Adaptivity and blowup detection for nonlinear evolution PDEs

Emmanuil Georgoulis

Department of Mathematics
University of Leicester
UK

and

Department of Mathematics
National Technical University of Athens
Greece

Based on joint work with:
A. Cangiani (Leicester), I. Kyza (Dundee),
S. Metcalfe (Bern), Y. Sabawi (Leicester)

06.01.2016, Birmingham
Overview

- Motivation – blowup detection

- Rigorous a posteriori bounds for semilinear parabolic problems, valid up to blowup time

- Adaptivity and estimation of blowup time and near blowup

- adaptive (high-order) methods for non-polygonal interface problems

A “simple” test case

$$u_t - \Delta u = u^2, \quad u(0, x) \text{ Gaussian} \quad \leadsto \text{single point blowup}$$
Motivation

- blowup time estimation is interesting for applications (physical/chemical reactions, chemotaxis(?), etc.)

- a priori/analytical knowledge of blowup times is known for few model problems only

- a general enough error estimation framework could provide insight for interaction of non-linearities with other phenomena, such as advection, interfaces, etc.
We consider a number of solutes subject to:

- **diffusion** and **advection** on both sides of the membrane
- **nonlinear reactions** with other solutes
- **mass transfer** across the membrane

(red = linear, green = nonlinear)
Cargo·Imp concentration in cell signal transduction
Simpler model problem...

Consider advection-diffusion-reaction PDE problem on a single domain $\Omega \subset \mathbb{R}^2$:

$$\partial_t u - \kappa \Delta u + a \cdot \nabla u + f(u) = 0 \quad \text{in } \Omega \times (0, T],$$

$$u = 0 \quad \text{on } \partial \Omega \times (0, T],$$

$$u(\cdot, 0) = u_0 \quad \text{in } \Omega,$$

with $f(u) = -u^2$, $\kappa > 0$.

- analytical results on blowup times?
- effect(s) of advection w.r.t. to blowup?
- inclusion of interfaces in the mix? (ongoing...)

For accessibility, in this talk, I shall mostly discuss the even simpler problem:

$$\partial_t u - \Delta u = u^2 \quad \text{in } \Omega \times (0, T],$$

$$u = 0 \quad \text{on } \partial \Omega \times (0, T],$$

$$u(\cdot, 0) = u_0 \quad \text{in } \Omega,$$

Aim

Estimation of blowup time & space-time error control near blowup
Blowup detection & error control

A case for adaptivity:
- Extremely fine (space-time) local resolution needed to approach blowup time
- “Standard” a priori error analysis & uniform meshes:
 at time $t = T_{\text{blowup}} - \varepsilon$, constants $O(e^{1/\varepsilon})$ appear in bounds. $\varepsilon \to 0$
- Problem of missing the blowup!

Dominant approach in the literature: rescaling/use of PDE ‘similarity’ properties to (r-)adapt/rescale discretisation parameters. Nakagawa ('75), Berger & Kohn ('89), Stuart & Floater ('90), Tourigny & Sanz-Serna ('92), Budd, Huang & Russell ('96) ...

Approach

Construction of adaptive algorithms via rigorous a posteriori error estimates

- Limited literature on a posteriori error control & adaptivity in this context. Karakashian & Plexousakis ('96), Kyza & Makridakis ('11)
- Conditional a posteriori error estimates: final estimates hold under some computationally verifiable conditions
Step back to ODEs...

ODE initial value problem: find $u : [0, T] \to \mathbb{R}$ such that

\[
\frac{du}{dt} = f(u) := u^p, \quad \text{in (0, } T],
\]

$u(0) = u_0,$

with $\mathbb{N} \ni p \geq 2,$ so that the solution blows up in finite time, say $T^*.$

Three different one step schemes: set $U^0 := u_0;$ for $k = 1, \ldots, N,$ solve for $U^k:$

\[
\frac{U^k - U^{k-1}}{\tau_k} = F(U^{k-1}, U^k),
\]

with F one of the following three classical approximations of $f:$

- Explicit Euler \[F(U^{k-1}, U^k) = f(U^{k-1}), \]
- Implicit Euler \[F(U^{k-1}, U^k) = f(U^k), \]
- RK2/Improved Euler \[F(U^{k-1}, U^k) = \frac{1}{2} \left(f(U^{k-1}) + f \left(U^{k-1} + \tau_k f(U^{k-1}) \right) \right). \]
An a posteriori error estimate

