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Overview

Motivation – blowup detection

Rigorous a posteriori bounds for semilinear parabolic problems, valid up to
blowup time

Adaptivity and estimation of blowup time and near blowup

A. Cangiani, E. H. Georgoulis, I. Kyza, S. Metcalfe, Adaptivity and
blow-up detection for nonlinear evolution problems, in review.

adaptive (high-order) methods for non-polygonal interface problems

A. Cangiani, E. H. Georgoulis, Y. Sabawi, Adaptive discontinuous Galerkin
methods for non-polygonal interface problems, in preparation.
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A “simple” test case

ut −∆u = u2, u(0, x) Gaussian  single point blowup
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Motivation

blowup time estimation is interesting for applications
(physical/chemical reactions, chemotaxis(?), etc.)

a priori/analytical knowledge of blowup times is known for few model
problems only

a general enough error estimation framework could provide insight for
interaction of non-linearities with other phenomena, such as advection,
interfaces,etc.
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Mass transfer through semi-permeable membranes

We consider a number of solutes subject to:

diffusion and advection on both sides of the membrane

nonlinear reactions with other solutes

mass transfer across the membrane

(red = linear, green = nonlinear)
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Cargo·Imp concentration in cell signal transduction
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Simpler model problem...

Consider advection-diffusion-reaction PDE problem on a single domain Ω ⊂ R2:

∂tu − κ∆u + a · ∇u + f (u) = 0 in Ω × (0,T ],

u = 0 on ∂Ω × (0,T ],

u(·, 0) = u0 in Ω,

with f (u) = −u2, κ > 0.

analytical results on blowup times ?

effect(s) of advection w.r.t. to blowup?

inclusion of interfaces in the mix? (ongoing...)

For accessibility, in this talk, I shall mostly discuss the even simpler problem:

∂tu −∆u = u2 in Ω × (0,T ],

u = 0 on ∂Ω × (0,T ],

u(·, 0) = u0 in Ω,

Aim
Estimation of blowup time & space-time error control near blowup
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Blowup detection & error control

A case for adaptivity:

Extremely fine (space-time) local resolution needed to approach blowup time

“Standard” a priori error analysis & uniform meshes:
at time t = Tblowup − ε, constants O(e1/ε) appear in bounds. ε→ 0...

Problem of missing the blowup!

Dominant approach in the literature: rescaling/use of PDE ‘similarity’ properties
to (r -)adapt/rescale discretisation parameters. Nakagawa (’75), Berger & Kohn (’89), Stuart

& Floater (’90), Tourigny & Sanz-Serna (’92), Budd, Huang & Russell (’96) ...

Approach

Construction of adaptive algorithms via rigorous a posteriori error estimates

Limited literature on a posteriori error control & adaptivity in this context.
Karakashian & Plexousakis (’96), Kyza & Makridakis (’11)

Conditional a posteriori error estimates: final estimates hold under some
computationally verifiable conditions
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Step back to ODEs...

ODE initial value problem: find u : [0,T ]→ R such that

du

dt
= f (u) := up, in (0,T ],

u(0) = u0,

with N 3 p ≥ 2, so that the solution blows up in finite time, say T ∗.

Three different one step schemes: set U0 := u0; for k = 1, . . . ,N, solve for Uk :

Uk − Uk−1

τk
= F (Uk−1,Uk ),

with F one of the following three classical approximations of f :

Explicit Euler F (Uk−1,Uk ) = f (Uk−1),

Implicit Euler F (Uk−1,Uk ) = f (Uk ),

RK2/Improved Euler F (Uk−1,Uk ) =
1

2

(
f (Uk−1) + f

(
Uk−1 + τk f (Uk−1)

))
.
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An a posteriori error estimate

Let U : [0,T ]→ R p/w linear interpolant of {Uk} at tk , viz

U(t) := `k−1(t)Uk−1 + `k (t)Uk , t ∈ (tk−1, tk ],

Hence, on each interval (tk−1, tk ], we have

dU

dt
= F (Uk−1,Uk ).

