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Structure of solution

Scalar non linear conservation law:

Find u : Rd × R+ → R solution of

∂tu(x, t) + ∇ · f (u(x, t)) = 0 u(x, 0) = u0(x)

with e.g. f (u) = 1
2 u2

Viscosity limit: let uε be a classical solution of the regularized problem:

∂tuε(x, t) +∇ · f (uε(x, t)) = ε4, uε(x, t), uε(x, 0) = u0(x)

There exists u = limε→0 uε (a.e.) and u is weak solution.
u is physically relevant weak solution

Equivalent: Entropy Solution

−
∫
Rd

∫
R+

(S(u)∂tφ+ FS(u) · ∇φ) dt dx−
∫
Rd

S(u0)φ(x, 0) dx ≤ 0

for all entropy pairs (S,FS), i.e., S convex and F′S = S′f ′



First order finite-volume scheme

System of conservation law (e.g. Euler Equations):

Find U : Rd × R+ → Rm entropy solution

∂tU(x, t) + ∇ · F(U(x, t)) = 0 U(x, 0) = U0(x)

Integrate over T ∈ T with tessellation T of Ω:∫
T
∂tU(·, t) = −

∫
T
∇ · F(U(·, t)) = −

∫
∂T

F(U(·, t)) · n

Piecewise constant approximation UT(t) ≈ 1
|T|
∫

T U(·, t):

d
dt

UT(t) = − 1
|T|

∫
∂T

Fh(t)

with numerical flux Fh(t) = FT,T′(UT(t),UT′(t)) on intersection between
neighboring elements T,T ′:

d
dt

UT(t) = − 1
|T|

∑
T′∈N(T)

FT,T′(UT(t),UT′(t))

N(T) is set of all neighbors of T .



First order finite-volume scheme

System of conservation law (e.g. Euler Equations):

Find U : Rd × R+ → Rm entropy solution

∂tU(x, t) + ∇ · F(U(x, t)) = 0 U(x, 0) = U0(x)

Semi discrete scheme:

d
dt

UT(t) = − 1
|T|

∑
T′∈N(T)

FT,T′(UT(t),UT′(t))

N(T) is set of all neighbors of T .
Forward Euler in time for time steps tn and ∆tn = tn+1 − tn:

Un+1
T = Un

T −
∆tn

|T|
∑

T′∈N(T)

FT,T′(Un
T ,U

n
T′)



First order finite-volume scheme

System of conservation law (e.g. Euler Equations):

Find U : Rd × R+ → Rm entropy solution

∂tU(x, t) + ∇ · F(U(x, t)) = 0 U(x, 0) = U0(x)

Fully discrete scheme:

Un+1
T = Un

T −
∆tn

|T|
∑

T′∈N(T)

FT,T′(Un
T(t),Un

T′(t))

Define Uh(x, t) := Un
T for x ∈ T, t ∈ [tn, tn+1).
A-priori error estimate for scalar case

Let uh be a first order finite-volume approximation then under suitable con-
ditions on the numerical flux:

max
t
‖uh(·, t)− u(·, t)‖L1(Rd) ≤ C(u)h

1
4

Should be h
1
2 , only proven for structured grids.



Euler System of Hydrodynamics

∂tρ+∇ · (ρ~u) = 0 (conservation of mass),

∂t(ρ~u) +∇ · (ρ~u~uT + P) = 0 (conservation of momentum),

∂t(ρe) +∇ · (ρe~u + P~u) = 0 (conservation of energy),

e = ε+
1
2
|~u|2 (total energy),

P = p(ρ, ε)I (equation of state for pressure),

(ρ, ρ~u, ρe)(·, 0) = (ρ0, ρ0~u0, ρ0e0) (initial conditions)

ρ : density, ρ~u : momentum, ρe : total energy density



Numerical results

Riemann problem (Euler)

u0 = uL (x < 0), u0 = uR (x > 0). Solution: rarefaction, contact, shock
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Single contact (Euler)

u0 = uL (x < 0), u0 = uR (x > 0). Solution: u(x, t) = u0(x− at)
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resolution in 3d requires 130.000.000 elements for results shown



Numerical results

Forward facing step (Euler)
Right moving Mach 3 flow

structure:

15.000 elements 230.000 element



High order methods

• highly efficient for smooth solution
• Loss of efficiency for non-smooth solution ...
• ... and unstable for non linear discontinuities (shocks)

No stabilization
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High order methods

• highly efficient for smooth solution
• Loss of efficiency for non-smooth solution ...
• ... and unstable for non linear discontinuities (shocks)

Basis Algorithm:

1 determine troubled cells where the error is high or the scheme is
unstable

2 for each troubled cell either increase the order (if solution is smooth) or
reduce the order und refine the grid

Determine troubled cells heuristically or by error estimate.