Let \(U : [0, T] \to \mathbb{R} \) p/w linear interpolant of \(\{U^k\} \) at \(t^k \), viz

\[
U(t) := \ell_{k-1}(t)U^{k-1} + \ell_k(t)U^k, \quad t \in (t^{k-1}, t^k],
\]

Hence, on each interval \((t^{k-1}, t^k]\), we have

\[
\frac{dU}{dt} = F(U^{k-1}, U^k).
\]

Therefore, on each time interval \((t^{k-1}, t^k]\), the error \(e := u - U \) satisfies

\[
\frac{de}{dt} = f(u) - F(U^{k-1}, U^k) = f(U) + f'(u)e + \sum_{j=2}^{p} \frac{f^{(j)}(U)}{j!}e^j - F(U^{k-1}, U^k),
\]

or, setting \(\eta_k := f(U) - F(U^{k-1}, U^k) \), we have

\[
\frac{de}{dt} = \eta_k + \left(f'(U) + \sum_{j=2}^{p} \frac{f^{(j)}(U)}{j!}e^{j-1} \right)e.
\]
An a posteriori error estimate

Gronwall’s inequality, therefore, implies

$$|e(t)| \leq H_k(t) G_k \phi_k,$$

with $H_k(t) := \exp \left(\sum_{j=2}^{p} \int_{t^{k-1}}^{t} \frac{|f^{(j)}(U)|}{j!} |e|^{j-1} \, ds \right)$, $G_k := \exp \left(\int_{t^{k-1}}^{t} |f'(U)| \, ds \right)$, and $\phi_k := |e(t^{k-1})| + \int_{t^{k-1}}^{t} |\eta_k| \, ds$.

Theorem (Conditional error estimate)

For $k = 1, \ldots, N$, the following a posteriori estimate holds:

$$\max_{t \in [t^{k-1}, t^k]} |e(t)| \leq \delta_k G_k \phi_k,$$

provided that $\delta_k > 1$ is chosen so that

$$\sum_{j=2}^{p} (\delta_k G_k \phi_k)^{j-1} \int_{t^{k-1}}^{t} \frac{|f^{(j)}(U(s))|}{j!} \, ds - \log(\delta_k) = 0.$$
Two algorithms: 1

Algorithm 1 ODE Algorithm 1

1: Input: $f, F, u_0, \tau_1, \text{tol}$.
2: Compute U^1 from U^0.
3: while $\int_{t_0}^{t_1} |\eta_1| \, ds > \text{tol}$ do
4: $\tau_1 \leftarrow \tau_1/2$.
5: Compute U^1 from U^0.
6: end while
7: Compute δ_1.
8: Set $k = 0$.
9: while δ_{k+1} exists do
10: $k \leftarrow k + 1$.
11: $\tau_{k+1} = \tau_k$.
12: Compute U^{k+1} from U^k.
13: while $\int_{t_k}^{t_{k+1}} |\eta_{k+1}| \, ds > \text{tol}$ do
14: $\tau_{k+1} \leftarrow \tau_{k+1}/2$.
15: Compute U^{k+1} from U^k.
16: end while
17: Compute δ_{k+1}.
18: end while
19: Output: k, t^k.

$\eta_k := f(U) - F(U^{k-1}, U^k)$

Absolute tolerance: tol

$|T_{\text{blowup}} - T_{\text{final}}| \sim N^{-r}$

<table>
<thead>
<tr>
<th>Method</th>
<th>$p = 2$</th>
<th>$p = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit Euler</td>
<td>$r \approx 0.66$</td>
<td>$r \approx 0.79$</td>
</tr>
<tr>
<td>Explicit Euler</td>
<td>$r \approx 1.35$</td>
<td>$r \approx 1.60$</td>
</tr>
<tr>
<td>Improved Euler</td>
<td>$r \approx 1.2$</td>
<td>$r \approx 1.48$</td>
</tr>
</tbody>
</table>
Two algorithms: 2