Therefore, on each time interval (tk−1, tk ], the error e := u − U satisfies

de

dt
= f (u)− F (Uk−1,Uk ) = f (U) + f ′(u)e +

p∑

j=2

f (j)(U)

j!
e j − F (Uk−1,Uk ),

or, setting ηk := f (U)− F (Uk−1,Uk ), we have

de

dt
= ηk +

(
f ′(U) +

p∑

j=2

f (j)(U)

j!
e j−1

)
e.
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An a posteriori error estimate

Gronwall’s inequality, therefore, implies

|e(t)| ≤ Hk (t)Gkφk ,

with Hk (t) := exp
( p∑

j=2

∫ t

tk−1

|f (j)(U)|
j!

|e|j−1 ds
)
, Gk := exp

(∫ tk

tk−1

|f ′(U)|ds
)
,

and φk := |e(tk−1)|+
∫ tk

tk−1

|ηk |ds.

Theorem (Conditional error estimate)

For k = 1, . . . ,N, the following a posteriori estimate holds:

max
t∈[tk−1,tk ]

|e(t)| ≤ δkGkφk ,

provided that δk > 1 is chosen so that

p∑

j=2

(δkGkφk )j−1

∫ tk

tk−1

|f (j)(U(s))|
j!

ds − log(δk ) = 0.
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Two algorithms: 1
6 A. CANGIANI, E. H. GEORGOULIS, I. KYZA AND S. METCALFE

Algorithm 1 ODE Algorithm 1

1: Input: f , F , u0, ⌧1, tol.
2: Compute U1 from U0.

3: while

Z t1

t0
|⌘1| ds > tol do

4: ⌧1  ⌧1/2.
5: Compute U1 from U0.
6: end while
7: Compute �1.
8: Set k = 0.
9: while �k+1 exists do

10: k  k + 1.
11: ⌧k+1 = ⌧k.
12: Compute Uk+1 from Uk.

13: while

Z tk+1

tk

|⌘k+1| ds > tol do

14: ⌧k+1  ⌧k+1/2.
15: Compute Uk+1 from Uk.
16: end while
17: Compute �k+1.
18: end while
19: Output: k, tk.

One may initially expect that r would be equal to the order of the time-stepping
scheme used. To gain insight into the rate convergence of �, we apply Algorithm 1
to (2.1) with f(u) = up for p = 2, 3 and u(0) = 1 for each of the three time-stepping
schemes (2.3). The computed rates of convergence r under Algorithm 1 are given in
Table 2.1.

Table 2.1: Algorithm 1 Results

Method p = 2 p = 3
Implicit Euler r ⇡ 0.66 r ⇡ 0.79
Explicit Euler r ⇡ 1.35 r ⇡ 1.60

Improved Euler r ⇡ 1.2 r ⇡ 1.48

Somewhat surprisingly at first sight, the explicit Euler scheme performs signifi-
cantly better than the implicit Euler scheme. This fact can be explained by looking
back at the derivation of the error estimator. The explicit Euler scheme always un-
derestimates the true solution u [47]. This, in turn, implies that �k+1 is correcting
for the fact that Gk+1 is underestimating the true blow-up rate resulting in a tight a
posteriori error bound and, thus, explaining the high rate of convergence of �. When
using the implicit Euler method, on the other hand, Gk+1 overestimates the true
blow-up rate [47] thereby conferring no additional benefit.

Note also that for both the implicit and improved Euler methods, the rate of
convergence r is less than their formal orders of convergence, i.e., first and second
order, respectively. Moreover, one would expect a faster approach to the blow-up

ηk := f (U)− F (Uk−1,Uk )

Absolute tolerance: tol

|Tblowup − Tfinal | ∼ N−r

6 A. CANGIANI, E. H. GEORGOULIS, I. KYZA AND S. METCALFE

Algorithm 1 ODE Algorithm 1

1: Input: f , F , u0, ⌧1, tol.
2: Compute U1 from U0.

3: while

Z t1

t0
|⌘1| ds > tol do

4: ⌧1  ⌧1/2.
5: Compute U1 from U0.
6: end while
7: Compute �1.
8: Set k = 0.
9: while �k+1 exists do

10: k  k + 1.
11: ⌧k+1 = ⌧k.
12: Compute Uk+1 from Uk.

13: while

Z tk+1

tk

|⌘k+1| ds > tol do

14: ⌧k+1  ⌧k+1/2.
15: Compute Uk+1 from Uk.
16: end while
17: Compute �k+1.
18: end while
19: Output: k, tk.

