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Motivation: A saddle point problem

The setting : Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v) ∀ v ∈ V ,
b(u, q) = 0 ∀ q ∈ Q .

The Galerkin scheme : Given V h ⊂ V and Qh ⊂ Q, finite-dimensional spaces:
Find (uh, ph) ∈ V h ×Qh such that

a(uh, vh) + b(vh, ph) = F (vh) ∀ vh ∈ V h ,
b(uh, qh) = 0 ∀ qh ∈ Qh .

Remark: The stability and error estimates constants vary as β−2, where β is
the discrete inf-sup constant.
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Motivation: A saddle point problem

Problem: In many interesting cases, β degenerates with some important
quantity (e.g., the aspect ratio). Fortunately, in some cases, the following
decomposition can be proved:

Qh = QGh ⊕QBh ,

where V h ×QGh satisfies:

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖V
≥ βG ‖qh‖Q ∀ qh ∈ QGh ,

where βG > 0 does not depend on any bad parameter.
Then, the following weak inf-sup condition can be proved:

sup
vh∈V h\{0}

b(vh, qh)

‖vh‖V
≥ βG ‖qh‖Q − C‖qh −Πqh‖Q ∀ qh ∈ Qh ,

where Π : Q→ QGh is any continuous linear projection onto the good space
QGh , and C > 0 is an O(1) constant.
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Motivation: A saddle point problem

Two possible solutions:

If QGh is essentially equal to Qh, just use the pair V h ×QGh as a mixed
method; else

A stabilised variant, in the vein of the minimal stabilisation (cf. Brezzi &
Fortin): Find (uh, ph) ∈ V h ×Qh such that

a(uh, vh) + b(vh, ph) = F (vh) ∀ vh ∈ V h ,
−b(uh, qh)+((I −Π)ph, (I −Π)qh)Q = 0 ∀ qh ∈ Qh .

For both variants, stability and convergence, with constants depending
only on βG, can be proved.
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The Stokes problem

The Stokes problem : Find a pair (u, p) such that u = 0 on ∂Ω, and

−∆u +∇p = f , ∇ · u = 0 in Ω .

The finite element spaces : For a given partition P and an integer k ≥ 1 we
define:

V P = {v ∈ H1
0 (Ω)2 : v ◦ FK ∈ Q2

k+1 ∀K ∈ P}
MP = {q ∈ L2

0(Ω) : q ◦ FK ∈ Pk−1 ∀K ∈ P}

Remark : This pair of spaces is inf-sup stable on regular meshes, and in
anisotropic edge patches.

G.R. Barrenechea (Strathclyde) Birmingham, January 2016 6 / 35



The Stokes problem

The Stokes problem : Find a pair (u, p) such that u = 0 on ∂Ω, and

−∆u +∇p = f , ∇ · u = 0 in Ω .

The finite element spaces : For a given partition P and an integer k ≥ 1 we
define:

V P = {v ∈ H1
0 (Ω)2 : v ◦ FK ∈ Q2

k+1 ∀K ∈ P}
MP = {q ∈ L2

0(Ω) : q ◦ FK ∈ Pk−1 ∀K ∈ P}

Remark : This pair of spaces is inf-sup stable on regular meshes, and in
anisotropic edge patches.

G.R. Barrenechea (Strathclyde) Birmingham, January 2016 6 / 35



The Stokes problem

The Stokes problem : Find a pair (u, p) such that u = 0 on ∂Ω, and

−∆u +∇p = f , ∇ · u = 0 in Ω .

The finite element spaces : For a given partition P and an integer k ≥ 1 we
define:

V P = {v ∈ H1
0 (Ω)2 : v ◦ FK ∈ Q2

k+1 ∀K ∈ P}
MP = {q ∈ L2

0(Ω) : q ◦ FK ∈ Pk−1 ∀K ∈ P}

Remark : This pair of spaces is inf-sup stable on regular meshes, and in
anisotropic edge patches.