Algorithm 2 ODE Algorithm 2

1: Input: $f, F, u_0, \tau_1, \text{tol}$.
2: Compute U^1 from U^0.
3: while $\int_{t_0}^{t_1} |\eta_1| \, ds > \text{tol}$ do
4: $\tau_1 \leftarrow \tau_1 / 2$.
5: Compute U^1 from U^0.
6: end while
7: Compute δ_1.
8: tol = $G_1 \times \text{tol}$.
9: Set $k = 0$.
10: while δ_{k+1} exists do
11: $k \leftarrow k + 1$.
12: $\tau_{k+1} = \tau_k$.
13: Compute U^{k+1} from U^k.
14: while $\int_{t_k}^{t_{k+1}} |\eta_{k+1}| \, ds > \text{tol}$ do
15: $\tau_{k+1} \leftarrow \tau_{k+1} / 2$.
16: Compute U^{k+1} from U^k.
17: end while
18: Compute δ_{k+1}.
19: tol = $G_{k+1} \times \text{tol}$.
20: end while
21: Output: k, t^k.

Relative tolerance: $G_{k+1} \times \text{tol}$

$|T_{\text{blowup}} - T_{\text{final}}| \sim N^{-r}$

<table>
<thead>
<tr>
<th>Method</th>
<th>$p = 2$</th>
<th>$p = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implicit Euler</td>
<td>$r \approx 1.00$</td>
<td>$r \approx 1.00$</td>
</tr>
<tr>
<td>Explicit Euler</td>
<td>$r \approx 1.45$</td>
<td>$r \approx 1.43$</td>
</tr>
<tr>
<td>Improved Euler</td>
<td>$r \approx 2.03$</td>
<td>$r \approx 2.03$</td>
</tr>
</tbody>
</table>
Back to PDEs: time semi-discretisation

\[0 := t_0 < t_1 < \cdots < t_N =: T \] partition of \([0, T]\), \(\tau_k := t_{k+1} - t_k\),

Implicit–Explicit (IMEX) Euler method: find \(U^k \in H_0^1(\Omega)\), \(k = 0, 1, \ldots, N - 1\):

\[
\frac{U^{k+1} - U^k}{\tau_k} - \Delta U^{k+1} = f(U^k), \text{ with } U^0 = u_0
\]

Why IMEX

- implicit on diffusion \(\Rightarrow\) stability

- explicit on nonlinear reaction \(\Rightarrow\) advantageous approximation near blowup
Error equation

Let \(U : [0, T] \rightarrow H^1_0(\Omega) \) linear interpolant of \(\{U^k\}_k \).

Let \(e := u - U \). Then, for \(f(u) = u^2 \), we have

\[
\partial_t e - \Delta e = 2Ue + e^2 + r_{k+1}
\]

in \((t_k, t_{k+1}] \) with \(r_{k+1} := [f(U) - f(U^k)] + (t_{k+1} - t)(U^{k+1} - U^k)/\tau_k \).

Energy estimate:

\[
\frac{d}{dt} \|e(t)\|^2 + \|\nabla e(t)\|^2 \leq 4\|U(t)\|_{L^\infty} \|e(t)\|^2 + 2\langle e^2, e \rangle + \|r_{k+1}(t)\|_{-1}^2
\]

Using \(\langle e^2, e \rangle \leq \|e\|_{L^\infty} \|e\|^2 \), Gronwall’s inequality gives

\[
\max_{0 \leq t \leq T} \|e(t)\|^2 \leq \exp\left(2 \int_0^T [2\|U(t)\|_{L^\infty} + \|e(t)\|_{L^\infty}] \, dt\right) \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \|r_{k+1}(t)\|_{-1}^2 \, dt
\]

- Is a fully a posteriori bound possible from this?
- Behaviour of the constant in the run up to blowup?
Exponent growth \textit{(Kyza & Makridakis ('11))}

Gronwall exponent:

\[\int_0^T 2\|U(t)\|_{L^\infty} + \|e(t)\|_{L^\infty} \, dt \]

On run up to blowup time: \[\|u(t)\|_{L^\infty} \sim \frac{1}{(T_{\text{blowup}} - t)} \] (Merle & Zaag ('00))

We can infer that we also have, approximately,

\[\|U(t)\|_{L^\infty}, \|e(t)\|_{L^\infty} \sim \frac{1}{(T_{\text{blowup}} - t)} \]

Hence, at \(T := T_{\text{blowup}} - \varepsilon, \varepsilon > 0, \) the exponent scales like

\[\int_0^{T_{\text{blowup}} - \varepsilon} \frac{1}{T_{\text{blowup}} - t} \, dt = \ln\left(\frac{T_{\text{blowup}}}{\varepsilon} \right) \]

and, thus, the Gronwall constant scales like

\[\exp\left(\int_0^{T_{\text{blowup}} - \varepsilon} \frac{1}{T_{\text{blowup}} - t} \, dt \right) \sim \frac{C(T_{\text{blowup}})}{\varepsilon^q} \]

i.e., polynomial growth w.r.t \(\varepsilon \)!