One may initially expect that r would be equal to the order of the time-stepping
scheme used. To gain insight into the rate convergence of �, we apply Algorithm 1
to (2.1) with f(u) = up for p = 2, 3 and u(0) = 1 for each of the three time-stepping
schemes (2.3). The computed rates of convergence r under Algorithm 1 are given in
Table 2.1.

Table 2.1: Algorithm 1 Results

Method p = 2 p = 3
Implicit Euler r ⇡ 0.66 r ⇡ 0.79
Explicit Euler r ⇡ 1.35 r ⇡ 1.60

Improved Euler r ⇡ 1.2 r ⇡ 1.48

Somewhat surprisingly at first sight, the explicit Euler scheme performs signifi-
cantly better than the implicit Euler scheme. This fact can be explained by looking
back at the derivation of the error estimator. The explicit Euler scheme always un-
derestimates the true solution u [47]. This, in turn, implies that �k+1 is correcting
for the fact that Gk+1 is underestimating the true blow-up rate resulting in a tight a
posteriori error bound and, thus, explaining the high rate of convergence of �. When
using the implicit Euler method, on the other hand, Gk+1 overestimates the true
blow-up rate [47] thereby conferring no additional benefit.

Note also that for both the implicit and improved Euler methods, the rate of
convergence r is less than their formal orders of convergence, i.e., first and second
order, respectively. Moreover, one would expect a faster approach to the blow-up

12



Two algorithms: 2

ADAPTIVITY AND BLOW-UP DETECTION 7

time using the second order improved Euler compared to the first order explicit Euler
scheme. This unexpected behaviour is due to the way the tolerance is utilized in
Algorithm 1. Indeed, Algorithm 1 aims to reduce the error under an absolute tolerance
tol; this is the standard practice in adaptive algorithms applied to linear problems.
In the context of blow-up problems, however, the presence of the growth factor Gk+1

cannot be neglected; requiring the adaptivity to be driven by an absolute tolerance
in the run up to the blow up time results in excessive over-refinement and, thus, loss
of the expected rate of convergence. To address this issue, we propose Algorithm 2
which increases tol proportionally to Gk+1 allowing for control of the relative error
(cf. line 19 in Algorithm 2).

Algorithm 2 ODE Algorithm 2

1: Input: f , F , u0, ⌧1, tol.
2: Compute U1 from U0.

3: while

Z t1

t0
|⌘1| ds > tol do

4: ⌧1  ⌧1/2.
5: Compute U1 from U0.
6: end while
7: Compute �1.
8: tol = G1 ⇤ tol.
9: Set k = 0.

10: while �k+1 exists do
11: k  k + 1.
12: ⌧k+1 = ⌧k.
13: Compute Uk+1 from Uk.

14: while

Z tk+1

tk

|⌘k+1| ds > tol do

15: ⌧k+1  ⌧k+1/2.
16: Compute Uk+1 from Uk.
17: end while
18: Compute �k+1.
19: tol = Gk+1 ⇤ tol.
20: end while
21: Output: k, tk.

Table 2.2: Algorithm 2 Results

Method p = 2 p = 3
Implicit Euler r ⇡ 1.00 r ⇡ 1.00
Explicit Euler r ⇡ 1.45 r ⇡ 1.43

Improved Euler r ⇡ 2.03 r ⇡ 2.03

The rates of convergence r of � under Algorithm 2 are given in Table 2.2. The
theoretically conjectured orders of convergence for both the implicit and improved
Euler schemes are recovered while the explicit Euler method still outperforms its
expected rate. In the case p = 3 (cubic nonlinearity) and for the explicit Euler

ηk := f (U)− F (Uk−1,Uk )

Relative tolerance: Gk+1∗tol

|Tblowup − Tfinal | ∼ N−r
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Back to PDEs: time semi-discretisation

0 := t0 < t1 < · · · < tN =: T partition of [0,T ], τk := tk+1 − tk ,

Implicit–Explicit (IMEX) Euler method: find Uk ∈ H1
0 (Ω), k = 0, 1, . . . ,N − 1:

Uk+1 − Uk

τk
−∆Uk+1 = f (Uk ), with U0 = u0

Why IMEX

implicit on diffusion ⇒ stability

explicit on nonlinear reaction ⇒ advantageous approximation near blowup
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Error equation

Let U : [0,T ]→ H1
0 (Ω) linear interpolant of {Uk}k .

