Stabilised finite element methods in anisotropic quadrilateral meshes

Mark Ainsworth ${ }^{1}$, Gabriel R. Barrenechea ${ }^{2}$ \& Andreas Wachtel ${ }^{2}$
${ }^{1}$ Division of Applied Mathematics, Brown University, USA
${ }^{2}$ Department of Mathematics and Statistics, University of Strathclyde, Scotland

Workshop on Adaptive Algorithms for Computational PDEs School of Mathematics, University of Birmingham, Birmingham, UK, January 5-6, 2016

Outline

(1) Motivation: Some general considerations on inf-sup conditions.
(2) The Stokes problem.
(c) The $\mathbb{Q}_{k+1}^{2} \times \mathbb{P}_{k-1}$ pair.

- The first idea.
- The new mixed method.
- The stabilised variant.
(9) The $\mathbb{Q}_{1}^{2} \times \mathbb{P}_{0}$ pair.
(The Oseen equation.
© Conclusions, open questions.

Motivation: A saddle point problem

The setting : Find $(u, p) \in \boldsymbol{V} \times Q$ such that

$$
\begin{array}{ll}
a(u, v)+b(v, p) & =F(v) \quad \forall v \in \boldsymbol{V} \\
b(u, q) & =0 \quad \forall q \in Q
\end{array}
$$

The Galerkin scheme : Given $\boldsymbol{V}_{h} \subset \boldsymbol{V}$ and $Q_{h} \subset Q$, finite-dimensional spaces: Find $\left(u_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ such that

Motivation: A saddle point problem

The setting : Find $(u, p) \in \boldsymbol{V} \times Q$ such that

$$
\begin{array}{ll}
a(u, v)+b(v, p) & =F(v) \quad \forall v \in \boldsymbol{V} \\
b(u, q) & =0 \quad \forall q \in Q
\end{array}
$$

The Galerkin scheme : Given $\boldsymbol{V}_{h} \subset \boldsymbol{V}$ and $Q_{h} \subset Q$, finite-dimensional spaces: Find $\left(u_{h}, p_{h}\right) \in \boldsymbol{V}_{h} \times Q_{h}$ such that

$$
\begin{array}{ll}
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, p_{h}\right) & =F\left(v_{h}\right) \quad \forall v_{h} \in V_{h}, \\
b\left(u_{h}, q_{h}\right) & =0 \quad \forall q_{h} \in Q_{h}
\end{array}
$$

Remark: The stability and error estimates constants vary as β^{-2}, where β is the discrete inf-sup constant.

Motivation: A saddle point problem

The setting : Find $(u, p) \in \boldsymbol{V} \times Q$ such that

$$
\begin{array}{ll}
a(u, v)+b(v, p) & =F(v) \quad \forall v \in \boldsymbol{V} \\
b(u, q) & =0 \quad \forall q \in Q
\end{array}
$$

The Galerkin scheme : Given $\boldsymbol{V}_{h} \subset \boldsymbol{V}$ and $Q_{h} \subset Q$, finite-dimensional spaces: Find $\left(u_{h}, p_{h}\right) \in \boldsymbol{V}_{h} \times Q_{h}$ such that

$$
\begin{array}{ll}
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, p_{h}\right) & =F\left(v_{h}\right) \quad \forall v_{h} \in \boldsymbol{V}_{h}, \\
b\left(u_{h}, q_{h}\right) & =0 \quad \forall q_{h} \in Q_{h} .
\end{array}
$$

Remark: The stability and error estimates constants vary as β^{-2}, where β is the discrete inf-sup constant.

Motivation: A saddle point problem

Problem: In many interesting cases, β degenerates with some important quantity (e.g., the aspect ratio). Fortunately, in some cases, the following decomposition can be proved:

$$
Q_{h}=Q_{h}^{G} \oplus Q_{h}^{B},
$$

where $\boldsymbol{V}_{h} \times Q_{h}^{G}$ satisfies:

$$
\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{b\left(v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq \beta_{G}\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h}^{G}
$$

where $\beta_{G}>0$ does not depend on any bad parameter.

Motivation: A saddle point problem

Problem: In many interesting cases, β degenerates with some important quantity (e.g., the aspect ratio). Fortunately, in some cases, the following decomposition can be proved:

$$
Q_{h}=Q_{h}^{G} \oplus Q_{h}^{B},
$$

where $\boldsymbol{V}_{h} \times Q_{h}^{G}$ satisfies:

$$
\sup _{v_{h} \in V_{h} \backslash\{0\}} \frac{b\left(v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{V}} \geq \beta_{G}\left\|q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h}^{G}
$$

where $\beta_{G}>0$ does not depend on any bad parameter. Then, the following weak inf-sup condition can be proved:

$$
\sup _{v_{h} \in \boldsymbol{V}_{h} \backslash\{0\}} \frac{b\left(v_{h}, q_{h}\right)}{\left\|v_{h}\right\|_{\boldsymbol{V}}} \geq \beta_{G}\left\|q_{h}\right\|_{Q}-C\left\|q_{h}-\Pi q_{h}\right\|_{Q} \quad \forall q_{h} \in Q_{h}
$$

where $\Pi: Q \rightarrow Q_{h}^{G}$ is any continuous linear projection onto the good space Q_{h}^{G}, and $C>0$ is an $O(1)$ constant.