\textbf{Challenge:} Leads to practical algorithm?
Time-discrete scheme a posteriori bound of \((Kyza \ & \ Makridakis \ (’11)) \)

fixed point arguments + semigroup theory \(\implies \) a posteriori estimate

Conditional a posteriori error estimates

- **\(L^\infty(L^\infty) \):** \[\| e \|_{L^\infty(L^\infty)} \leq e^{1/8 + 4 \int_0^T \| U(s) \|_{L^\infty} \, ds} \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \| r_{k+1}(s) \|_{L^\infty} \, ds \]

- **\(L^\infty(L^2) \):** \[\max_{0 \leq t \leq T} \| e(t) \|^2 \leq e^{1/8 + 4 \int_0^T \| U(s) \|_{L^\infty} \, ds} \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \| r_{k+1}(s) \|^2_{-1} \, ds \]

provided \(\tau_k \) are chosen so that

\[e^4 \int_0^T \| U(s) \|_{L^\infty} \, ds \sum_{k=0}^{N-1} \int_{t_k}^{t_{k+1}} \| r_{k+1}(s) \|_{L^\infty} \, ds \leq \frac{3}{16} \rho, \quad \text{with } \rho < \frac{1}{16 T} \]

Global condition! efficient time-adaptive algorithm? – More local conditions?

- For fully-discrete \(L^\infty \)-norm a posteriori bounds for resp. elliptic problem are needed in this framework.

- growth range \(u^p, \ p > 1 \).
A new a posteriori bound (fully discrete bound also available)

New conditional estimate

\[
\max_{t_k \leq t \leq t_{k+1}} \| e(t) \|^2 \leq \delta_{k+1} e^4 \int_{t_k}^{t_{k+1}} \| U(s) \|_{L^\infty} \, ds \left[\| e(t_k) \|^2 + \int_{t_k}^{t_{k+1}} \| r_{k+1}(s) \|_{-1}^2 \, ds \right]
\]

with \(e(0) = 0 \), where \(\delta_{k+1} > 1 \) is chosen to satisfy

\[
\beta^2 \delta_{k+1} e^4 \int_{t_k}^{t_{k+1}} \| U(s) \|_{L^\infty} \, ds \left[\| e(t_k) \|^2 + \int_{t_k}^{t_{k+1}} \| r_{k+1}(s) \|_{-1}^2 \, ds \right] \tau_k - \ln \delta_{k+1} = 0
\]

Ingredients:

- Gagliardo–Nirenberg inequality: \(\langle e^2, e \rangle(t) \leq \beta \| e(t) \|^2 \| \nabla e(t) \| \)

- a new local on each time-step continuation argument

("global" continuation arguments in this spirit: Kessler, Nochetto & Schmidt (’04), Bartels (’05), Cangiani, G. & Jensen (’13))
Condition – discussion

Condition satisfied only if

\[\beta^2 e^4 \int_{t_k}^{t_{k+1}} \| U(s) \|_{L^\infty} \, ds \left[\| e(t_k) \|^2 + \int_{t_k}^{t_{k+1}} \| r_{k+1}(s) \|_{-1}^2 \, ds \right] \tau_k < \frac{1}{e} \]

This implies restriction on time-steps \(\tau_k \), i.e., conditional estimates.

Is condition practical?