Let e := u − U. Then, for f (u) = u2, we have

∂te −∆e = 2Ue + e2 + rk+1

in (tk , tk+1] with rk+1 :=
[
f (U)− f (Uk )

]
+ (tk+1 − t)(Uk+1 − Uk )/τk .

Energy estimate:

d

dt
‖e(t)‖2 + ‖∇e(t)‖2 ≤ 4‖U(t)‖L∞‖e(t)‖2 + 2〈e2, e〉+ ‖rk+1(t)‖2

−1

Using 〈e2, e〉 ≤ ‖e‖L∞‖e‖2 , Gronwall’s inequality gives

max
0≤t≤T

‖e(t)‖2 ≤ exp
(

2

∫ T

0

[2‖U(t)‖L∞ + ‖e(t)‖L∞ ] dt
) N−1∑

k=0

∫ tk+1

tk

‖rk+1(t)‖2
−1 dt

Is a fully a posteriori bound possible from this?

Behaviour of the constant in the run up to blowup?
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Exponent growth (Kyza & Makridakis (’11))

Gronwall exponent: ∫ T

0

2‖U(t)‖L∞ + ‖e(t)‖L∞ dt

On run up to blowup time: ||u(t)||L∞ ∼
1

(Tblowup − t)
(Merle & Zaag (’00))

We can infer that we also have, approximately,

||U(t)||L∞ , ‖e(t)‖L∞ ∼
1

(Tblowup − t)

Hence, at T := Tblowup − ε, ε > 0, the exponent scales like
∫ Tblowup−ε

0

1

Tblowup − t
dt = ln(

Tblowup

ε
)

and, thus, the Gronwall constant scales like

exp
(∫ Tblowup−ε

0

1

Tblowup − t
dt
)
∼

C (Tblowup)

εq

i.e., polynomial growth w.r.t ε! Challenge: Leads to practical algorithm?
16



Time-discrete scheme a posteriori bound of (Kyza & Makridakis (’11))

fixed point arguments + semigroup theory =⇒ a posteriori estimate

Conditional a posteriori error estimates

L∞(L∞): ‖e‖L∞(L∞) ≤ e1/8+4
∫ T

0
‖U(s)‖L∞ ds

N−1∑

k=0

∫ tk+1

tk

‖rk+1(s)‖L∞ds

L∞(L2): max
0≤t≤T

‖e(t)‖2 ≤ e1/8+4
∫ T

0
‖U(s)‖L∞ ds

N−1∑

k=0

∫ tk+1

tk

‖rk+1(s)‖2
−1ds

provided τk are chosen so that

e4
∫ T

0
||U(s)||L∞ ds

N−1∑

k=0

∫ tk+1

tk

‖rk+1(s)‖L∞ds ≤
3

16
ρ, with ρ <

1

16T

↗
Global condition! efficient time-adaptive algorithm? – More local conditions?

For fully-discrete L∞-norm a posteriori bounds for resp. elliptic problem are
needed in this framework.
growth range up, p > 1.
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A new a posteriori bound (fully discrete bound also available)

New conditional estimate

max
tk≤t≤tk+1

‖e(t)‖2 ≤ δk+1e
4
∫ tk+1

tk
‖U(s)‖L∞ ds

[
‖e(tk )‖2 +

∫ tk+1

tk

‖rk+1(s)‖2
−1 ds

]

with e(0) = 0, where δk+1 > 1 is chosen to satisfy

β2δk+1e
4
∫ tk+1

tk
‖U(s)‖L∞ ds

[
‖e(tk )‖2 +

∫ tk+1

tk

‖rk+1(s)‖2
−1 ds

]
τk − ln δk+1 = 0

Ingredients:

Gagliardo–Nirenberg inequality: 〈e2, e〉(t) ≤ β‖e(t)‖2‖∇e(t)‖

a new local on each time-step continuation argument

(“global” continuation arguments in this spirit: Kessler, Nochetto & Schmidt (’04),

Bartels (’05), Cangiani, G. & Jensen (’13))
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Condition – discussion

Condition satisfied only if

β2e4
∫ tk+1

tk
‖U(s)‖L∞ ds

[
‖e(tk )‖2 +

∫ tk+1

tk

‖rk+1(s)‖2
−1 ds

]
τk <

1

e

This implies restriction on time-steps τk , i.e., conditional estimates.

Is condition practical?