Higher order (Discontinuous Galerkin)

Riemann problem (Euler)

u0 = uL (x < 0), u0 = uR (x > 0). Solution: rarefaction, contact, shock

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-0.3 -0.2 -0.1  0  0.1  0.2  0.3

d
e
n
s
it
y

x

contact

shock
solution
p=0
p=2

 0.0001

 0.001

 0.01

 0.1

 1

-0.3 -0.2 -0.1  0  0.1  0.2  0.3
e
rr

o
r

x

contact
shock

p=0
p=2

 1e-05

 0.0001

 0.001

 0.0001  0.001  0.01

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

L
1
-e

rr
o
r

L
1
 c

o
n
v
e
rg

e
n
c
e
 r

a
te

h

error p=0
eoc p=0
error p=2
eoc p=2

Single contact (Euler)

u0 = uL (x < 0), u0 = uR (x > 0). Solution: u(x, t) = u0(x− at)
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Heuristic strategy for local mesh adaption

• Find interface between cells where solution has a large jump
• Mark the two elements at that intersection
• Mark a neighborhood of marked elements
• Mark elements for coarsening where the jump is very small

Possibly look at curvature of solution (i.e. jumps between gradients)
Idea: Error is where the discontinueties are
Problems?
• Can not distinguish between contacts and shocks
• Could coarsen wrongly (kinks at ends of rarefactions)
• Indicator does not get smaller with reduction of grid size
• No mathematical proof that it works only many people using

successfuly...



Higher order schemes on adaptive grids

Estimator
Nead indictor ηK for "smoothness" of solution

ηK =

{
O(hq

K) smooth region
O(h−1

K ) troubled region



A posteriori error estimate
Kruzkov framework (semi implicit)

D, Makridakis, Ohlberger ’06
Structure of a posteriori error estimate:

||(u− uh)(T)||2L1(BR(x0))
≤ K

∑
n

∑
j∈Jn

(
hj + ||ũn

j − ũn
j ||L∞

) (
Rn

T,j + Rn
S,jl + Rn

L,j
)

• Rn
T,j: Element residual

• Rn
S,jl: Jump residual (numerical viscosity)

• Rn
L,j: Coarsening error

• ||ũn
j − ũn

j ||L∞ : difference between aerage and higher order polynomial

Numerical test show:

R̄n
j :=

hj

|Tj|∆tn

(
Rn

T,j + Rn
S,jl + Rn

L,j
)

=

{
O(hp−1

j ) solution is smooth
O(1) ... discontinuous



Strategy for local mesh adaption

First step:
Define the set of grid cells Is with a significant

contribution to the overall error indicator ηh.

Second step:
Use an equal distribution strategy to refine or coarsen

the elements in Is according to the error estimate.

Third step:
For elements that are marked for coarsening,

check if the projection error is small enough.



Forward facing step

Approximately 14.000 elements at t = T


ffs_adapt.avi
Media File (video/avi)



We now come to a short commercial break...

at University of Warwick 4th to 8th of July, 2016
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A very different approach

Issues with Kruzkov: only works with scalars
Issue with proof: only done for semi discrete scheme

Giesselmann, Makridakis, Pryer: use of relative entropy (RE) framework
Given one convex entropy η then

η(U | V) := η(U)− η(V)− η′(V)(U − V) ≈ ‖U − V‖L2

and if V is a Lipschitz solution and U a weak solution then

d
dt

∫
η(U | V) ≤ C(V)

∫
η(U | V)

This can also be used to study perturbed solutions U:
Advantage: works with system of equations (need only one entropy)
Issue with RE: only works in the case that a Lipschitz solution extists
Issue with proof: semi discrete scheme in 1d, very restrictive on flux function
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A-posteriori estimator based on RE
(semi discrete version in 1d)

• Construct semi discrete solution U(t) in the DG space of order p
• Use a spacial reconstruction Us(t) in a Lagrange space of order p + 1:

construct solution on each element
• local L2 projection on polynomial space of order p− 1
• use U∗ = U∗(U+,U−) for continuety at the vertices of the grid

• Compute pointwise residual using Us(t):

Rs = ∂tUs +∇ · F(Us)