Motivation: A saddle point problem

Two possible solutions:

- If Q_{h}^{G} is essentially equal to Q_{h}, just use the pair $\boldsymbol{V}_{h} \times Q_{h}^{G}$ as a mixed method; else
- A stabilised variant, in the vein of the minimal stabilisation (cf. Brezzi \& Fortin): Find $\left(u_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ such that

Motivation: A saddle point problem

Two possible solutions:

- If Q_{h}^{G} is essentially equal to Q_{h}, just use the pair $\boldsymbol{V}_{h} \times Q_{h}^{G}$ as a mixed method; else
- A stabilised variant, in the vein of the minimal stabilisation (cf. Brezzi \& Fortin): Find $\left(u_{h}, p_{h}\right) \in \boldsymbol{V}_{h} \times Q_{h}$ such that

$$
\begin{array}{ll}
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, p_{h}\right) & =F\left(v_{h}\right) \quad \forall v_{h} \in \boldsymbol{V}_{h} \\
-b\left(u_{h}, q_{h}\right)+\left((I-\Pi) p_{h},(I-\Pi) q_{h}\right)_{Q} & =0 \quad \forall q_{h} \in Q_{h}
\end{array}
$$

Motivation: A saddle point problem

Two possible solutions:

- If Q_{h}^{G} is essentially equal to Q_{h}, just use the pair $\boldsymbol{V}_{h} \times Q_{h}^{G}$ as a mixed method; else
- A stabilised variant, in the vein of the minimal stabilisation (cf. Brezzi \& Fortin): Find $\left(u_{h}, p_{h}\right) \in \boldsymbol{V}_{h} \times Q_{h}$ such that

$$
\begin{array}{ll}
a\left(u_{h}, v_{h}\right)+b\left(v_{h}, p_{h}\right) & =F\left(v_{h}\right) \quad \forall v_{h} \in \boldsymbol{V}_{h}, \\
-b\left(u_{h}, q_{h}\right)+\left((I-\Pi) p_{h},(I-\Pi) q_{h}\right)_{Q} & =0 \quad \forall q_{h} \in Q_{h} .
\end{array}
$$

For both variants, stability and convergence, with constants depending only on β_{G}, can be proved.

The Stokes problem

The Stokes problem : Find a pair (\boldsymbol{u}, p) such that $\boldsymbol{u}=\mathbf{0}$ on $\partial \Omega$, and

$$
-\Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \quad, \quad \nabla \cdot \boldsymbol{u}=0 \quad \text { in } \Omega .
$$

The Stokes problem

The Stokes problem : Find a pair (\boldsymbol{u}, p) such that $\boldsymbol{u}=\mathbf{0}$ on $\partial \Omega$, and

$$
-\Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \quad, \quad \nabla \cdot \boldsymbol{u}=0 \quad \text { in } \Omega .
$$

The finite element spaces : For a given partition \mathcal{P} and an integer $k \geq 1$ we define:

$$
\begin{aligned}
\boldsymbol{V}_{\mathcal{P}}=\left\{\boldsymbol{v} \in H_{0}^{1}(\Omega)^{2}: \boldsymbol{v} \circ F_{K} \in \mathbb{Q}_{k+1}^{2}\right. & \forall K \in \mathcal{P}\} \\
\mathcal{M}_{\mathcal{P}}=\left\{q \in L_{0}^{2}(\Omega): q \circ F_{K} \in \mathbb{P}_{k-1}\right. & \forall K \in \mathcal{P}\}
\end{aligned}
$$

Remark: This pair of spaces is inf-sup stable on regular meshes, and in anisotropic edge patches.

The Stokes problem

The Stokes problem : Find a pair (\boldsymbol{u}, p) such that $\boldsymbol{u}=\mathbf{0}$ on $\partial \Omega$, and

$$
-\Delta \boldsymbol{u}+\nabla p=\boldsymbol{f} \quad, \quad \nabla \cdot \boldsymbol{u}=0 \quad \text { in } \Omega .
$$

The finite element spaces : For a given partition \mathcal{P} and an integer $k \geq 1$ we define:

$$
\begin{aligned}
\boldsymbol{V}_{\mathcal{P}}=\left\{\boldsymbol{v} \in H_{0}^{1}(\Omega)^{2}: \boldsymbol{v} \circ F_{K} \in \mathbb{Q}_{k+1}^{2}\right. & \forall K \in \mathcal{P}\} \\
\mathcal{M}_{\mathcal{P}}=\left\{q \in L_{0}^{2}(\Omega): q \circ F_{K} \in \mathbb{P}_{k-1}\right. & \forall K \in \mathcal{P}\}
\end{aligned}
$$

Remark: This pair of spaces is inf-sup stable on regular meshes, and in anisotropic edge patches.

The Stokes problem

Figure 1: Typical anisotropically refined corner patches Ω_{c} with the corresponding subsets $\omega_{\boldsymbol{c}}$ shown shaded. On the left: a single corner patch.

The Stokes problem

Figure 2: A typical example of an anisotropically refined mesh.

The Stokes problem

Lemma (A\& C 2000)

There exists $C>0$ such that

$$
\inf _{q \in \mathcal{M}_{\mathcal{P}}} \sup _{\boldsymbol{v} \in \boldsymbol{V}_{\mathcal{P}}} \frac{(\nabla \cdot \boldsymbol{v}, q)_{\Omega}}{|\boldsymbol{v}|_{1, \Omega}\|q\|_{0, \Omega}}=\beta_{\mathcal{P}}=C k^{-1 / 2} \min \{1, k \sqrt{\varrho}\},
$$

where $\varrho=h_{c} / H_{c}$ is the mesh aspect ratio.

The Stokes problem

Figure 3: Behaviour of the inf-sup constants $\beta_{\mathcal{P}}$ and $\tilde{\beta}_{\mathcal{P}}$ with respect to the aspect ratio and polynomial degree $k=4$ on the T-mesh.

Whose fault is that?

$$
\beta_{\mathcal{P}_{a}}=C
$$

$$
\beta_{\mathcal{P}_{b}}=C k^{-1 / 2}
$$

$\beta_{\mathcal{P}} \sim \sqrt{\varrho}$

Together, ...

Whose fault is that?

$$
\beta_{\mathfrak{P}_{a}}=C \quad \beta_{\mathcal{P}_{b}}=C k^{-1 / 2}
$$

$\beta_{\mathcal{P}} \sim \sqrt{\varrho}$

Together, $\ldots \mathcal{M}_{\mathcal{P}}=\mathcal{M}_{\mathcal{P}_{a}} \oplus \mathcal{M}_{\mathcal{P}_{b}} \oplus \operatorname{Span}\left\{q_{B}^{c}\right\}$ where

$$
q_{B}^{c}= \begin{cases}1 & \text { in } \omega_{c}, \\ -\frac{\left|\omega_{c}\right|}{\left|\Omega_{c}\right| \omega_{c} \mid} & \text { in } \Omega_{c} \backslash \omega_{c},\end{cases}
$$

and ω_{c} is the shaded, extremely small subdomain.

Whose fault is that?