G.R. Barrenechea (Strathclyde) Birmingham, January 2016 6 / 35



The Stokes problem
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Figure 1 : Typical anisotropically refined corner patches Ωc with the corresponding
subsets ωc shown shaded. On the left: a single corner patch.
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The Stokes problem
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(a) Edge patch (b) Corner patch

Figure 2 : A typical example of an anisotropically refined mesh.
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The Stokes problem

Lemma (A& C 2000)

There exists C > 0 such that

inf
q∈MP

sup
v∈V P

(∇ · v, q)Ω

|v|1,Ω‖q‖0,Ω
= βP = Ck−1/2min{1, k√%} ,

where % = hc/Hc is the mesh aspect ratio.
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The Stokes problem

10−5 10−4 10−3 10−2 10−1

̺ (k = 4)

10−2

10−1

100

βP

β̃P

Figure 3 : Behaviour of the inf-sup constants βP and β̃P with respect to the aspect
ratio and polynomial degree k = 4 on the T-mesh.
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Whose fault is that?

hc
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βP ∼ √
̺

Together, ...
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hc

hc

Hc

Hc

βP ∼ √
̺

Together, ... MP = MPa
⊕MPb

⊕ Span{qcB} where

qcB =

{
1 in ωc,

− |ωc|
|Ωc\ωc| in Ωc \ ωc,

and ωc is the shaded, extremely small subdomain.
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Whose fault is that?

Theorem (Corollary of A& C 2000)

Let M∗P = {q ∈MP :
∫
ωc
q = 0, for all corner patches}. Then, there is a

positive constant C, independent of any aspect ratio such that :

inf
q∈M∗

P

sup
v∈V P

(∇ · v, q)Ω

|v|1,Ω‖q‖0,Ω
≥ Ck−1/2 .

Consequence 1 : The pair V P ×M∗P is a uniformly inf-sup stable pair.
Consequence 2 : Confirmation that the culprit of the inf-sup defficiency is only
one pressure mode per corner patch. Namely, the function qcB defined
previously. Then, it is very easy to propose a stabilised finite element method
using a minimal stabilisation idea.
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First Solution

The first stabilised method : Find (uP, pP) ∈ V P ×MP such that:

B((uP, pP), (v, q))− s̃(pP, q) = (f ,v)Ω ∀ (v, q) ∈ V P ×MP ,

where

B((u, p), (v, q)) :=(∇u,∇v)Ω − (p,∇ · v)Ω − (q,∇ · u)Ω ,

s̃(p, q) :=((I −Π)p, (I −Π)q)Ω .

Pros: Stability can be proved quite easily, and numerics follow.

Cons: The consistency error can not be bounded optimally.
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The new mixed method

Important Remark : There exists a projection operator Π̃ such that

s̃(p, q) = ((I − Π̃)p, (I − Π̃)q)Ω =
τγc
k2

∫
γc

[[p]]

∫
γc

[[q]] ,

where τγc > 0 is an appropriate constant, and γc is a single, arbitrary, edge
connecting a small square element κc in Ωc with a stretched element Kc.
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Reminder of the T-mesh

〈 〉 〈 〉

〈 〉〈 〉

〈 〉 〈 〉

(a) Edge patch (b) Corner patch
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The new mixed method

The useful consequence :

Theorem

Let M̃P ⊂MP denote the subspace defined by

M̃P = {q ∈MP :

∫
γc

[[q]] = 0 for all corner patches} .

Then, the following inf-sup stability holds

inf
q∈M̃P

sup
v∈V P

(∇ · v, q)Ω

|v|1,Ω‖q‖0,Ω
≥ β̃P > 0,

where
β̃P = max{βP, C k−3/2} .

Moreover, if p ∈ H1(Ω), then there exists a positive constant C such that

inf
q̃P∈M̃P

‖p− q̃P‖20,Ω ≤ C inf
qP∈MP

(‖p− qP‖20,Ω +
∑
c

|γc|2
k2
‖∂nc(p− qP)‖20,κc∪Kc

) .
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The new mixed method: Some numerics
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The new mixed method: Some numerics
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The new mixed method: Some numerics
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The new mixed method: Some numerics
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The new mixed method: Some numerics
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The new mixed method: Some numerics

10−5 10−4 10−3 10−2 10−1

̺ (k = 19)

10−2

10−1

100

βP

β̃P

G.R. Barrenechea (Strathclyde) Birmingham, January 2016 17 / 35



The new mixed method: Some numerics
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The stabilised alternative

The stabilised method : Find (uP, pP) ∈ V P ×MP such that:

B((uP, pP), (v, q))− S(pP, q) = (f ,v)Ω ∀ (v, q) ∈ V P ×MP ,

where

S(p, q) :=
1

k2

∑
c

∫
γc

[[p]] ·
∫
γc

[[q]] .

Lemma

There exist positive constants C1, C2 such that for all qP ∈MP,

C1‖qP − Π̃PqP‖2Ω ≤ S(qP, qP) ≤ C2‖qP − Π̃PqP‖2Ω.

