A-posteriori estimators for conservation laws

ANDREAS DEDNER AND JAN GISSELMANN

A.S.Dedner@warwick.ac.uk, www2.warwick.ac.uk/fac/sci/maths/people/staff/andreas_dedner Mathematics Institute,

THE UNIVERSITY OF WARWICK

Birmingham, Januar 5, 2016

Structure of solution

Scalar non linear conservation law:

Find $u : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}$ solution of $\partial_t u(x,t) + \nabla \cdot f(u(x,t)) = 0 \quad u(x,0) = u_0(x)$ with e.g. $f(u) = \frac{1}{2}u^2$

Viscosity limit: let u_{ε} be a classical solution of the regularized problem:

$$\partial_t u_{\varepsilon}(x,t) + \nabla \cdot f(u_{\varepsilon}(x,t)) = \varepsilon \triangle, u_{\varepsilon}(x,t), \qquad u_{\varepsilon}(x,0) = u_0(x)$$

There exists $u = \lim_{\varepsilon \to 0} u_{\varepsilon}$ (a.e.) and u is weak solution. *u* is physically relevant weak solution

Equivalent: Entropy Solution

$$-\int_{\mathbb{R}^d}\int_{\mathbb{R}^+} (S(u)\partial_t \phi + F_S(u) \cdot \nabla \phi) \, dt \, dx - \int_{\mathbb{R}^d} S(u_0)\phi(x,0) \, dx \le 0$$

for all entropy pairs (S, F_S) , i.e., S convex and $F'_S = S'f'$

First order finite-volume scheme

System of conservation law (e.g. Euler Equations):

Find
$$U : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^m$$
 entropy solution
 $\partial_t U(x,t) + \nabla \cdot F(U(x,t)) = 0 \quad U(x,0) = U_0(x)$

Integrate over $T \in \mathbf{T}$ with tessellation \mathbf{T} of Ω :

$$\int_{T} \partial_{t} U(\cdot, t) = -\int_{T} \nabla \cdot F(U(\cdot, t)) = -\int_{\partial T} F(U(\cdot, t)) \cdot F(U(\cdot, t)) \cdot F(U(\cdot, t)) \cdot F(U(\cdot, t)) \cdot F(U(\cdot, t)) + F(U(\cdot, t)) \cdot F(U(\cdot, t)) + F(U(\cdot, t)) \cdot F(U(\cdot, t)) + F(U(\cdot, t)) +$$

Piecewise constant approximation $U_T(t) \approx \frac{1}{|T|} \int_T U(\cdot, t)$:

$$\frac{d}{dt}U_T(t) = -\frac{1}{|T|} \int_{\partial T} F_h(t)$$
•N(T)

with numerical flux $F_h(t) = F_{T,T'}(U_T(t), U_{T'}(t))$ on intersection between neighboring elements T, T':

$$\frac{d}{dt}U_T(t) = -\frac{1}{|T|} \sum_{T' \in N(T)} F_{T,T'}(U_T(t), U_{T'}(t))$$

N(T) is set of all neighbors of T.

WARWICK

System of conservation law (e.g. Euler Equations):

Find
$$U : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^m$$
 entropy solution

$$\partial_t U(x,t) + \nabla \cdot F(U(x,t)) = 0 \quad U(x,0) = U_0(x)$$

Semi discrete scheme:

$$\frac{d}{dt}U_{T}(t) = -\frac{1}{|T|} \sum_{T' \in N(T)} F_{T,T'}(U_{T}(t), U_{T'}(t))$$

N(T) is set of all neighbors of *T*. Forward Euler in time for time steps t^n and $\Delta t^n = t^{n+1} - t^n$:

$$U_T^{n+1} = U_T^n - \frac{\Delta t^n}{|T|} \sum_{T' \in N(T)} F_{T,T'}(U_T^n, U_{T'}^n)$$

System of conservation law (e.g. Euler Equations): Find $U : \mathbb{R}^d \times \mathbb{R}^+ \to \mathbb{R}^m$ entropy solution

$$\partial_t U(x,t) + \nabla \cdot F(U(x,t)) = 0 \quad U(x,0) = U_0(x)$$

Fully discrete scheme:

$$U_T^{n+1} = U_T^n - \frac{\Delta t^n}{|T|} \sum_{T' \in N(T)} F_{T,T'}(U_T^n(t), U_{T'}^n(t))$$