Say tk+1 = Tblowup − ε, then e4
∫ tk+1

tk
‖U(s)‖L∞ ds ∼

(
τk + ε

ε

)q

∫ tn+1

tn

‖rn+1(s)‖2
−1 ds estimable via a posteriori bounds

δn+1 computed via, e.g., Newton’s method.
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Semilinear advection-diffusion problem with blowup

ut − ε∆u + a · ∇u = u2 + g in Ω × (0,T ],

u = 0 on ∂Ω × (0,T ],

u(·, 0) = u0 in Ω,

Spatial discretisation: Discontinuous Galerkin (dG) method with upwind flux.

dG IMEX method: find Uk+1
h ∈ Vk+1

h s.t.

〈U
k+1
h − Uk

h

τk
,Vh〉+ B(tk+1;Uk+1

h ,Vh) = 〈f (Uk
h ) + gk ,Vh〉 ∀Vh ∈ Vk+1

h

Continuation Argument + Elliptic Reconstructionw�
Conditional a posteriori error estimate in the L∞(L2)−norm for dG IMEX

For elliptic reconstruction see Makridakis & Nochetto (’03), Lakkis & Makridakis (’06), G. Lakkis &

Virtanen (’11), Cangiani, G., & Metcalfe (’14)

Key attribute of the approach: Flexibility on the elliptic operator!
20



A simple test case: reaction-diffusion problem

Ω = (−4, 4)× (−4, 4), u0(x , y) = 10e−2(x2+y 2) single point blowup

space-time adaptive
algorithm

when condition fails,
restarts with smaller
timestep

21


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}



A simple test case

tol # time-steps T ‖Uh(T )‖L∞ Estimator

(0.125)10 6956 0.21228 238.705 33426.7
(0.125)11 14008 0.21375 343.078 36375.0
(0.125)12 28151 0.21478 496.885 66012.8
(0.125)13 35580 0.21549 722.884 157300.0

‖Uh(t)‖L∞ ∼
1

(T ∗ − t)pk
plots depict: pk vs.

1

T ∗ − t

‖Uh(t)‖L∞ ∼
1

(T ∗ − t)pk
plots depict: pk vs.

1

T ∗ − t
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Observed rates of convergence

‖Uh(t)‖L∞ appears to blow up at the expected rate on the run-up to T ∗

we have |T ∗ − T | ∼ N−1/2

I shortcoming of energy method?

I semigroup techniques?

Estimator blows up at faster rate, but delivers optimal blowup rate for the
numerical solution regardless!
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Numerical experiment – advection-diffusion problem

Ω = (−4, 4)× (−4, 4), κ = 1, a ≡ (1, 1)T, g ≡ 1, u0 ≡ 0

tol # time-steps T ‖Uh(T )‖L∞

1 4 0.78125 0.886245
0.125 10 0.976562 1.32178

(0.125)2 54 1.31836 3.26904
(0.125)3 119 1.41602 5.10672
(0.125)4 252 1.48163 8.05863
(0.125)5 520 1.51711 11.8193
(0.125)6 1064 1.54467 18.1385
(0.125)7 2158 1.56224 27.4045
(0.125)8 4354 1.57402 41.3737
(0.125)9 8792 1.58243 64.4503
(0.125)10 17713 1.58770 99.1902
(0.125)11 35580 1.59092 145.785
(0.125)12 71352 1.59299 211.278
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Numerical experiment – blowup on 1D manifold

Ω = (−8, 8)2, κ = 1, a = (0, 0)T , f0 = 0

‘volcano’ type initial condition be given by u0 = 10(x2 + y2) exp(−(x2 + y2)/2)

25



Numerical experiment – blowup on 1D manifold

Ω = (−8, 8)2, κ = 1, a = (0, 0)T , f0 = 0

‘volcano’ type initial condition be given by u0 = 10(x2 + y2) exp(−(x2 + y2)/2)

ttol+ Time Steps Estimator Final Time ||Uh(T )||L∞(Ω)

8 3 15 0.06250 10.371
1 10 63 0.09375 14.194

0.125 36 211 0.11979 21.842
(0.125)2 86 533 0.13412 31.446
(0.125)3 190 971 0.14388 45.122
(0.125)4 404 1358 0.15072 64.907
(0.125)5 880 5853 0.15601 98.048
(0.125)6 1853 10654 0.15942 146.162
(0.125)7 3831 21301 0.16176 219.423
(0.125)8 7851 143989 0.16336 332.849
(0.125)9 16137 287420 0.16442 505.236
(0.125)10 32846 331848 0.16512 769.652
(0.125)11 66442 626522 0.16558 1175.21
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Notation