Furthermore,

S(qP, qP) ≤ C
{
‖qP‖20,Ω
k−2

∑
c

(
‖p− qP‖20,κc∪Kc

+ |γc|2‖∂nc(p− qP)‖2κc∪Kc

)
for all p ∈ H1(Ω).
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The stabilised alternative

Theorem

For all (w, r) ∈ V P ×MP, there holds

sup
(v,q)∈V P×MP

Bs((w, r), (v, q))

|||(v, q)||| ≥ Cβ̃2
P |||(w, r)||| .

Moreover, if p ∈ H1(Ω), then there exists a positive constant C such that

|||(u− usP, p− psP)||| ≤ (1 + Cβ̃−2
P )

inf
(vP,pP)∈V P×MP

{
|||(u− vP, p− qP)|||+ k−1(

∑
c

|γc|2‖∂nc(p− qP)‖20,κc∪Kc
)

1
2

}
.
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The stabilised alternative

0 5 10 15 20

k

10−4
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10−2
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100
µ

µ̃

µs

µ

Figure 4 : Behaviour of inf-sup constants of different methods on the T-mesh shown
in Figure 1 for fixed aspect ratio % = 10−4 and increasing polynomial degree k.
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The Q1 × P0 pair

The initial partition is divided to form the final one, as shown in the figure
below:

h

h

H

H

J K

h

h

H

H

J K

Figure 5 : Partition P0 (left) and P (right). We call this P0 corner patch.

Then, we define the spaces:

Q1,P := {v ∈ H1
0 (Ω)2 : v ◦ FK ∈ Q1(K)2 ∀K ∈ P} ,

and
MP := {q ∈ L2

0(Ω): q ◦ FK ∈ P0(K) ∀K ∈ P} .
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The Q1 × P0 pair

A direct consequence of the first part:

Lemma

For the subspace G ⊂MP0
⊂MP, defined by

G := {q ∈MP0
: [[q]]γc = 0 for γc ∈ Ec},

there exists a constant βG independent of aspect ratios such that

sup
v∈Q1,P

(∇ · v, q)Ω

|v|1,Ω
≥ βG‖q‖0,Ω for all q ∈ G .
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The Q1 × P0 pair

The method: Find (uP, pP) ∈ Q1,P ×MP such that

Bs((uP, pP), (v, q)) = (f ,v)Ω for all (v, q) ∈ Q1,P ×MP .

Here,

Bs((u, p), (v, q)) = B((u, p), (v, q))− 1

4
S̃(p; q) ,

the stabilisation terms are

S̃(p, q) :=
∑
M∈P0

SM (p, q) +
∑
γc∈Ec

Sγc(p, q) ,

and

SM (p, q) :=
∑
e∈EM

|K|
|e|

∫
e

[[p]][[q]] and Sγc(p, q) :=
∑
e⊂γc

min{|K|, |K ′|}
|e|

∫
e

[[p]][[q]] .

Remark : Without the terms Sγc the method has been proposed by L& S.
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The Q1 × P0 pair

Theorem
The stabilising terms SM and Sγc control all the unstable modes. Then, there
exists a constant µs > 0 independent of the aspect ratio %, such that

sup
(v,q)∈Q1,P×MP

Bs((w, r)(v, q))

|||(v, q)||| ≥ µs |||(w, r)||| for all (w, r) ∈ Q1,P ×MP .

Moreover, if p ∈ H1(Ω), then there exists a positive constant C such that

|||(u− uP, p− pP)||| ≤ (1 + Cµ−1
s )(

inf
(vP,qP)∈Q1,P×MP

|||(u− vP, p− qP)|||+
∑
K∈P

hK,x‖∂xp‖0,K + hK,y‖∂yp‖0K
)

where hK,x and hK,y are the diameters of K ∈ P in the x- and y-directions,
respectively.
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The Q1 × P0 pair
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Figure 6 : Stability constants µs, and the LS method for a T-mesh.
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The Oseen equation

The Oseen equation : Find a pair (u, p) such that u = 0 on ∂Ω, and

−ν∆u + b · ∇u + σu +∇p = f , ∇ · u = 0 in Ω ,

where σ, ν > 0 and ∇ · b = 0 in Ω.