Assumption:
• Have good choice for U∗ (get to that later)
• existence of smooth solutions (we are stuck with that)



Reconstruction in time (ODE case)

Problem: General ODE
d
dt

U(t) = F(U(t))

Assume: some time stepping method of order q giving approximations

(t0,U0), (t1,U1), . . . , (tn,Un), (tn+1,Un+1)

Reconstruction: Choose s and d with (d + 1)s− 1 := r ≥ q and assume
given approximations

Uij ≈
di

dti U(tn−j)

for i = 0, . . . , d and j = −1, . . . , s (could be more general).
Using these values construct polynomial Ut := Hs,d of order r on (tn, tn+1)
through Hermite interpolation.
Easiest example is d = 1, s ≥ 0 since we can take U1j = F(U(tn−j))
Otherwise can use finite difference approximation to approximate higher
order derivatives



A-posteriori estimate (ODE case)

Lemma: Stability of Hermite interpolation:
we can replace exact derivatives with approximations (of the right order)
Estimate
Define residual R := d

dt U
t(t)− F(Ut(t)) then

‖u− ut‖∞ ≤ ‖R‖L1eLT

Note: Ut ∈ C1(0,T) and locally computable
Optimality
Assume Lk is the Lipschitz constant of kth derivative of rhs F then

‖R‖∞ ≤
q+1∑
k=0

LkO(τ q+k).

So we can have L = O(τ−1) for residual to be order q



A-posteriori estimate for fully discrete scheme

1 Compute DG solution Un+1

2 Use Un−j to compute Hermite reconstruction Ut (in DG space)

3 Use spatial reconstruction (given U∗) to construct Uts in Lagrange
space

4 Compute pointwise Residual R

Estimate:

‖U(tn, ·)− Un(·)‖2
L2 ≤ ‖ust(tn, ·)− Un(·)‖2

L2 + ‖R‖2
L2((0,tn)×Ω exp(...)



Optimality of the estimate

Condition on the numerical flux
There exists U∗ : U × U → U so that

FT,T′(a,b) = F(U∗(a,b))− µ(a,b; h)hν(b− a) ∀ a,b ∈ U

with ν ∈ N0, matrix-valued µ with |µ(a,b; h)| ≤ µK

(
1 + |b−a|

h

)
.

• Richtmyer flux (µ = 0):

U∗(V,W) =
1
2

(V + W)− ∆t
2h

(F(W)− F(V))

• Richtmyer flux with artificial viscosity of the form h2∂h
x
(
|∂h

x u|∂h
x u
)

(ν = 1)
• The Lax Friedrichs flux

FT,T′(a,b) =
1
2

(
F(a) + F(b)

)
− λ(b− a)

with U∗(a,b) = 1
2(a + b), ν = 0, and

µ(a,b, h) =
F(a)− 2F(U∗(a,b)) + F(b)

2‖b− a‖2 ⊗ (b− a)− λ .
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Lemma (Conditional optimality of residuals)
Consider fully discrete DG scheme of order q + 1 in time, q-th order
polynomials in space, and a numerical flux satisfying previous Assumption.
Let the exact error be of order O(hq+γ) with γ ∈ {1

2 , 1}.
Then, the residual R is of orderO(hq+γ + hq+γ+ν−1) under CFL conditions.

So for optimality we need
• CFL condition

(gives O(τ−1) for Lipschitz constant in time reconstruction error)
• numerical flux with ν = 1 (or µ = 0)

Lemma (Suboptimality)
Consider a numerical flux satisfying our Assumption with ν = 0 and
µ(a, b; h) = µ0 > 0 and τ = O(h).
Then, for a linear DG scheme the norm of the residualx R is bounded from
below by terms of order hγ even if the error of the method is O(h1+γ).

D, Giesselmann: A posteriori analysis of fully discrete method of lines DG schemes
for systems of conservation laws, submitted
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Linear Advection with optimal flux
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Linear Advection with ...

... sub optimal flux
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... optimal flux but lower temporal reconstruction
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Euler Equations
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Density evolution: t = 0.6, 0.8, 1.0, 1.2, 1.4.
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Results
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A-posteriori estimator based on RE:
Some remarks

• works now for fully discrete scheme
• we are working on extending it to higher dimensions
• only works with smooth solutions:

For grid adaptivity and stabilization this is not really an issue?
• needs very specific flux function:

We can show that this is required
With general flux the Residual is not optimal

• expensive to compute:
using a simpler spatial reconstruction again lowers the order by one
For grid adaptivity and stabilization this is not really an issue?