Define $U_h(x,t) := U_T^n$ for $x \in T, t \in [t^n, t^{n+1})$. A-priori error estimate for scalar case

Let u_h be a first order finite-volume approximation then under suitable conditions on the numerical flux:

$$\max_{t} \|u_{h}(\cdot,t) - u(\cdot,t)\|_{L^{1}(\mathbb{R}^{d})} \leq C(u)h^{\frac{1}{4}}$$

Should be $h^{\frac{1}{2}}$, only proven for structured grids.

$$\partial_t \rho + \nabla \cdot (\rho \vec{u}) = 0$$
$$\partial_t (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \vec{u}^T + \mathbf{P}) = 0$$
$$\partial_t (\rho e) + \nabla \cdot (\rho e \vec{u} + \mathbf{P} \vec{u}) = 0$$

(conservation of mass),

(conservation of momentum),

(conservation of energy),

$$e = \varepsilon + \frac{1}{2} |\vec{u}|^2$$
 (total energy),
 $\mathbf{P} = p(\rho, \varepsilon) \mathbf{I}$ (equation of state for pressure),

 $(\rho, \rho \vec{u}, \rho e)(\cdot, 0) = (\rho_0, \rho_0 \vec{u}_0, \rho_0 e_0)$ (initial conditions)

 ρ : density, $\rho \vec{u}$: momentum, ρe : total energy density

Numerical results

WARWICK

resolution in 3d requires 130.000.000 elements for results shown

High order methods

- highly efficient for smooth solution
- Loss of efficiency for non-smooth solution ...
- ... and unstable for non linear discontinuities (shocks)

WARWICK

No stabilization

High order methods

- highly efficient for smooth solution
- Loss of efficiency for non-smooth solution ...
- ... and unstable for non linear discontinuities (shocks)

Basis Algorithm:

- 1 determine troubled cells where the error is high or the scheme is unstable
- 2 for each troubled cell either increase the order (if solution is smooth) or reduce the order und refine the grid

WARWI

Determine troubled cells heuristically or by error estimate.

Higher order (Discontinuous Galerkin)

WARWICK

• Find interface between cells where solution has a large jump

WARWICK

- Mark the two elements at that intersection
- Mark a neighborhood of marked elements
- Mark elements for coarsening where the jump is very small

Possibly look at curvature of solution (i.e. jumps between gradients) Idea: Error is where the discontinueties are

Problems?

- Can not distinguish between contacts and shocks
- Could coarsen wrongly (kinks at ends of rarefactions)
- Indicator does not get smaller with reduction of grid size
- No mathematical proof that it works only many people using successfuly...

Estimator

WARWICK

Nead indictor η_K for "smoothness" of solution

$$\eta_K = \begin{cases} O(h_K^q) & \text{smooth region} \\ O(h_K^{-1}) & \text{troubled region} \end{cases}$$

A posteriori error estimate Kruzkov framework (semi implicit)

WARWICK

D, Makridakis, Ohlberger '06

Structure of a posteriori error estimate:

$$||(u-u_h)(T)||_{L^1(B_R(x_0))}^2 \le K \sum_n \sum_{j \in J^n} \left(h_j + ||\overline{\widetilde{u}_j^n} - \widetilde{u}_j^n||_{L^{\infty}}\right) \left(\mathbf{R}_{\mathbf{T},\mathbf{j}}^n + \mathbf{R}_{\mathbf{S},\mathbf{j}\mathbf{l}}^n + \mathbf{R}_{\mathbf{L},\mathbf{j}}^n\right)$$

- **R**ⁿ_{T,i}: Element residual
- **R**ⁿ_{S.il}: Jump residual (numerical viscosity)
- Rⁿ_{L,i}: Coarsening error
- $||\widetilde{u_j^n} \widetilde{u}_j^n||_{L^{\infty}}$: difference between aerage and higher order polynomial

Numerical test show:

$$\bar{R}_{j}^{n} := \frac{h_{j}}{|T_{j}|\Delta t^{n}} \left(\mathbf{R}_{\mathbf{T},\mathbf{j}}^{\mathbf{n}} + \mathbf{R}_{\mathbf{S},\mathbf{j}\mathbf{l}}^{\mathbf{n}} + \mathbf{R}_{\mathbf{L},\mathbf{j}}^{\mathbf{n}} \right) = \begin{cases} O(h_{j}^{p-1}) & \text{solution is smooth} \\ O(1) & \dots \text{ discontinuous} \end{cases}$$

First step:

Define the set of grid cells I_s with a significant contribution to the overall error indicator η_h .

