.194
0.125	36	211	0.11979	21.842
$(0.125)^2$	86	533	0.13412	31.446
$(0.125)^3$	190	971	0.14388	45.122
$(0.125)^4$	404	1358	0.15072	64.907
$(0.125)^5$	880	5853	0.15601	98.048
$(0.125)^6$	1853	10654	0.15942	146.162
$(0.125)^7$	3831	21301	0.16176	219.423
$(0.125)^8$	7851	143989	0.16336	332.849
$(0.125)^9$	16137	287420	0.16442	505.236
$(0.125)^{10}$	32846	331848	0.16512	769.652
$(0.125)^{11}$	66442	626522	0.16558	1175.21

Notation

Consider an open polygonal domain $\Omega \subset \mathbb{R}^d$ subdivided into two subdomains Ω_1 and Ω_2 :

$$\begin{split} \Omega &= \Omega_1 \cup \Omega_2 \cup \mathsf{\Gamma}_i \\ \mathsf{\Gamma}_i &= \bar{\Omega}_1 \cap \bar{\Omega}_2 \\ \text{and set } \mathcal{H}^1 := [\mathcal{H}^1(\Omega_1 \cup \Omega_2)]^n, \ n \in \mathbb{N}. \\ \mathsf{PDE} \text{ system:} \end{split}$$

$$\begin{split} \mathbf{u}_t - \nabla \cdot (A \nabla \mathbf{u} - U \mathbf{B}) + \mathbf{F}(\mathbf{u}) &= \mathbf{0} \quad \text{in } (0, T] \times (\Omega_1 \cup \Omega_2), \\ \mathbf{u}(0, x) &= \mathbf{u}_0(x) \quad \text{on } \{\mathbf{0}\} \times \Omega, \\ \mathbf{u} &= \mathbf{g}_{\mathrm{D}} \quad \text{on } \Gamma_{\mathrm{D}}, \\ (A \nabla \mathbf{u} - \chi^- U \mathbf{B}) \mathbf{n} &= \mathbf{g}_{\mathrm{N}} \quad \text{on } \Gamma_{\mathrm{N}}, \end{split}$$

where χ^- the (vector-valued) characteristic function of the inflow part of $\partial\Omega$ and $U := \operatorname{diag}(\mathbf{u})$. On Γ_i we impose:

 $\begin{aligned} (A\nabla \mathbf{u} - U\mathbf{B})\mathbf{n}|_{\Omega^1} &= \mathbf{P}(\mathbf{u})(\mathbf{u}^2 - \mathbf{u}^1) - \{U\}_w R\mathbf{B}\mathbf{n}^1\\ (A\nabla \mathbf{u} - U\mathbf{B})\mathbf{n}|_{\Omega^2} &= \mathbf{P}(\mathbf{u})(\mathbf{u}^1 - \mathbf{u}^2) - \{U\}_w R\mathbf{B}\mathbf{n}^2 \end{aligned}$

Reflective membranes - time-dependent sharp features

uniform

adaptive

• a DG method & a priori analysis with solution boundedness assumption

Cangiani, G., Jensen ('13)

• No analytical information - numerics?

A posteriori error bounds for dG on curved geometries

$$\Omega \subset \mathbb{R}^d$$
, $d = 2, 3$. $\Omega = \Omega_1 \cup \Omega_2 \cup \Gamma^{tr}$, with $\Gamma^{tr} := (\partial \Omega_1 \cap \partial \Omega_2) \setminus \partial \Omega$ Lipschitz.

$$\begin{aligned} -\Delta u &= f, & \text{in } \Omega_1 \cup \Omega_2, \\ u &= 0, & \text{on } \partial\Omega, \\ \mathbf{n}^1 \cdot \nabla u_1 &= C_{tr}(u_2 - u_1)|_{\Omega_1} & \text{on } \bar{\Omega}_1 \cap \Gamma^{tr}, \\ \mathbf{n}^2 \cdot \nabla u_2 &= C_{tr}(u_1 - u_2)|_{\Omega_2} & \text{on } \bar{\Omega}_2 \cap \Gamma^{tr}, \end{aligned}$$

where $u_i = u|_{\bar{\Omega}_i \cap \Gamma^{tr}}$, i = 1, 2, C_{tr} a given permeability constant.

- 'Energy methods' for error control are relevant and competitive for nonlinear evolution problems
- Error control for curved interfaces/boundaries

Some references

- A. CANGIANI, E. H. GEORGOULIS, M. JENSEN, *Discontinuous Galerkin methods mass-transfer through semi-permeable membranes*, SIAM J. Numer. Anal., 51, pp. 2911-2934 (2013).
- A. CANGIANI, E. H. GEORGOULIS, I. KYZA, S. METCALFE, *Adaptivity and blow-up detection for nonlinear evolution problems*, in review.
- A. CANGIANI, E. H. GEORGOULIS, S. METCALFE, An a posteriori error estimator for discontinuous Galerkin methods for non-stationary convection-diffusion problems, IMA J. Numer. Anal., 34, pp. 1578-1597 (2014).
- A. CANGIANI, E. H. GEORGOULIS, Y. SABAWI, *Adaptive discontinuous Galerkin methods for non-polygonal interface problems*, in preparation.
- S. METCALFE, Adaptive discontinuous Galerkin methods for nonlinear parabolic problems, PhD Thesis, University of Leicester (2015).
- E. H. GEORGOULIS, O. LAKKIS, AND J. M. VIRTANEN A posteriori error control for discontinuous Galerkin methods for parabolic problems, SIAM J. Numer. Anal. 49, pp. 427–458 (2011).

Computation of numerical blowup time and blowup rate

Let t^* denote a numerical blowup time. We implement a set numerical experiments (corresponding to different tolerances) producing U_h^ℓ , $\ell = 1, \dots L$ approximations to the exact solution u. Assume that

$$\|U_h^\ell(t_n)\|_{L^\infty} \sim \left(rac{1}{t^*-t_n}
ight)^l$$

Since $f(u) = u^2$, assume that p = 1, and use $\|U_h^L(t_{N-1})\|_{L^{\infty}}$, $\|U_h^L(T)\|_{L^{\infty}}$ to calculate

$$\left\| U_{h}^{L}(t_{N-1}) \right\|_{L^{\infty}} = C_{L} \frac{1}{t^{*} - t_{N-1}} \\ \| U_{h}^{L}(T) \|_{L^{\infty}} = C_{L} \frac{1}{t^{*} - T} \right\} \Rightarrow t^{*} = \frac{T \| U_{h}^{L}(T) \|_{L^{\infty}} - t_{N-1} \| U_{h}^{L}(t_{N-1}) \|_{L^{\infty}}}{\| U_{h}^{L}(t_{N-1}) \|_{L^{\infty}} - \| U_{h}^{L}(t_{N-1}) \|_{L^{\infty}}}$$

2 Consider $t^*(=0.21705)$ as the numerical blowup time. We use $\|U_h^{\ell}(t)\|_{L^{\infty}}$, $\ell \neq L$ to compute the numerical blowup time:

$$p_n := \frac{\ln\left(\|U_h^\ell(t_{n+1})\|_{L^{\infty}}/\|U_h^\ell(t_n)\|_{L^{\infty}}\right)}{\ln\left((t^* - t_n)/(t^* - t_{n+1})\right)}$$

• We expect $p_n \rightarrow 1$ as $n \rightarrow N$, for the considered model problem