- Say \(t_{k+1} = T_{\text{blowup}} - \varepsilon \), then \(e^4 \int_{t_k}^{t_{k+1}} \| U(s) \|_{L^\infty} \, ds \sim \left(\frac{\tau_k + \varepsilon}{\varepsilon} \right)^q \)

- \(\int_{t_n}^{t_{n+1}} \| r_{n+1}(s) \|_{-1}^2 \, ds \) estimable via a posteriori bounds

\(\delta_{n+1} \) computed via, e.g., Newton’s method.
Semilinear advection-diffusion problem with blowup

\[
\begin{align*}
 u_t - \epsilon \Delta u + \mathbf{a} \cdot \nabla u &= u^2 + g & \text{in } \Omega \times (0, T], \\
 u &= 0 & \text{on } \partial \Omega \times (0, T], \\
 u(\cdot, 0) &= u_0 & \text{in } \Omega,
\end{align*}
\]

Spatial discretisation: Discontinuous Galerkin (dG) method with upwind flux.

dG IMEX method: find \(U_h^{k+1} \in \mathbb{V}_h^{k+1} \) s.t.

\[
\left\langle \frac{U_h^{k+1} - U_h^k}{\tau_k}, V_h \right\rangle + B(t_{k+1}; U_h^{k+1}, V_h) = \left\langle f(U_h^k) + g^k, V_h \right\rangle \quad \forall V_h \in \mathbb{V}_h^{k+1}
\]

Continuation Argument + Elliptic Reconstruction

Conditional a posteriori error estimate in the \(L^\infty(L^2) \)-norm for dG IMEX

For elliptic reconstruction see Makridakis & Nochetto ('03), Lakkis & Makridakis ('06), G. Lakkis & Virtanen ('11), Cangiani, G., & Metcalfe ('14)

Key attribute of the approach: Flexibility on the elliptic operator!
A simple test case: reaction-diffusion problem

\[\Omega = (-4, 4) \times (-4, 4), \; u_0(x, y) = 10e^{-2(x^2+y^2)} \rightsquigarrow \text{single point blowup} \]

- space-time adaptive algorithm
- when condition fails, restarts with smaller timestep
A simple test case

<table>
<thead>
<tr>
<th>tol</th>
<th># time-steps</th>
<th>(T)</th>
<th>(| U_h(T) |_{L^\infty})</th>
<th>Estimator</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0.125)^{10})</td>
<td>6956</td>
<td>0.21228</td>
<td>238.705</td>
<td>33426.7</td>
</tr>
<tr>
<td>((0.125)^{11})</td>
<td>14008</td>
<td>0.21375</td>
<td>343.078</td>
<td>36375.0</td>
</tr>
<tr>
<td>((0.125)^{12})</td>
<td>28151</td>
<td>0.21478</td>
<td>496.885</td>
<td>66012.8</td>
</tr>
<tr>
<td>((0.125)^{13})</td>
<td>35580</td>
<td>0.21549</td>
<td>722.884</td>
<td>157300.0</td>
</tr>
</tbody>
</table>

\[
\| U_h(t) \|_{L^\infty} \sim \frac{1}{(T^* - t)^{p_k}}
\]

Plots depict: \(p_k \) vs. \(\frac{1}{T^* - t} \)
Observed rates of convergence

- $\| U_h(t) \|_{L^\infty}$ appears to blow up at the expected rate on the run-up to T^*
- we have $|T^* - T| \sim N^{-1/2}$
 - shortcoming of energy method?
 - semigroup techniques?
- Estimator blows up at faster rate, but delivers optimal blowup rate for the numerical solution regardless!
Numerical experiment – advection-diffusion problem

\(\Omega = (-4, 4) \times (-4, 4), \kappa = 1, a \equiv (1, 1)^T, g \equiv 1, u_0 \equiv 0 \)