WAR

Second step:

Use an equal distribution strategy to refine or coarsen the elements in I_s according to the error estimate. Third step:

For elements that are marked for coarsening, check if the projection error is small enough.

Forward facing step

Approximately 14.000 elements at t = T

We now come to a short commercial break... WARWICK

at University of Warwick 4th to 8th of July, 2016

We now come to a short commercial break... WARWICK

at University of Warwick 4th to 8th of July, 2016

Issues with Kruzkov: only works with scalars Issue with proof: only done for semi discrete scheme

Giesselmann, Makridakis, Pryer: use of relative entropy (RE) framework Given one convex entropy η then

$$\eta(U \mid V) := \eta(U) - \eta(V) - \eta'(V)(U - V) \approx ||U - V||_{L^2}$$

and if V is a Lipschitz solution and U a weak solution then

$$\frac{d}{dt} \int \eta(U \mid V) \le C(V) \int \eta(U \mid V)$$

This can also be used to study perturbed solutions *U*:

Advantage: works with system of equations (need only one entropy) Issue with RE: only works in the case that a Lipschitz solution extists Issue with proof: semi discrete scheme in 1d, very restrictive on flux function

WARWICK

Issues with Kruzkov: only works with scalars Issue with proof: only done for semi discrete scheme

Giesselmann, Makridakis, Pryer: use of relative entropy (RE) framework Given one convex entropy η then

$$\eta(U \mid V) := \eta(U) - \eta(V) - \eta'(V)(U - V) \approx \|U - V\|_{L^2}$$

and if V is a Lipschitz solution and U a weak solution then

$$\frac{d}{dt} \int \eta(U \mid V) \leq C(V) \int \eta(U \mid V)$$

This can also be used to study perturbed solutions U:

Advantage: works with system of equations (need only one entropy) Issue with RE: only works in the case that a Lipschitz solution extists Issue with proof: semi discrete scheme in 1d, very restrictive on flux function

WARWICK

- Construct semi discrete solution U(t) in the DG space of order p
- Use a spacial reconstruction $U^{s}(t)$ in a Lagrange space of order p + 1: construct solution on each element
 - local L^2 projection on polynomial space of order p-1
 - use $U^* = U^*(U^+, U^-)$ for continuety at the vertices of the grid
- Compute pointwise residual using $U^{s}(t)$:

$$R^s = \partial_t U^s + \nabla \cdot F(U^s)$$

Assumption:

- Have good choice for U^* (get to that later)
- existence of smooth solutions (we are stuck with that)

Reconstruction in time (ODE case)

$$\frac{d}{dt}U(t) = F(U(t))$$

WARWICK

Assume: some time stepping method of order q giving approximations

$$(t^0, U^0), (t^1, U^1), \dots, (t^n, U^n), (t^{n+1}, U^{n+1})$$

Reconstruction: Choose *s* and *d* with $(d + 1)s - 1 := r \ge q$ and assume given approximations

$$U_{ij} \approx rac{d^i}{dt^i} U(t^{n-j})$$

for i = 0, ..., d and j = -1, ..., s (could be more general).

Using these values construct polynomial $U^t := H^{s,d}$ of order r on (t^n, t^{n+1}) through Hermite interpolation.