Theorem (Corollary of A\& C 2000)

Let $\mathcal{M}_{\mathcal{P}}^{*}=\left\{q \in \mathcal{M}_{\mathcal{P}}: \int_{\omega_{\mathcal{C}}} q=0, \quad\right.$ for all corner patches $\}$. Then, there is a positive constant C, independent of any aspect ratio such that :

$$
\inf _{q \in \mathcal{N}_{\mathcal{P}}^{*}} \sup _{\boldsymbol{v} \in \boldsymbol{V}_{\mathcal{P}}} \frac{(\nabla \cdot \boldsymbol{v}, q)_{\Omega}}{|\boldsymbol{v}|_{1, \Omega}\|q\|_{0, \Omega}} \geq C k^{-1 / 2}
$$

Consequence 1: The pair $V_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}^{*}$ is a uniformly inf-sup stable pair.

Whose fault is that?

Theorem (Corollary of A\& C 2000)

Let $\mathcal{M}_{\mathcal{P}}^{*}=\left\{q \in \mathcal{M}_{\mathcal{P}}: \int_{\omega_{\mathcal{C}}} q=0, \quad\right.$ for all corner patches $\}$. Then, there is a positive constant C, independent of any aspect ratio such that :

$$
\inf _{q \in \mathcal{M}_{\mathcal{P}}^{*}} \sup _{\boldsymbol{v} \in \boldsymbol{V}_{\mathcal{P}}} \frac{(\nabla \cdot \boldsymbol{v}, q)_{\Omega}}{|\boldsymbol{v}|_{1, \Omega}\|q\|_{0, \Omega}} \geq C k^{-1 / 2}
$$

Consequence 1: The pair $\boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}^{*}$ is a uniformly inf-sup stable pair. Consequence 2 : Confirmation that the culprit of the inf-sup defficiency is only one pressure mode per corner patch. Namely, the function q_{B}^{c} defined previously. Then, it is very easy to propose a stabilised finite element method using a minimal stabilisation idea.

Whose fault is that?

Theorem (Corollary of A\& C 2000)

Let $\mathcal{M}_{\mathcal{P}}^{*}=\left\{q \in \mathcal{M}_{\mathcal{P}}: \int_{\omega_{\mathbb{c}}} q=0, \quad\right.$ for all corner patches $\}$. Then, there is a positive constant C, independent of any aspect ratio such that :

$$
\inf _{q \in \mathcal{M}_{\mathcal{P}}^{*}} \sup _{\boldsymbol{v} \in \boldsymbol{V}_{\mathcal{P}}} \frac{(\nabla \cdot \boldsymbol{v}, q)_{\Omega}}{|\boldsymbol{v}|_{1, \Omega}\|q\|_{0, \Omega}} \geq C k^{-1 / 2} .
$$

Consequence 1: The pair $\boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}^{*}$ is a uniformly inf-sup stable pair. Consequence 2 : Confirmation that the culprit of the inf-sup defficiency is only one pressure mode per corner patch. Namely, the function q_{B}^{c} defined previously. Then, it is very easy to propose a stabilised finite element method using a minimal stabilisation idea.

First Solution

The first stabilised method : Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:

$$
B\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)-\tilde{s}\left(p_{\mathcal{P}}, q\right)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}
$$

where

$$
\begin{aligned}
B((\boldsymbol{u}, p),(\boldsymbol{v}, q)) & :=(\nabla \boldsymbol{u}, \nabla \boldsymbol{v})_{\Omega}-(p, \nabla \cdot \boldsymbol{v})_{\Omega}-(q, \nabla \cdot \boldsymbol{u})_{\Omega}, \\
\tilde{s}(p, q) & :=((I-\Pi) p,(I-\Pi) q)_{\Omega} .
\end{aligned}
$$

- Pros: Stability can be proved quite easily, and numerics follow.
- Cons: The consistency error can not be bounded optimally.

First Solution

The first stabilised method : Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:

$$
B\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)-\tilde{s}\left(p_{\mathcal{P}}, q\right)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}},
$$

where

$$
\begin{aligned}
B((\boldsymbol{u}, p),(\boldsymbol{v}, q)) & :=(\nabla \boldsymbol{u}, \nabla \boldsymbol{v})_{\Omega}-(p, \nabla \cdot \boldsymbol{v})_{\Omega}-(q, \nabla \cdot \boldsymbol{u})_{\Omega}, \\
\tilde{s}(p, q) & :=((I-\Pi) p,(I-\Pi) q)_{\Omega} .
\end{aligned}
$$

- Pros: Stability can be proved quite easily, and numerics follow.
- Cons: The consistency error can not be bounded optimally.

The new mixed method

Important Remark: There exists a projection operator $\tilde{\Pi}$ such that

$$
\tilde{s}(p, q)=((I-\tilde{\Pi}) p,(I-\tilde{\Pi}) q)_{\Omega}=\frac{\tau_{\gamma_{c}}}{k^{2}} \int_{\gamma_{c}} \llbracket p \rrbracket \int_{\gamma_{c}} \llbracket q \rrbracket,
$$

where $\tau_{\gamma_{c}}>0$ is an appropriate constant, and γ_{c} is a single, arbitrary, edge connecting a small square element κ_{c} in Ω_{c} with a stretched element K_{c}.

Reminder of the T-mesh

(a) Edge patch
(b) Corner patch

The new mixed method

The useful consequence :

Theorem

Let $\widetilde{\mathcal{M}}_{\mathcal{P}} \subset \mathcal{M}_{\mathcal{P}}$ denote the subspace defined by

$$
\tilde{\mathcal{M}}_{\mathcal{P}}=\left\{q \in \mathcal{M}_{\mathcal{P}}: \int_{\gamma_{c}} \llbracket q \rrbracket=0 \text { for all corner patches }\right\} .
$$

Then, the following inf-sup stability holds

$$
\inf _{q \in \tilde{\mathfrak{M}}_{\mathcal{P}}} \sup _{\boldsymbol{v} \in \boldsymbol{V}_{\mathcal{P}}} \frac{(\nabla \cdot \boldsymbol{v}, q)_{\Omega}}{|\boldsymbol{v}|_{1, \Omega}\|q\|_{0, \Omega}} \geq \tilde{\beta}_{\mathcal{P}}>0,
$$

where

$$
\tilde{\beta}_{\mathcal{P}}=\max \left\{\beta_{\mathcal{P}}, C k^{-3 / 2}\right\}
$$

