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Why r-adaptivity

Does not create load balancing problems on parallel
computers,

Does not require mapping solutions between different meshes,

Does not lead to sudden changes in resolution,

Can be retro-fitted into existing models
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Objectives of the NERC project

Solve optimal transport equations on the sphere to efficiently
redistribute a mesh

Assess mesh quality for the equations of the atmosphere

Develop mimetic finite element/volume methods on moving
meshes

Compare with established test cases

Establish suitable refinement criteria for the atmosphere
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r-adaptive mesh redistribution

Original computational mesh Tc Adapted physical mesh Tp

F (Tc) = Tp; ∀ξ ∈ Tc ∃x ∈ Tp s.t. x = F (ξ) (1)
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Monitor function equidistribution

Given m(x) > 0, find F : Ωc → Ωp such that

m(x)|J(ξ)| = c. (2)
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Optimally transported meshes

Seek F ∗ such that

F ∗ = arg min
F

||F − I|| =
∫

Ωc

|ξ − F (ξ)|2 dξ. (3)

Theorem (Brenier (1991) [in cuboid domains])

There exists a unique optimally transported map F(ξ) which
minimises (3), and the Jacobian of which satisfies the
equidistribution equation (2). Furthermore, F(ξ) can be written as
the gradient (with respect to ξ) of a convex scalar (mesh)
potential φ(ξ), so that

x(ξ) = ∇ξφ(ξ), Hξ(φ(ξ)) � 0. (4)

Brenier, Y. (1991). Polar Factorization and Monotone Rearrangement of Vector-Valued Functions.

Communications on Pure and Applied Mathematics, XLIV:375–417
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A Monge-Ampère equation

As x = ∇φ and m(x)|J(ξ)| = c,

m(∇φ)|H(φ)| = c ⇐⇒ |H(φ)| = c

m(∇φ)
(5)

m(∇φ)
Vi(x)

Vi(ξ)
= c ⇐⇒ Vi(x)

Vi(ξ)
=

c

m(∇φ)
(6)
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Optimal transport on Sn 1
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Optimal transport on Sn 1

Theorem (McCann (2001))

Let M be a connected, complete smooth Riemannian manifold,
equipped with its standard volume measure dx. Let µ, ν be two
probability measures on M with compact support, and let the
objective function c(ξ, x) be equal to d(ξ,x)2, where d is the
geodesic distance on M . Further, assume that µ is absolutely
continuous with respect to the volume measure on M . Then, there
is a unique optimal transport map F where F pushes forward the
measure µ onto ν. Then, (using classical optimal transport
notation):

F#(µ) = ν i.e. x = F (ξ) = expξ[∇φ(ξ)] (7)

for some d2/2-convex potential φ.

McCann, R. (2001). Polar factorization of maps on Riemannian manifolds.

Geometric & Functional Analysis GAFA, 11(3):589–608
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Optimal transport on Sn 2

Corollary (Weller, B., Budd, Cullen (2015))

There exists a unique, optimally transported mesh on the sphere
that satisfies the equidistribution principle. Moreover, that mesh is
defined by a c-convex scalar potential function that satisfies the
Monge-Ampère type equation

m(expξ[∇φ(ξ)])|J(ξ)| = c. (8)

Corollary (Weller, B., Budd, Cullen (2015))

The optimally transported mesh on the sphere satisfying the
equidistribution principle does not exhibit tangling.

Weller, H., Browne, P., Budd, C., and Cullen, M. (2015). Mesh adaptation on the sphere using optimal transport
and the numerical solution of a Monge-Ampère type equation.

J Comp Phys, (In Press)
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Solution techniques for the Monge-Ampère equation

Parabolic Relaxation, Budd & Williams (2009)

(I − γ∇2)φn+1 = (I − γ∇2)φn + δt [m(xn)|I +H(φn)|]
1
d . (9)

Linearisation about 0

|I +H(φn+1)| = 1 +∇2φn+1 +N (φn+1) (10)

Linearisation about φn

|I +H(φn+1)| = |I +H(φn)|+ ε∇ ·An∇ψ +N (εψ) (11)

Budd, C. and Williams, J. (2009). Moving mesh generation using the parabolic Monge-Ampère Equation.

SIAM Journal on Scientific Computing, 31(5):3438–3465
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Fixed point iterations, Weller, B., Budd, Cullen (2015)

γ∇2φn+1 = γ∇2φn − |I +H(φn)|+ c

m(xn)
, ∀n ∈ N. (10)

Adaptive linearisation fixed point iterations

∇·
(
An∇φn+1

)
= ∇·(An∇φn)−|I+H(φn)|+ c

m(xn)
, ∀n ∈ N.

(11)

Budd, C. and Williams, J. (2009). Moving mesh generation using the parabolic Monge-Ampère Equation.

SIAM Journal on Scientific Computing, 31(5):3438–3465
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Convergence 1
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Convergence 2
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Convergence 3
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Convergence 4
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Mesh redistribution on the sphere

Vi(x)

Vi(ξ)
=

c

m(x)
where x = expξ(∇φ) on S2 (12)

Finite volume method (OpenFOAM)

Fixed point iterations

Geometric version of the Hessian

Linearisation about 0 on a tangent plane

Exponential mappings of the points

Monitor function derived from reanalysis precipitation data

Hexagonal isocohedral Tc
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Mesh redistribution on the sphere
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Thank you for listening
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