Easiest example is $d = 1, s \ge 0$ since we can take $U_{1j} = F(U(t^{n-j}))$ Otherwise can use finite difference approximation to approximate higher order derivatives

Lemma: Stability of Hermite interpolation:

we can replace exact derivatives with approximations (of the right order) Estimate

WARWICK

Define residual $R := \frac{d}{dt}U^t(t) - F(U^t(t))$ then

$$||u - u^t||_{\infty} \le ||R||_{L^1} e^{LT}$$

Note: $U^t \in C^1(0, T)$ and locally computable Optimality

Assume L^k is the Lipschitz constant of kth derivative of rhs F then

$$\|R\|_{\infty} \leq \sum_{k=0}^{q+1} L^k \mathcal{O}(\tau^{q+k}).$$

So we can have $L = \mathcal{O}(\tau^{-1})$ for residual to be order q

A-posteriori estimate for fully discrete scheme WARWICK

- **1** Compute DG solution U^{n+1}
- **2** Use U^{n-j} to compute Hermite reconstruction U^t (in DG space)
- **3** Use spatial reconstruction (given U^*) to construct U^{ts} in Lagrange space
- 4 Compute pointwise Residual R

Estimate:

 $\|U(t^{n},\cdot) - U^{n}(\cdot)\|_{L^{2}}^{2} \leq \|u^{st}(t^{n},\cdot) - U^{n}(\cdot)\|_{L^{2}}^{2} + \|R\|_{L^{2}((0,t^{n})\times\Omega}^{2}\exp(...)$

Condition on the numerical flux There exists $\mathbf{U}^*: \mathcal{U} \times \mathcal{U} \to \mathcal{U}$ so that

$$\mathbf{F}_{\mathbf{T},\mathbf{T}'}(\mathbf{a},\mathbf{b}) = \mathbf{F}(\mathbf{U}^*(\mathbf{a},\mathbf{b})) - \mu(\mathbf{a},\mathbf{b};h)h^\nu(\mathbf{b}-\mathbf{a}) \quad \forall \ \mathbf{a},\mathbf{b} \in \mathcal{U}$$

WARWICK

with $\nu \in \mathbb{N}_0$, matrix-valued μ with $|\mu(\mathbf{a}, \mathbf{b}; h)| \leq \mu_K \left(1 + \frac{|\mathbf{b}-\mathbf{a}|}{h}\right)$.

• Richtmyer flux ($\mu = 0$):

$$U^{*}(V, W) = \frac{1}{2}(V + W) - \frac{\Delta t}{2h}(F(W) - F(V))$$

- Richtmyer flux with artificial viscosity of the form $h^2 \partial_x^h (|\partial_x^h u| \partial_x^h u)$ ($\nu = 1$)
- The Lax Friedrichs flux

$$\mathbf{F}_{\mathbf{T},\mathbf{T}'}(\mathbf{a},\mathbf{b}) = \frac{1}{2} \Big(\mathbf{F}(\mathbf{a}) + \mathbf{F}(\mathbf{b}) \Big) - \lambda(\mathbf{b} - \mathbf{a})$$

with $\mathbf{U}^*(\mathbf{a}, \mathbf{b}) = \frac{1}{2}(\mathbf{a} + \mathbf{b}), \mathbf{\nu} = \mathbf{0}$, and $\mu(\mathbf{a}, \mathbf{b}, h) = \frac{\mathbf{F}(\mathbf{a}) - 2\mathbf{F}(\mathbf{U}^*(\mathbf{a}, \mathbf{b})) + \mathbf{F}(\mathbf{b})}{2\|\mathbf{b} - \mathbf{a}\|^2} \otimes (\mathbf{b} - \mathbf{a}) - \lambda .$

Condition on the numerical flux

There exists $U^*\colon \mathcal{U}\times \mathcal{U}\to \mathcal{U}$ so that

$$\mathbf{F}_{\mathbf{T},\mathbf{T}'}(\mathbf{a},\mathbf{b}) = \mathbf{F}(\mathbf{U}^*(\mathbf{a},\mathbf{b})) - \mu(\mathbf{a},\mathbf{b};h)h^\nu(\mathbf{b}-\mathbf{a}) \quad \forall \ \mathbf{a},\mathbf{b} \in \mathcal{U}$$

WARWICK

with $\nu \in \mathbb{N}_0$, matrix-valued μ with $|\mu(\mathbf{a}, \mathbf{b}; h)| \leq \mu_K \left(1 + \frac{|\mathbf{b}-\mathbf{a}|}{h}\right)$.