Moreover, if $p \in H^{1}(\Omega)$, then there exists a positive constant C such that

The new mixed method

The useful consequence :

Theorem

Let $\widetilde{\mathcal{M}}_{\mathcal{P}} \subset \mathcal{M}_{\mathcal{P}}$ denote the subspace defined by

$$
\tilde{\mathcal{M}}_{\mathcal{P}}=\left\{q \in \mathcal{M}_{\mathcal{P}}: \int_{\gamma_{c}} \llbracket q \rrbracket=0 \text { for all corner patches }\right\} .
$$

Then, the following inf-sup stability holds

$$
\inf _{q \in \tilde{\mathcal{M}}_{\mathcal{P}}} \sup _{\boldsymbol{v} \in \boldsymbol{V}_{\mathcal{P}}} \frac{(\nabla \cdot \boldsymbol{v}, q)_{\Omega}}{|\boldsymbol{v}|_{1, \Omega}\|q\|_{0, \Omega}} \geq \tilde{\beta}_{\mathcal{P}}>0
$$

where

$$
\tilde{\beta}_{\mathcal{P}}=\max \left\{\beta_{\mathcal{P}}, C k^{-3 / 2}\right\}
$$

Moreover, if $p \in H^{1}(\Omega)$, then there exists a positive constant C such that
$\inf _{\tilde{q}_{\mathcal{P}} \in \tilde{\mathcal{M}}_{\mathcal{P}}}\left\|p-\tilde{q}_{\mathcal{P}}\right\|_{0, \Omega}^{2} \leq C \inf _{q_{\mathcal{P}} \in \mathcal{M}_{\mathcal{P}}}\left(\left\|p-q_{\mathcal{P}}\right\|_{0, \Omega}^{2}+\sum_{c} \frac{\left|\gamma_{c}\right|^{2}}{k^{2}}\left\|\partial_{n_{c}}\left(p-q_{\mathcal{P}}\right)\right\|_{0, \kappa_{c} \cup K_{c}}^{2}\right)$.

The new mixed method: Some numerics

The stabilised alternative

The stabilised method : Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:

$$
B\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)-S\left(p_{\mathcal{P}}, q\right)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}
$$

where

$$
S(p, q):=\frac{1}{k^{2}} \sum_{c} \int_{\gamma_{c}} \llbracket p \rrbracket \cdot \int_{\gamma_{c}} \llbracket q \rrbracket .
$$

Furthermore

The stabilised alternative

The stabilised method : Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:

$$
B\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)-S\left(p_{\mathcal{P}}, q\right)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}
$$

where

$$
S(p, q):=\frac{1}{k^{2}} \sum_{c} \int_{\gamma_{c}} \llbracket p \rrbracket \cdot \int_{\gamma_{c}} \llbracket q \rrbracket .
$$

Lemma

There exist positive constants C_{1}, C_{2} such that for all $q_{\mathcal{P}} \in \mathcal{M}_{\mathcal{P}}$,

$$
C_{1}\left\|q_{\mathcal{P}}-\tilde{\Pi}_{\mathcal{P}} q_{\mathcal{P}}\right\|_{\Omega}^{2} \leq S\left(q_{\mathcal{P}}, q_{\mathcal{P}}\right) \leq C_{2}\left\|q_{\mathcal{P}}-\tilde{\Pi}_{\mathcal{P}} q_{\mathcal{P}}\right\|_{\Omega}^{2}
$$

Furthermore,

$$
S\left(q_{\mathcal{P}}, q_{\mathcal{P}}\right) \leq C\left\{\begin{array}{l}
\left\|q_{\mathcal{P}}\right\|_{0_{0, \Omega}}^{2} \\
k^{-2} \sum_{\boldsymbol{c}}\left(\left\|p-q_{\mathcal{P}}\right\|_{0_{0}, \kappa_{c} \cup K_{c}}^{2}+\left|\gamma_{\boldsymbol{c}}\right|^{2}\left\|\partial_{n_{\boldsymbol{c}}}\left(p-q_{\mathcal{P}}\right)\right\|_{\kappa_{c} \cup K_{c}}^{2}\right)
\end{array}\right.
$$

for all $p \in H^{1}(\Omega)$.

The stabilised alternative

Theorem

For all $(\boldsymbol{w}, r) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$, there holds

$$
\sup _{(\boldsymbol{v}, q) \in \boldsymbol{V} \boldsymbol{V}_{\mathfrak{P}} \times \mathcal{M}_{\mathcal{P}}} \frac{B_{s}((\boldsymbol{w}, r),(\boldsymbol{v}, q))}{\|(\boldsymbol{v}, q)\|} \geq C \tilde{\beta}_{\mathcal{P}}^{2}\|(\boldsymbol{w}, r)\| .
$$

Moreover, if $p \in H^{1}(\Omega)$, then there exists a positive constant C such that

$$
\begin{aligned}
& \left\|\left(\boldsymbol{u}-\boldsymbol{u}_{\mathcal{P}}^{s}, p-p_{\mathcal{P}}^{s}\right)\right\| \leq\left(1+C \tilde{\beta}_{\mathcal{P}}^{-2}\right) \\
& \inf _{\left(\boldsymbol{v}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{V}_{\mathcal{P}} \times \mathcal{M}_{\mathcal{P}}}\left\{\left\|\left(\boldsymbol{u}-\boldsymbol{v}_{\mathcal{P}}, p-q_{\mathcal{P}}\right)\right\|+k^{-1}\left(\sum_{c}\left|\gamma_{c}\right|^{2}\left\|\partial_{n_{\boldsymbol{c}}}\left(p-q_{\mathcal{P}}\right)\right\|_{0, \kappa_{c} \cup K_{c}}^{2}\right)^{\frac{1}{2}}\right\} .
\end{aligned}
$$

The stabilised alternative

Figure 4: Behaviour of inf-sup constants of different methods on the T-mesh shown in Figure 1 for fixed aspect ratio $\varrho=10^{-4}$ and increasing polynomial degree k.