Consider an open polygonal domain Ω ⊂ Rd subdivided into two subdomains Ω1

and Ω2:

Ω = Ω1 ∪ Ω2 ∪ Γi

Γi = Ω̄1 ∩ Ω̄2 Ω1 Ω2

Γi

∂Ωand set H1 := [H1(Ω1 ∪ Ω2)]n, n ∈ N.
PDE system:

ut −∇ · (A∇u− UB) + F(u) = 0 in (0,T ]× (Ω1 ∪ Ω2),

u(0, x) = u0(x) on {0} × Ω,

u = gD on ΓD,(
A∇u− χ−UB

)
n = gN on ΓN,

where χ− the (vector-valued) characteristic function of the inflow part of ∂Ω and
U := diag(u). On Γi we impose:

(A∇u− UB)n|Ω1 = P(u)(u2 − u1)− {U}wRBn1

(A∇u− UB)n|Ω2 = P(u)(u1 − u2)− {U}wRBn2

27



Reflective membranes – time-dependent sharp features
uniform adaptive

a DG method & a priori analysis with solution boundedness assumption
Cangiani, G., Jensen (’13)

No analytical information – numerics?
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A posteriori error bounds for dG on curved geometries

Ω ⊂ Rd , d = 2, 3. Ω = Ω1∪Ω2∪Γtr , with
Γtr := (∂Ω1 ∩ ∂Ω2) \∂Ω Lipschitz.

⌦1 ⌦2�tr

Figure 1: ⌦ subdivided into two sub-domains ⌦1 and ⌦2 by the interface �tr.

3 Discontinuous Galerkin method

We introduce an interior penalty discontinuous Galerkin (dG) finite element method for the
discretization of the elliptic interface problem (2). The dG method employs, possibly curved,
elements able to resolve the interface geometry exactly. The method is closely related to the
spatial discretization for parabolic interface problems introduced in [12], with the latter
assuming a mesh-skeleton-resolving polygonal interface only. A key idea of the proposed dG
method here is the use of physical frame basis functions, i.e., the elemental bases consist of
polynomials on the elements themselves, rather than mapped polynomials through a mapping
from a reference element. Crucially, the lack of conformity of the dG method allows for such
physical frame polynomial basis functions to be used on elements with very general, possibly
curved, faces. The implementation issues arising from this, non-standard, choice will be
discussed below.

3.1 The mesh

Let T = {K} be a shape-regular and locally quasi-uniform subdivision of ⌦, possibly con-
taining regular hanging nodes, with K a generic, possibly curved, simplicial, box-type, or
prismatic element. More specifically, we shall assume that the mesh consists of triangular or
quadrilateral elements when d = 2, and of tetrahedral or prismatic elements with triangular
bases when d = 3. We stress that the prismatic elements considered here do not necessarily
have parallel bases.

The mesh skeleton � := [K2T @K is subdivided into three disjoint subsets � = @⌦ [
�int [ �tr, where �int := �\(@⌦ [ �tr). We make some further assumptions on the mesh in
the vicinity of the interface �tr. In particular, we assume that each element K 2 T such
that @K \ �tr 6= ; has exactly one whole face E ⇢ �tr; this implies that each such element
has all the vertices of the face E ⇢ �tr lying on �tr. Moreover, we assume that the mesh is
constructed in such a way that each element K is a Lipschitz domain.

For simplicity of the presentation, we shall assume that any elements with curved faces
will be employed only to resolve the interface geometry, i.e., only elements K 2 T such that
@K \ �tr 6= ;, should �tr be curved, see Figure 2 for an illustration. This is also realistic
from a practical perspective, as the global use of curved elements is more computationally
demanding (with no immediate advantage) during assembly.

We make some further assumptions on the admissible meshes near the curved interface.
We assume that no interior point of an element K 2 T (which we recall is an open set) can
have a non-trivial intersection with the interface �tr. Moreover, for simplicity (and with no

4

−∆u = f , in Ω1 ∪ Ω2,

u = 0, on ∂Ω,

n1 · ∇u1 = Ctr (u2 − u1)|Ω1 on Ω̄1 ∩ Γtr ,

n2 · ∇u2 = Ctr (u1 − u2)|Ω2 on Ω̄2 ∩ Γtr ,

where ui = u|Ω̄i∩Γtr , i = 1, 2, Ctr a given permeabil-
ity constant.