• Richtmyer flux ($\mu = 0$):

$$U^{*}(V, W) = \frac{1}{2}(V + W) - \frac{\Delta t}{2h}(F(W) - F(V))$$

- Richtmyer flux with artificial viscosity of the form $h^2 \partial_x^h (|\partial_x^h u| \partial_x^h u)$ $(\nu = 1)$
- The Lax Friedrichs flux

$$\mathbf{F}_{\mathbf{T},\mathbf{T}'}(\mathbf{a},\mathbf{b}) = \frac{1}{2} \Big(\mathbf{F}(\mathbf{a}) + \mathbf{F}(\mathbf{b}) \Big) - \lambda(\mathbf{b} - \mathbf{a})$$

with $\mathbf{U}^*(\mathbf{a}, \mathbf{b}) = \frac{1}{2}(\mathbf{a} + \mathbf{b}), \mathbf{\nu} = \mathbf{0}$, and $\mu(\mathbf{a}, \mathbf{b}, h) = \frac{\mathbf{F}(\mathbf{a}) - 2\mathbf{F}(\mathbf{U}^*(\mathbf{a}, \mathbf{b})) + \mathbf{F}(\mathbf{b})}{2\|\mathbf{b} - \mathbf{a}\|^2} \otimes (\mathbf{b} - \mathbf{a}) - \lambda .$

Lemma (Conditional optimality of residuals)

Consider fully discrete DG scheme of order q + 1 in time, q-th order polynomials in space, and a numerical flux satisfying previous Assumption. Let the exact error be of order $\mathcal{O}(h^{q+\gamma})$ with $\gamma \in \{\frac{1}{2}, 1\}$. Then, the residual **R** is of order $\mathcal{O}(h^{q+\gamma} + h^{q+\gamma+\nu-1})$ under CFL conditions.

So for optimality we need

CFL condition

(gives $O(\tau^{-1})$ for Lipschitz constant in time reconstruction error)

• numerical flux with $\nu = 1$ (or $\mu = 0$)

Lemma (Suboptimality)

Consider a numerical flux satisfying our Assumption with $\nu = 0$ and $\mu(a, b; h) = \mu_0 > 0$ and $\tau = O(h)$.

Then, for a linear DG scheme the norm of the residualx **R** is bounded from below by terms of order h^{γ} even if the error of the method is $\mathcal{O}(h^{1+\gamma})$.

D, *Giesselmann: A posteriori analysis of fully discrete method of lines DG schemes for systems of conservation laws, submitted*

Lemma (Conditional optimality of residuals)

Consider fully discrete DG scheme of order q + 1 in time, q-th order polynomials in space, and a numerical flux satisfying previous Assumption. Let the exact error be of order $\mathcal{O}(h^{q+\gamma})$ with $\gamma \in \{\frac{1}{2}, 1\}$. Then, the residual **R** is of order $\mathcal{O}(h^{q+\gamma} + h^{q+\gamma+\nu-1})$ under CFL conditions.

So for optimality we need

- CFL condition (gives $O(\tau^{-1})$ for Lipschitz constant in time reconstruction error)
- numerical flux with $\nu = 1$ (or $\mu = 0$)

Lemma (Suboptimality)

Consider a numerical flux satisfying our Assumption with $\nu = 0$ and $\mu(a,b;h) = \mu_0 > 0$ and $\tau = O(h)$.

Then, for a linear DG scheme the norm of the residualx **R** is bounded from below by terms of order h^{γ} even if the error of the method is $\mathcal{O}(h^{1+\gamma})$.

D, *Giesselmann: A posteriori analysis of fully discrete method of lines DG schemes for systems of conservation laws, submitted*

Linear Advection with optimal flux

WARWICK

Linear Advection with ...

WARWICK

... sub optimal flux

... optimal flux but lower temporal reconstruction

Euler Equations

Density evolution: t = 0.6, 0.8, 1.0, 1.2, 1.4.

Results

A-posteriori estimator based on RE: Some remarks

- works now for fully discrete scheme
- we are working on extending it to higher dimensions
- only works with smooth solutions: For grid adaptivity and stabilization this is not really an issue?

WARWICK

- needs very specific flux function: We can show that this is required With general flux the Residual is not optimal
- expensive to compute: using a simpler spatial reconstruction again lowers the order by one For grid adaptivity and stabilization this is not really an issue?