The $\mathbb{Q}_{1} \times \mathbb{P}_{0}$ pair

The initial partition is divided to form the final one, as shown in the figure below:

Figure 5 : Partition \mathcal{P}_{0} (left) and \mathcal{P} (right). We call this \mathcal{P}_{0} corner patch. Then, we define the spaces:

The $\mathbb{Q}_{1} \times \mathbb{P}_{0}$ pair

The initial partition is divided to form the final one, as shown in the figure below:

Figure 5: Partition \mathcal{P}_{0} (left) and \mathcal{P} (right). We call this \mathcal{P}_{0} corner patch.
Then, we define the spaces:

$$
\boldsymbol{Q}_{1, \mathfrak{P}}:=\left\{\boldsymbol{v} \in H_{0}^{1}(\Omega)^{2}: \boldsymbol{v} \circ F_{K} \in \mathbb{Q}_{1}(K)^{2} \quad \forall K \in \mathcal{P}\right\},
$$

and

$$
\mathcal{M}_{\mathcal{P}}:=\left\{q \in L_{0}^{2}(\Omega): q \circ F_{K} \in \mathbb{P}_{0}(K) \quad \forall K \in \mathcal{P}\right\} .
$$

The $\mathbb{Q}_{1} \times \mathbb{P}_{0}$ pair

A direct consequence of the first part:

Lemma

For the subspace $G \subset \mathcal{M}_{\mathcal{P}_{0}} \subset \mathcal{M}_{\mathcal{P}}$, defined by

$$
G:=\left\{q \in \mathcal{M}_{\mathcal{P}_{0}}: \llbracket q \rrbracket_{\gamma_{c}}=0 \text { for } \gamma_{c} \in \mathcal{E}_{c}\right\},
$$

there exists a constant β_{G} independent of aspect ratios such that

$$
\sup _{\boldsymbol{v} \in \boldsymbol{Q}_{1, \mathcal{P}}} \frac{(\nabla \cdot \boldsymbol{v}, q)_{\Omega}}{|\boldsymbol{v}|_{1, \Omega}} \geq \beta_{G}\|q\|_{0, \Omega} \quad \text { for all } q \in G
$$

The $\mathbb{Q}_{1} \times \mathbb{P}_{0}$ pair

The method: Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that

$$
\boldsymbol{B}_{s}\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \text { for all }(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}} .
$$

Here,

$$
\boldsymbol{B}_{s}((\boldsymbol{u}, p),(\boldsymbol{v}, q))=\boldsymbol{B}((\boldsymbol{u}, p),(\boldsymbol{v}, q))-\frac{1}{4} \tilde{S}(p ; q),
$$

the stabilisation terms are

$$
\tilde{S}(p, q):=\sum_{M \in \mathcal{P}_{0}} S_{M}(p, q)+\sum_{\gamma_{c} \in \mathcal{E}_{c}} S_{\gamma_{c}}(p, q),
$$

and
$S_{M}(p, q):=\sum_{e \in \mathcal{E}_{M}} \frac{|K|}{|e|} \int_{e} \llbracket p \rrbracket \llbracket q \rrbracket$ and $\left.\quad S_{\gamma_{c}}(p, q):=\sum_{e \subset \gamma_{c}} \frac{\min \left\{|K|,\left|K^{\prime}\right|\right\}}{|e|} \int_{e} \llbracket p \rrbracket \llbracket q\right]$.

The $\mathbb{Q}_{1} \times \mathbb{P}_{0}$ pair

The method: Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that

$$
\boldsymbol{B}_{s}\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \text { for all }(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}} .
$$

Here,

$$
\boldsymbol{B}_{s}((\boldsymbol{u}, p),(\boldsymbol{v}, q))=\boldsymbol{B}((\boldsymbol{u}, p),(\boldsymbol{v}, q))-\frac{1}{4} \tilde{S}(p ; q),
$$

the stabilisation terms are

$$
\tilde{S}(p, q):=\sum_{M \in \mathcal{P}_{0}} S_{M}(p, q)+\sum_{\gamma_{c} \in \mathcal{E}_{c}} S_{\gamma_{c}}(p, q),
$$

and
$S_{M}(p, q):=\sum_{e \in \mathcal{E}_{M}} \frac{|K|}{|e|} \int_{e} \llbracket p \rrbracket \llbracket q \rrbracket \quad$ and $\quad S_{\gamma_{c}}(p, q):=\sum_{e \subset \gamma_{c}} \frac{\min \left\{|K|,\left|K^{\prime}\right|\right\}}{|e|} \int_{e} \llbracket p \rrbracket \llbracket q \rrbracket$.
Remark: Without the terms $S_{\gamma_{c}}$ the method has been proposed by L\& S.

The $\mathbb{Q}_{1} \times \mathbb{P}_{0}$ pair

Theorem

The stabilising terms S_{M} and $S_{\gamma_{c}}$ control all the unstable modes. Then, there exists a constant $\mu_{s}>0$ independent of the aspect ratio ϱ, such that
$\sup _{(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathfrak{P}} \times \mathcal{M}_{\mathcal{P}}} \frac{\boldsymbol{B}_{s}((\boldsymbol{w}, r)(\boldsymbol{v}, q))}{\|\mid(\boldsymbol{v}, q)\|} \geq \mu_{s}\| \|(\boldsymbol{w}, r) \| \quad$ for $\operatorname{all}(\boldsymbol{w}, r) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$.
Moreover, if $p \in H^{1}(\Omega)$, then there exists a positive constant C such that

$$
\left\|\left(\boldsymbol{u}-\boldsymbol{u}_{\mathcal{P}}, p-p_{\mathcal{P}}\right)\right\| \leq\left(1+C \mu_{s}^{-1}\right)
$$

$$
\left(\inf _{\left(\boldsymbol{v}_{\mathcal{P}}, q_{\mathcal{P}}\right) \in \boldsymbol{Q}_{1, \mathfrak{P}} \times \mathcal{M}_{\mathcal{P}}}\left\|\left(\boldsymbol{u}-\boldsymbol{v}_{\mathcal{P}}, p-q_{\mathcal{P}}\right)\right\|\left\|+\sum_{K \in \mathcal{P}} h_{K, x}\right\| \partial_{x} p\left\|_{0, K}+h_{K, y}\right\| \partial_{y} p \|_{0 K}\right)
$$

where $h_{K, x}$ and $h_{K, y}$ are the diameters of $K \in \mathcal{P}$ in the x - and y-directions, respectively.

