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Why r-adaptivity

@ Does not create load balancing problems on parallel
computers,

Does not require mapping solutions between different meshes,

Does not lead to sudden changes in resolution,

Can be retro-fitted into existing models
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Objectives of the NERC project

@ Solve optimal transport equations on the sphere to efficiently
redistribute a mesh

@ Assess mesh quality for the equations of the atmosphere

@ Develop mimetic finite element/volume methods on moving
meshes

@ Compare with established test cases

@ Establish suitable refinement criteria for the atmosphere
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r-adaptive mesh redistribution

Original computational mesh 7, Adapted physical mesh 7,

F(T) =Ty VéeT.IweT,st a=F() (1)
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Monitor function equidistribution

Given m(z) > 0, find F': Q. — €, such that

m(x)[J(§)] = c. (2)
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Optimally transported meshes

Seek I™* such that

F—agminl|[P -1l = [ (6= F@P ()
F Qe
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Optimally transported meshes

Seek F™* such that

F—agminl|[P -1l = [ (6= F@P ()
F Q¢

Theorem (Brenier (1991) [in cuboid domains])

There exists a unique optimally transported map F (&) which
minimises (3), and the Jacobian of which satisfies the
equidistribution equation (2). Furthermore, F(&) can be written as
the gradient (with respect to £) of a convex scalar (mesh)
potential $(§), so that

2(§) = Veo(£),  He(9(€)) » 0. (4)

Brenier, Y. (1991). Polar Factorization and Monotone Rearrangement of Vector-Valued Functions.

v

Communications on Pure and Applied Mathematics, XLIV:375-417
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A Monge-Ampere equation

As z = V¢ and m(z)|J(§)| = ¢,

mEHH@) =c = HOI= s 6
Viw) Vi) e
"G T v wmve O
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Optimal tran
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Optimal transport on S” 1

Theorem (McCann (2001))

Let M be a connected, complete smooth Riemannian manifold,
equipped with its standard volume measure dx. Let yu,v be two
probability measures on M with compact support, and let the
objective function c(&, ) be equal to d(€,x)?, where d is the
geodesic distance on M. Further, assume that p is absolutely
continuous with respect to the volume measure on M. Then, there
is a unique optimal transport map F' where F' pushes forward the
measure 1 onto v. Then, (using classical optimal transport
notation):

Felp)=v ie x=F(&) = expe[Vo(e)] (7)

for some d? /2-convex potential ¢.

McCann, R. (2001). Polar factorization of maps on Riemannian manifolds.
Geometric & Functional Analysis GAFA, 11(3):589-608
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Optimal transport on S” 2

Corollary (Weller, B., Budd, Cullen (2015))

There exists a unique, optimally transported mesh on the sphere
that satisfies the equidistribution principle. Moreover, that mesh is
defined by a c-convex scalar potential function that satisfies the
Monge-Ampeére type equation

m(expe[VO(E))]J ()] = c. (8)

y

Corollary (Weller, B., Budd, Cullen (2015))

The optimally transported mesh on the sphere satisfying the
equidistribution principle does not exhibit tangling.

Weller, H., Browne, P., Budd, C., and Cullen, M. (2015). Mesh adaptation on the sphere using optimal transport
and the numerical solution of a Monge-Ampere type equation.

J Comp Phys, (In Press)
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Solution techniques for the Monge-Ampére equation

Parabolic Relaxation, Budd & Williams (2009)

(I = 792§ = (I = /V2)g" + 8t [m(a™)|I + H($")[|. (9)

| A\

Linearisation about 0

[T+ H(¢"h)| =1+ V2" + N (") (10)

4

Linearisation about ¢"

I+ H(@"™)| = I+ H(")| +eV-A"VY + N(eyp)  (11)

4

Budd, C. and Williams, J. (2009). Moving mesh generation using the parabolic Monge-Ampeére Equation.

SIAM Journal on Scientific Computing, 31(5):3438-3465
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Solution techniques for the Monge-Ampére equation
Parabolic Relaxation, Budd & Williams (2009)

(I =7 V2)§™ = (I = /VA)g" + 8t [m(a™)| + H(6")[|. (9)

Fixed point iterations, Weller, B., Budd, Cullen (2015)

m(zm)’

Adaptive linearisation fixed point iterations

m(z™)’

AV = V2™ — |T + H($™)| + vn e N. (10)

V- (A"V¢") = V- (A"V¢")—|I+H(¢™)|+ Vn € N.

(11)

4

Budd, C. and Williams, J. (2009). Moving mesh generation using the parabolic Monge-Ampeére Equation.

SIAM Journal on Scientific Computing, 31(5):3438-3465
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Convergence 1
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Convergence 2
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Convergence 3

Equidistribution (CV of m|I+ H|)
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Convergence 4
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Mesh redistribution on the sphere

= where r = expg (Vo) on S*  (12)

Finite volume method (OpenFOAM)
Fixed point iterations

Geometric version of the Hessian
Linearisation about 0 on a tangent plane
Exponential mappings of the points

Monitor function derived from reanalysis precipitation data

Hexagonal isocohedral 7.
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Mesh redistribution on the sphere
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Thank you for listening
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