Remark: We use the same finite element spaces as before. So, the
stabilisation mechanisms for the pressure are identical.
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The Oseen equation

The stabilised finite element method: Find (uP, pP) ∈ Q1,P ×MP such that:

B((uP, pP), (v, q))+sv(uP,v)−αpsp(p, q) = (f ,v)Ω ∀ (v, q) ∈ Q1,P×MP ,

where
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The Oseen equation

The stabilised finite element method: Find (uP, pP) ∈ Q1,P ×MP such that:

B((uP, pP), (v, q))+sv(uP,v)−αpsp(p, q) = (f ,v)Ω ∀ (v, q) ∈ Q1,P×MP ,

where

B((u, p), (v, q)) := ν(∇u,∇v)Ω + (b · ∇u,v)Ω + σ(u,v)Ω︸ ︷︷ ︸
=:a(u,v)

−(p,∇·v)Ω−(q,∇·u)Ω ,
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The Oseen equation

The stabilised finite element method: Find (uP, pP) ∈ Q1,P ×MP such that:

B((uP, pP), (v, q))+sv(uP,v)−αpsp(p, q) = (f ,v)Ω ∀ (v, q) ∈ Q1,P×MP ,

where
sp(p, q) = exactly as before ,
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The Oseen equation

The stabilised finite element method: Find (uP, pP) ∈ Q1,P ×MP such that:

B((uP, pP), (v, q))+sv(uP,v)−αpsp(p, q) = (f ,v)Ω ∀ (v, q) ∈ Q1,P×MP ,

where
sv(u,v) is symmetric and needs to satisfy: Let ‖v‖2s := sv(v,v). We assume:

sv(w,v) ≤ cs‖w‖s|v|1,Ω ,
sv(v,v) ≥ 0 ,∑

K∈P
γK‖κK(∇ · v)‖20,K ≤ sv(v,v) ,

for all v,w ∈ H1
0 (Ω)2.
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The Oseen equation

The stabilised finite element method: Find (uP, pP) ∈ Q1,P ×MP such that:

B((uP, pP), (v, q))+sv(uP,v)−αpsp(p, q) = (f ,v)Ω ∀ (v, q) ∈ Q1,P×MP ,

where
sv(u,v) is symmetric and needs to satisfy: Let ‖v‖2s := sv(v,v). We assume:

sv(w,v) ≤ cs‖w‖s|v|1,Ω ,
sv(v,v) ≥ 0 ,∑

K∈P
γK‖κK(∇ · v)‖20,K ≤ sv(v,v) ,

for all v,w ∈ H1
0 (Ω)2. Using these conditions, we take αp ≥ α := (c2a + c2s)

−1.
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The Oseen equation

Lemma
Let sv satisfy the previous assumptions. Let us define the mesh-dependent
norm

|||(v, q)||| := ‖v‖2a+s + α ‖q‖20,Ω + sp(q, q) .

Then, there exist µs > 0, independent of the aspect ratio of the mesh, and of ν,
such that:

sup
(v,q)∈Q1,P×MP

Bs((w, r), (v, q))

|||(v, q)||| ≥ µs |||(w, r)||| for all (w, r) ∈ Q1,P×MP ,

where µs = β2
G/ [2(1 + βG)(17 + 16βG)]

Moreover, error estimates in the triple norm, with constants independent of ν,
can be proved.
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Some numerics for Oseen: some concrete choices for sv

Defining κD := id−ΠD
0 , we can define the following stabilising terms:

s1
v(u,v) :=

∑
M∈P0

γM (κM (∇ · u), κM (∇ · v))M

+
∑
K∈P

(κK(bK · ∇u), κK(bK · ∇v))K ,

s2
v(u,v) :=

∑
M∈P0

δx (κM (∂xu), ∂xv)M + δy (κM (∂yu), ∂yv)M (LPS) ,

where
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Some numerics for Oseen: some concrete choices for sv

Defining κD := id−ΠD
0 , we can define the following stabilising terms:

s1
v(u,v) :=

∑
M∈P0

γM (κM (∇ · u), κM (∇ · v))M

+
∑
K∈P

(κK(bK · ∇u), κK(bK · ∇v))K ,

s2
v(u,v) :=

∑
M∈P0

δx (κM (∂xu), ∂xv)M + δy (κM (∂yu), ∂yv)M (LPS) ,

where

δK,x := ν−1‖b‖2∞,Kh2
K,x min{1,Pe−1

min,K}
δK,y := ν−1‖b‖2∞,Kh2

K,y min{1,Pe−1
min,K}

Pemin,K := ν−1 min{hK,x, hK,y}‖b‖∞,K
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Some numerics for Oseen: some concrete choices for sv