The $\mathbb{Q}_{1} \times \mathbb{P}_{0}$ pair

Figure 6: Stability constants μ_{s}, and the LS method for a T-mesh.

The Oseen equation

The Oseen equation : Find a pair (\boldsymbol{u}, p) such that $\boldsymbol{u}=\mathbf{0}$ on $\partial \Omega$, and

$$
-\nu \Delta \boldsymbol{u}+\boldsymbol{b} \cdot \nabla \boldsymbol{u}+\sigma \boldsymbol{u}+\nabla p=\boldsymbol{f} \quad, \quad \nabla \cdot \boldsymbol{u}=0 \quad \text { in } \Omega,
$$

where $\sigma, \nu>0$ and $\nabla \cdot \boldsymbol{b}=0$ in Ω.
Remark: We use the same finite element spaces as before. So, the stabilisation mechanisms for the pressure are identical.

The Oseen equation

The stabilised finite element method: Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:
$\boldsymbol{B}\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)+s_{v}\left(\boldsymbol{u}_{\mathcal{P}}, \boldsymbol{v}\right)-\alpha_{p} s_{p}(p, q)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$,
where

The Oseen equation

The stabilised finite element method: Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:
$\boldsymbol{B}\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)+s_{v}\left(\boldsymbol{u}_{\mathcal{P}}, \boldsymbol{v}\right)-\alpha_{p} s_{p}(p, q)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$,
where

$$
\boldsymbol{B}((\boldsymbol{u}, p),(\boldsymbol{v}, q)):=\underbrace{\nu(\nabla \boldsymbol{u}, \nabla \boldsymbol{v})_{\Omega}+(\boldsymbol{b} \cdot \nabla \boldsymbol{u}, \boldsymbol{v})_{\Omega}+\sigma(\boldsymbol{u}, \boldsymbol{v})_{\Omega}}_{=: a(\boldsymbol{u}, \boldsymbol{v})}-(p, \nabla \cdot \boldsymbol{v})_{\Omega}-(q, \nabla \cdot \boldsymbol{u})_{\Omega},
$$

The Oseen equation

The stabilised finite element method: Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:
$\boldsymbol{B}\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)+s_{v}\left(\boldsymbol{u}_{\mathcal{P}}, \boldsymbol{v}\right)-\alpha_{p} s_{p}(p, q)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$,
where

$$
s_{p}(p, q)=\text { exactly as before, }
$$

The Oseen equation

The stabilised finite element method: Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:
$\boldsymbol{B}\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)+s_{v}\left(\boldsymbol{u}_{\mathcal{P}}, \boldsymbol{v}\right)-\alpha_{p} s_{p}(p, q)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$,
where
$s_{v}(\boldsymbol{u}, \boldsymbol{v})$ is symmetric and needs to satisfy: Let $\|\boldsymbol{v}\|_{s}^{2}:=s_{v}(\boldsymbol{v}, \boldsymbol{v})$. We assume:

$$
\begin{aligned}
s_{v}(\boldsymbol{w}, \boldsymbol{v}) & \leq c_{s}\|\boldsymbol{w}\|_{s}|\boldsymbol{v}|_{1, \Omega}, \\
s_{v}(\boldsymbol{v}, \boldsymbol{v}) & \geq 0 \\
\sum_{K \in \mathcal{P}} \gamma_{K}\left\|\kappa_{K}(\nabla \cdot \boldsymbol{v})\right\|_{0, K}^{2} & \leq s_{v}(\boldsymbol{v}, \boldsymbol{v}),
\end{aligned}
$$

for all $\boldsymbol{v}, \boldsymbol{w} \in H_{0}^{1}(\Omega)^{2}$.

The Oseen equation

The stabilised finite element method: Find $\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$ such that:
$\boldsymbol{B}\left(\left(\boldsymbol{u}_{\mathcal{P}}, p_{\mathcal{P}}\right),(\boldsymbol{v}, q)\right)+s_{v}\left(\boldsymbol{u}_{\mathcal{P}}, \boldsymbol{v}\right)-\alpha_{p} s_{p}(p, q)=(\boldsymbol{f}, \boldsymbol{v})_{\Omega} \quad \forall(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$,
where
$s_{v}(\boldsymbol{u}, \boldsymbol{v})$ is symmetric and needs to satisfy: Let $\|\boldsymbol{v}\|_{s}^{2}:=s_{v}(\boldsymbol{v}, \boldsymbol{v})$. We assume:

$$
\begin{aligned}
s_{v}(\boldsymbol{w}, \boldsymbol{v}) & \leq c_{s}\|\boldsymbol{w}\|_{s}|\boldsymbol{v}|_{1, \Omega}, \\
s_{v}(\boldsymbol{v}, \boldsymbol{v}) & \geq 0 \\
\sum_{K \in \mathcal{P}} \gamma_{K}\left\|\kappa_{K}(\nabla \cdot \boldsymbol{v})\right\|_{0, K}^{2} & \leq s_{v}(\boldsymbol{v}, \boldsymbol{v}),
\end{aligned}
$$

for all $\boldsymbol{v}, \boldsymbol{w} \in H_{0}^{1}(\Omega)^{2}$. Using these conditions, we take $\alpha_{p} \geq \alpha:=\left(c_{a}^{2}+c_{s}^{2}\right)^{-1}$.

The Oseen equation

Lemma

Let s_{v} satisfy the previous assumptions. Let us define the mesh-dependent norm

$$
\|(\boldsymbol{v}, q)\|:=\|\boldsymbol{v}\|_{a+s}^{2}+\alpha\|q\|_{0, \Omega}^{2}+s_{p}(q, q) .
$$

Then, there exist $\mu_{s}>0$, independent of the aspect ratio of the mesh, and of ν, such that:
$\sup _{(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathfrak{P}} \times \mathcal{M}_{\mathcal{P}}} \frac{\boldsymbol{B}_{s}((\boldsymbol{w}, r),(\boldsymbol{v}, q))}{\| \|(\boldsymbol{v}, q) \|} \geq \mu_{s}\|(\boldsymbol{w}, r)\| \quad$ for all $(\boldsymbol{w}, r) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$, where $\mu_{s}=\beta_{G}^{2} /\left[2\left(1+\beta_{G}\right)\left(17+16 \beta_{G}\right)\right]$

Moreover, error estimates in the triple norm, with constants independent of ν, can be proved.