K1
K2

�tr

⌫1

⌫2

•

•

Figure 2: Curved elements K1 and K2 (solid lines and curves) from either side of the interface
�tr, resolving the curved geometry of �tr.

essential loss of generality,) we shall assume that @K \�tr 6= ; is one whole face of K, or one
vertex of K only. Hence, when d = 3, we shall only consider (possibly curved) tetrahedral
or prismatic-with triangular bases elements K 2 T such that @K \�tr 6= ;, so that a unique
cut plane passes through the 3 vertices of K lying on �tr. Elsewhere in the mesh, box-type
elements when d = 3 are also allowed.

We denote the set of, possibly curved, interface elements by

T tr := {K 2 T : measd�1(@K \ �tr) > 0};

with measr(!) denoting the r-dimensional Hausdor↵ measure of a set ! ⇢ Rd; see Figure 2
for an illustration of such elements. Note that elements having just one vertex on �tr do not
belong to T tr. For each K 2 T tr, we consider the related simplicial or box-type element K̃
with straight/planar faces having the same vertices as K. Notice that in general, K 6= K̃
when @K \ �tr is curved.

Also, for two adjacent elements K, K 0 2 T tr sharing a common face E 2 �int, we shall
denote by Ẽ := measd�1(@K̃ \ @K̃ 0) the related common face of the two (also adjacent)
related simplicial or box-type elements K̃, K̃ 0; Finally, we define

�int
tr := {E 2 �int : E 6= Ẽ},

i.e., the subset of �int containing all the faces E 2 �int, with di↵erent related faces Ẽ. Notice
that E 6= Ẽ is possible only when d = 3.

We shall assume that for each K 2 T tr, the curved face can be represented as a con-
tinuous function in the coordinate system defined by the (d � r)-dimensional hyperplane,
r = 1, . . . , d � 1, connecting all the vertices of K belonging to �int and its normal. Further,
we assume that there exist positive constants ctr and ctr such that

ctr  measd�1 @K/ measd�1 @K̃  ctr for all K 2 T tr, (3)

uniformly for all meshes used. This ensures that the curved face E is uniformly comparable
in size with its related face Ẽ. This excludes, for instance, highly oscillatory curved face E
within an element.

Also, we assume that each element K 2 T tr, having a whole face E ⇢ �tr, is star-shaped
with respect to one vertex opposite this face E ⇢ �tr; note that we have one such vertex when
K is simplicial, or more than one such vertices when K is box-type or prismatic. Moreover,
when d = 2, we assume that each element K 2 T tr is also star-shaped with respect to both

5
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Conclusions

‘Energy methods’ for error control are relevant and competitive for nonlinear
evolution problems

Error control for curved interfaces/boundaries
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Computation of numerical blowup time and blowup rate

Let t∗ denote a numerical blowup time. We implement a set numerical experiments (corresponding to

different tolerances) producing U`
h , ` = 1, · · · L approximations to the exact solution u. Assume that

‖U`
h (tn)‖L∞ ∼

(
1

t∗ − tn

)p

1 Since f (u) = u2, assume that p = 1, and use ‖UL
h (tN−1)‖L∞ , ‖UL

h (T )‖L∞ to calculate

‖UL
h (tN−1)‖L∞ = CL

1

t∗ − tN−1

‖UL
h (T )‖L∞ = CL

1

t∗ − T

⇒ t∗ =
T‖UL

h (T )‖L∞ − tN−1‖UL
h (tN−1)‖L∞

‖UL
h (tN−1)‖L∞ − ‖UL

h (tN−1)‖L∞

• For the considered example, t∗ = 0.21705

2 Consider t∗(= 0.21705) as the numerical blowup time. We use ‖U`
h (t)‖L∞ , ` 6= L to compute the

numerical blowup time:

pn :=
ln
(
‖U`

h (tn+1)‖L∞/‖U`
h (tn)‖L∞

)
ln ((t∗ − tn)/(t∗ − tn+1))

• We expect pn → 1 as n→ N, for the considered model problem
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