<table>
<thead>
<tr>
<th>tol</th>
<th># time-steps</th>
<th>(T)</th>
<th>(| U_h(T) |_{L^\infty})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0.78125</td>
<td>0.886245</td>
</tr>
<tr>
<td>0.125</td>
<td>10</td>
<td>0.976562</td>
<td>1.32178</td>
</tr>
<tr>
<td>((0.125)^2)</td>
<td>54</td>
<td>1.31836</td>
<td>3.26904</td>
</tr>
<tr>
<td>((0.125)^3)</td>
<td>119</td>
<td>1.41602</td>
<td>5.10672</td>
</tr>
<tr>
<td>((0.125)^4)</td>
<td>252</td>
<td>1.48163</td>
<td>8.05863</td>
</tr>
<tr>
<td>((0.125)^5)</td>
<td>520</td>
<td>1.51711</td>
<td>11.8193</td>
</tr>
<tr>
<td>((0.125)^6)</td>
<td>1064</td>
<td>1.54467</td>
<td>18.1385</td>
</tr>
<tr>
<td>((0.125)^7)</td>
<td>2158</td>
<td>1.56224</td>
<td>27.4045</td>
</tr>
<tr>
<td>((0.125)^8)</td>
<td>4354</td>
<td>1.57402</td>
<td>41.3737</td>
</tr>
<tr>
<td>((0.125)^9)</td>
<td>8792</td>
<td>1.58243</td>
<td>64.4503</td>
</tr>
<tr>
<td>((0.125)^{10})</td>
<td>17713</td>
<td>1.58770</td>
<td>99.1902</td>
</tr>
<tr>
<td>((0.125)^{11})</td>
<td>35580</td>
<td>1.59092</td>
<td>145.785</td>
</tr>
<tr>
<td>((0.125)^{12})</td>
<td>71352</td>
<td>1.59299</td>
<td>211.278</td>
</tr>
</tbody>
</table>
Numerical experiment – blowup on 1D manifold

\(\Omega = (-8, 8)^2, \ \kappa = 1, \ \mathbf{a} = (0, 0)^T, \ f_0 = 0 \)

‘volcano’ type initial condition be given by \(u_0 = 10(x^2 + y^2) \exp(- (x^2 + y^2)/2) \)
Numerical experiment – blowup on 1D manifold

$\Omega = (-8, 8)^2$, $\kappa = 1$, $a = (0, 0)^T$, $f_0 = 0$

‘volcano’ type initial condition be given by $u_0 = 10(x^2 + y^2) \exp(-(x^2 + y^2)/2)$

<table>
<thead>
<tr>
<th>t_{tol}^+</th>
<th>Time Steps</th>
<th>Estimator</th>
<th>Final Time</th>
<th>$|U_h(T)|_{L^\infty(\Omega)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>0.06250</td>
<td>10.371</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>63</td>
<td>0.09375</td>
<td>14.194</td>
</tr>
<tr>
<td>0.125</td>
<td>36</td>
<td>211</td>
<td>0.11979</td>
<td>21.842</td>
</tr>
<tr>
<td>$(0.125)^2$</td>
<td>86</td>
<td>533</td>
<td>0.13412</td>
<td>31.446</td>
</tr>
<tr>
<td>$(0.125)^3$</td>
<td>190</td>
<td>971</td>
<td>0.14388</td>
<td>45.122</td>
</tr>
<tr>
<td>$(0.125)^4$</td>
<td>404</td>
<td>1358</td>
<td>0.15072</td>
<td>64.907</td>
</tr>
<tr>
<td>$(0.125)^5$</td>
<td>880</td>
<td>5853</td>
<td>0.15601</td>
<td>98.048</td>
</tr>
<tr>
<td>$(0.125)^6$</td>
<td>1853</td>
<td>10654</td>
<td>0.15942</td>
<td>146.162</td>
</tr>
<tr>
<td>$(0.125)^7$</td>
<td>3831</td>
<td>21301</td>
<td>0.16176</td>
<td>219.423</td>
</tr>
<tr>
<td>$(0.125)^8$</td>
<td>7851</td>
<td>143989</td>
<td>0.16336</td>
<td>332.849</td>
</tr>
<tr>
<td>$(0.125)^9$</td>
<td>16137</td>
<td>287420</td>
<td>0.16442</td>
<td>505.236</td>
</tr>
<tr>
<td>$(0.125)^{10}$</td>
<td>32846</td>
<td>331848</td>
<td>0.16512</td>
<td>769.652</td>
</tr>
<tr>
<td>$(0.125)^{11}$</td>
<td>66442</td>
<td>626522</td>
<td>0.16558</td>
<td>1175.21</td>
</tr>
</tbody>
</table>
Notation

Consider an open polygonal domain $\Omega \subset \mathbb{R}^d$ subdivided into two subdomains Ω_1 and Ω_2:

\[\Omega = \Omega_1 \cup \Omega_2 \cup \Gamma_i \]
\[\Gamma_i = \bar{\Omega}_1 \cap \bar{\Omega}_2 \]

and set $H^1 := [H^1(\Omega_1 \cup \Omega_2)]^n$, $n \in \mathbb{N}$.