Defining κD := id−ΠD
0 , we can define the following stabilising terms:

s1
v(u,v) :=

∑
M∈P0

γM (κM (∇ · u), κM (∇ · v))M

+
∑
K∈P

(κK(bK · ∇u), κK(bK · ∇v))K ,

s2
v(u,v) :=

∑
M∈P0

δx (κM (∂xu), ∂xv)M + δy (κM (∂yu), ∂yv)M (LPS) ,

where

γM := max{1, P emin
P0
} where , P emin

P0
:= min

M∈P0

‖b‖∞,M
ν

min{hx,M , hy,M} ,

or

γM := 1 + ind(M)Pemin
M where ind(M) := 1− ρM |M |

maxM∈P0
|M | .
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Some numerics for Oseen: some concrete choices for sv

The mesh:

0 a 1
0

a

1

Figure 7 : A Shishkin mesh with parameter λ = min{ 1
2
, 2 ν lnN} (ν = 1/32), with

N = 8 intervals.
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Some numerics for Oseen: some concrete choices for sv

The solution:
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Figure 8 : Nodal interpolation of u1 (left) and L2 projection of p (right) for
ν = 10−6.
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Some numerics for Oseen: some concrete choices for sv

Some error results (ν = 10−6): We define, for a given partition P, the relative
errors

Erel
p :=

‖p− pP‖0,Ω
‖p−Πp‖0,Ω

and Erel
u :=

|u− uP|1,Ω
|u− IPu|1,Ω

.

Table 1 : Here, N = 8, λ = 0.01, and Q1,P ×G.

sv γM Erel
p Erel

u

s1
v First 25.02 1.0
s1
v Second 25.31 1.0

LPS - 1.40 1.0002
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Some error results (ν = 10−6): We define, for a given partition P, the relative
errors

Erel
p :=

‖p− pP‖0,Ω
‖p−Πp‖0,Ω

and Erel
u :=

|u− uP|1,Ω
|u− IPu|1,Ω

.

Table 1 : Here, N = 8, λ = 0.0001, and Q1,P ×G.

sv γM Erel
p Erel

u

s1
v First 1.06 1.0
s1
v Second 1.06 1.0

LPS - 1.22 1.0219
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Some numerics for Oseen: some concrete choices for sv

Some error results (ν = 10−6): We define, for a given partition P, the relative
errors

Erel
p :=

‖p− pP‖0,Ω
‖p−Πp‖0,Ω

and Erel
u :=

|u− uP|1,Ω
|u− IPu|1,Ω

.

Table 1 : Here, N = 8, λ = 0.01, and Q1,P ×MP, and αp = 1.

sv γM Erel
p Erel

u

s1
v First 47.79 1.0
s1
v Second 48.63 1.0

LPS - 7.47 1.0002
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Some numerics for Oseen: some concrete choices for sv

Some error results (ν = 10−6): We define, for a given partition P, the relative
errors

Erel
p :=

‖p− pP‖0,Ω
‖p−Πp‖0,Ω

and Erel
u :=

|u− uP|1,Ω
|u− IPu|1,Ω

.

Table 1 : Here, N = 8, λ = 0.0001, and Q1,P ×MP, and αp = 1.

sv γM Erel
p Erel

u

s1
v First 3.06 1.0
s1
v Second 2.78 1.0

LPS - 6.73 1.0152
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Some numerics for Oseen: some concrete choices for sv

Shaprness of the layers with varying λ.

sv, γM λ = 0.5000 λ = 1.0000 · 10−2 λ = 1.0000 · 10−4

LPS
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Figure 9 : Meshes: N = 8, λ (left to right). Using Q1,P ×G.
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Some numerics for Oseen: some concrete choices for sv

Shaprness of the layers with varying λ.
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Figure 10 : Meshes: N = 8, λ (left to right). Using Q1,P ×MP, αp = 1.
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Some numerics for Oseen: some concrete choices for sv

Shaprness of the layers with varying λ.
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Figure 10 : Meshes: N = 8, λ (left to right). Using Q1,P ×MP, αp = 1.
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Conclusions and perspectives

1 Identification of the minimal number of spurious pressure modes on
anisotropic meshes.

2 A new family of inf-sup stable finite element spaces. These enjoy the
same approximation properties of the original one.

3 A stabilised variant penalising these modes in the formulation: stability
and optimal convergence.

4 Extension to the (optimal) Q2
1 × P0 pair, and Oseen.

Perspectives and open questions:

Adaptivity?

Triangles?

Continuous pressures?
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