The Oseen equation

Lemma

Let s_{v} satisfy the previous assumptions. Let us define the mesh-dependent norm

$$
\|(\boldsymbol{v}, q)\|\|:=\| \boldsymbol{v}\left\|_{a+s}^{2}+\alpha\right\| q \|_{0, \Omega}^{2}+s_{p}(q, q)
$$

Then, there exist $\mu_{s}>0$, independent of the aspect ratio of the mesh, and of ν, such that:
$\sup _{(\boldsymbol{v}, q) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}} \frac{\boldsymbol{B}_{s}((\boldsymbol{w}, r),(\boldsymbol{v}, q))}{\| \|(\boldsymbol{v}, q) \|} \geq \mu_{s}\| \|(\boldsymbol{w}, r)\| \| \quad$ for $\operatorname{all}(\boldsymbol{w}, r) \in \boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$, where $\mu_{s}=\beta_{G}^{2} /\left[2\left(1+\beta_{G}\right)\left(17+16 \beta_{G}\right)\right]$

Moreover, error estimates in the triple norm, with constants independent of ν, can be proved.

Some numerics for Oseen: some concrete choices for s_{v}

Defining $\kappa_{D}:=i d-\Pi_{0}^{D}$, we can define the following stabilising terms:

$$
\begin{aligned}
s_{v}^{1}(\boldsymbol{u}, \boldsymbol{v}):= & \sum_{M \in \mathcal{P}_{0}} \gamma_{M}\left(\kappa_{M}(\nabla \cdot \boldsymbol{u}), \kappa_{M}(\nabla \cdot \boldsymbol{v})\right)_{M} \\
& +\sum_{K \in \mathcal{P}}\left(\kappa_{K}\left(\boldsymbol{b}_{K} \cdot \nabla \boldsymbol{u}\right), \kappa_{K}\left(\boldsymbol{b}_{K} \cdot \nabla \boldsymbol{v}\right)\right)_{K}, \\
s_{v}^{2}(\boldsymbol{u}, \boldsymbol{v}):= & \sum_{M \in \mathcal{P}_{0}} \delta_{x}\left(\kappa_{M}\left(\partial_{x} \boldsymbol{u}\right), \partial_{x} \boldsymbol{v}\right)_{M}+\delta_{y}\left(\kappa_{M}\left(\partial_{y} \boldsymbol{u}\right), \partial_{y} \boldsymbol{v}\right)_{M} \quad \text { (LPS) },
\end{aligned}
$$

where

Some numerics for Oseen: some concrete choices for s_{v}

Defining $\kappa_{D}:=i d-\Pi_{0}^{D}$, we can define the following stabilising terms:

$$
\begin{aligned}
s_{v}^{1}(\boldsymbol{u}, \boldsymbol{v}):= & \sum_{M \in \mathcal{P}_{0}} \gamma_{M}\left(\kappa_{M}(\nabla \cdot \boldsymbol{u}), \kappa_{M}(\nabla \cdot \boldsymbol{v})\right)_{M} \\
& +\sum_{K \in \mathcal{P}}\left(\kappa_{K}\left(\boldsymbol{b}_{K} \cdot \nabla \boldsymbol{u}\right), \kappa_{K}\left(\boldsymbol{b}_{K} \cdot \nabla \boldsymbol{v}\right)\right)_{K}, \\
s_{v}^{2}(\boldsymbol{u}, \boldsymbol{v}):= & \sum_{M \in \mathcal{P}_{0}} \delta_{x}\left(\kappa_{M}\left(\partial_{x} \boldsymbol{u}\right), \partial_{x} \boldsymbol{v}\right)_{M}+\delta_{y}\left(\kappa_{M}\left(\partial_{y} \boldsymbol{u}\right), \partial_{y} \boldsymbol{v}\right)_{M} \quad \text { (LPS) },
\end{aligned}
$$

where

$$
\begin{aligned}
\delta_{K, x} & :=\nu^{-1}\|\boldsymbol{b}\|_{\infty, K}^{2} h_{K, x}^{2} \min \left\{1, \mathrm{Pe}_{\min , K}^{-1}\right\} \\
\delta_{K, y} & :=\nu^{-1}\|\boldsymbol{b}\|_{\infty, K}^{2} h_{K, y}^{2} \min \left\{1, \mathrm{Pe}_{\min , K}^{-1}\right\} \\
\mathrm{Pe}_{\min , K} & :=\nu^{-1} \min \left\{h_{K, x}, h_{K, y}\right\}\|\boldsymbol{b}\|_{\infty, K}
\end{aligned}
$$

Some numerics for Oseen: some concrete choices for s_{v}

Defining $\kappa_{D}:=i d-\Pi_{0}^{D}$, we can define the following stabilising terms:

$$
\begin{aligned}
s_{v}^{1}(\boldsymbol{u}, \boldsymbol{v}):= & \sum_{M \in \mathcal{P}_{0}} \gamma_{M}\left(\kappa_{M}(\nabla \cdot \boldsymbol{u}), \kappa_{M}(\nabla \cdot \boldsymbol{v})\right)_{M} \\
& +\sum_{K \in \mathcal{P}}\left(\kappa_{K}\left(\boldsymbol{b}_{K} \cdot \nabla \boldsymbol{u}\right), \kappa_{K}\left(\boldsymbol{b}_{K} \cdot \nabla \boldsymbol{v}\right)\right)_{K}, \\
s_{v}^{2}(\boldsymbol{u}, \boldsymbol{v}):= & \sum_{M \in \mathcal{P}_{0}} \delta_{x}\left(\kappa_{M}\left(\partial_{x} \boldsymbol{u}\right), \partial_{x} \boldsymbol{v}\right)_{M}+\delta_{y}\left(\kappa_{M}\left(\partial_{y} \boldsymbol{u}\right), \partial_{y} \boldsymbol{v}\right)_{M} \quad(\text { LPS }),
\end{aligned}
$$

where

$$
\gamma_{M}:=\max \left\{1, P e_{\mathcal{P}_{0}}^{\min }\right\} \quad \text { where } \quad, P e_{\mathcal{P}_{0}}^{\min }:=\min _{M \in \mathcal{P}_{0}} \frac{\|\boldsymbol{b}\|_{\infty, M}}{\nu} \min \left\{h_{x, M}, h_{y, M}\right\},
$$

or

$$
\gamma_{M}:=1+\operatorname{ind}(M) P e_{M}^{\min } \quad \text { where } \quad \operatorname{ind}(M):=1-\frac{\rho_{M}|M|}{\max _{M \in \mathcal{P}_{0}}|M|}
$$