PDE system:

\[
\begin{align*}
\frac{\partial u}{\partial t} - \nabla \cdot (A \nabla u - UB) + F(u) &= 0 \quad \text{in } (0, T] \times (\Omega_1 \cup \Omega_2), \\
\quad u(0, x) &= u_0(x) \quad \text{on } \{0\} \times \Omega, \\
\quad u &= g_D \quad \text{on } \Gamma_D, \\
(A \nabla u - \chi^- U B) n &= g_N \quad \text{on } \Gamma_N,
\end{align*}
\]

where χ^- is the (vector-valued) characteristic function of the inflow part of $\partial \Omega$ and $U := \text{diag}(u)$. On Γ_i we impose:

\[
\begin{align*}
(A \nabla u - UB)n|_{\Omega^1} &= P(u)(u^2 - u^1) - \{U\}_w RB n^1 \\
(A \nabla u - UB)n|_{\Omega^2} &= P(u)(u^1 - u^2) - \{U\}_w RB n^2
\end{align*}
\]
Reflective membranes – time-dependent sharp features

- a DG method & a priori analysis with solution boundedness assumption

- No analytical information – numerics?

Cangiani, G., Jensen ('13)
A posteriori error bounds for dG on curved geometries

\[\Omega \subset \mathbb{R}^d, \ d = 2, 3. \ \Omega = \Omega_1 \cup \Omega_2 \cup \Gamma^{tr}, \text{ with } \Gamma^{tr} := (\partial \Omega_1 \cap \partial \Omega_2) \setminus \partial \Omega \text{ Lipschitz.} \]

\[-\Delta u = f, \quad \text{in } \Omega_1 \cup \Omega_2, \]
\[u = 0, \quad \text{on } \partial \Omega, \]
\[\mathbf{n}^1 \cdot \nabla u_1 = C_{tr}(u_2 - u_1)|_{\Omega_1} \quad \text{on } \bar{\Omega}_1 \cap \Gamma^{tr}, \]
\[\mathbf{n}^2 \cdot \nabla u_2 = C_{tr}(u_1 - u_2)|_{\Omega_2} \quad \text{on } \bar{\Omega}_2 \cap \Gamma^{tr}, \]

where \(u_i = u|_{\bar{\Omega}_i \cap \Gamma^{tr}}, \ i = 1, 2, \ C_{tr} \) a given permeability constant.
Conclusions

- ‘Energy methods’ for error control are relevant and competitive for nonlinear evolution problems
- Error control for curved interfaces/boundaries
Some references

Computation of numerical blowup time and blowup rate

Let t^* denote a numerical blowup time. We implement a set numerical experiments (corresponding to different tolerances) producing U_h^ℓ, $\ell = 1, \cdots, L$ approximations to the exact solution u. Assume that

$$\|U_h^\ell(t_n)\|_{L^\infty} \sim \left(\frac{1}{t^* - t_n}\right)^p$$

1. Since $f(u) = u^2$, assume that $p = 1$, and use $\|U_h^L(t_{N-1})\|_{L^\infty}, \|U_h^L(T)\|_{L^\infty}$ to calculate

$$\begin{align*}
\|U_h^L(t_{N-1})\|_{L^\infty} &= C_L \frac{1}{t^* - t_{N-1}} \\
\|U_h^L(T)\|_{L^\infty} &= C_L \frac{1}{t^* - T}
\end{align*}$$

$$\Rightarrow \quad t^* = \frac{T\|U_h^L(T)\|_{L^\infty} - t_{N-1}\|U_h^L(t_{N-1})\|_{L^\infty}}{\|U_h^L(t_{N-1})\|_{L^\infty} - \|U_h^L(t_{N-1})\|_{L^\infty}}$$

• For the considered example, $t^* = 0.21705$

2. Consider $t^*(= 0.21705)$ as the numerical blowup time. We use $\|U_h^\ell(t)\|_{L^\infty}$, $\ell \neq L$ to compute the numerical blowup time:

$$p_n := \frac{\ln \left(\|U_h^\ell(t_{n+1})\|_{L^\infty} / \|U_h^\ell(t_n)\|_{L^\infty}\right)}{\ln \left((t^* - t_n)/(t^* - t_{n+1})\right)}$$

• We expect $p_n \to 1$ as $n \to N$, for the considered model problem.