Some numerics for Oseen: some concrete choices for s_{v}

The mesh:

Figure 7: A Shishkin mesh with parameter $\lambda=\min \left\{\frac{1}{2}, 2 \nu \ln N\right\}(\nu=1 / 32)$, with $N=8$ intervals.

Some numerics for Oseen: some concrete choices for s_{v}

The solution:

Figure 8: Nodal interpolation of \boldsymbol{u}_{1} (left) and L^{2} projection of p (right) for $\nu=10^{-6}$.

Some numerics for Oseen: some concrete choices for s_{v}

Some error results $\left(\nu=10^{-6}\right)$: We define, for a given partition \mathcal{P}, the relative errors

$$
E_{p}^{\mathrm{rel}}:=\frac{\left\|p-p_{\mathcal{P}}\right\|_{0, \Omega}}{\|p-\Pi p\|_{0, \Omega}} \quad \text { and } \quad E_{\boldsymbol{u}}^{\mathrm{rel}}:=\frac{\left|\boldsymbol{u}-\boldsymbol{u}_{\mathcal{P}}\right|_{1, \Omega}}{\left|\boldsymbol{u}-I_{\mathcal{P}} \boldsymbol{u}\right|_{1, \Omega}} .
$$

Table 1: Here, $N=8, \lambda=0.01$, and $\boldsymbol{Q}_{1, \mathfrak{p}} \times G$.

s^{v}	γ_{M}	E_{p}^{rel}	E_{u}^{rel}
s_{v}^{1}	First	25.02	1.0
s_{v}^{1}	Second	25.31	1.0
LPS	-	1.40	1.0002

Some numerics for Oseen: some concrete choices for s_{v}

Some error results $\left(\nu=10^{-6}\right)$: We define, for a given partition \mathcal{P}, the relative errors

$$
E_{p}^{\mathrm{rel}}:=\frac{\left\|p-p_{\mathcal{P}}\right\|_{0, \Omega}}{\|p-\Pi p\|_{0, \Omega}} \quad \text { and } \quad E_{\boldsymbol{u}}^{\mathrm{rel}}:=\frac{\left|\boldsymbol{u}-\boldsymbol{u}_{\mathcal{P}}\right|_{1, \Omega}}{\left|\boldsymbol{u}-I_{\mathfrak{P}} \boldsymbol{u}\right|_{1, \Omega}} .
$$

Table 1: Here, $N=8, \lambda=0.0001$, and $\boldsymbol{Q}_{1, \mathcal{P}} \times G$.

s^{v}	γ_{M}	$E_{p}^{\text {rel }}$	$E_{u}^{\text {rel }}$
s_{v}^{1}	First	1.06	1.0
s_{v}^{1}	Second	1.06	1.0
LPS	-	1.22	1.0219

Some numerics for Oseen: some concrete choices for s_{v}

Some error results $\left(\nu=10^{-6}\right)$: We define, for a given partition \mathcal{P}, the relative errors

$$
E_{p}^{\mathrm{rel}}:=\frac{\left\|p-p_{\mathcal{P}}\right\|_{0, \Omega}}{\|p-\Pi p\|_{0, \Omega}} \quad \text { and } \quad E_{\boldsymbol{u}}^{\mathrm{rel}}:=\frac{\left|\boldsymbol{u}-\boldsymbol{u}_{\mathcal{P}}\right|_{1, \Omega}}{\left|\boldsymbol{u}-I_{\mathfrak{P}} \boldsymbol{u}\right|_{1, \Omega}}
$$

Table 1: Here, $N=8, \lambda=0.01$, and $\boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$, and $\alpha_{p}=1$.

s^{v}	γ_{M}	$E_{p}^{\text {rel }}$	$E_{u}^{\text {rel }}$
s_{v}^{1}	First	47.79	1.0
s_{v}^{1}	Second	48.63	1.0
LPS	-	7.47	1.0002

Some numerics for Oseen: some concrete choices for s_{v}

Some error results $\left(\nu=10^{-6}\right)$: We define, for a given partition \mathcal{P}, the relative errors

$$
E_{p}^{\mathrm{rel}}:=\frac{\left\|p-p_{\mathcal{P}}\right\|_{0, \Omega}}{\|p-\Pi p\|_{0, \Omega}} \quad \text { and } \quad E_{\boldsymbol{u}}^{\mathrm{rel}}:=\frac{\left|\boldsymbol{u}-\boldsymbol{u}_{\mathcal{P}}\right|_{1, \Omega}}{\left|\boldsymbol{u}-I_{\mathfrak{P}} \boldsymbol{u}\right|_{1, \Omega}}
$$

Table 1: Here, $N=8, \lambda=0.0001$, and $\boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}$, and $\alpha_{p}=1$.

s^{v}	γ_{M}	$E_{p}^{\text {rel }}$	$E_{\boldsymbol{u}}^{\text {rel }}$
s_{v}^{1}	First	3.06	1.0
s_{v}^{1}	Second	2.78	1.0
LPS	-	6.73	1.0152

Some numerics for Oseen: some concrete choices for s_{v}

Shaprness of the layers with varying λ.

s_{v}, γ_{M}	$\lambda=0.5000$	$\lambda=1.0000 \cdot 10^{-2}$	$\lambda=1.0000 \cdot 10^{-4}$
LPS		Sosen	名

Figure $9:$ Meshes: $N=8, \lambda$ (left to right). Using $\boldsymbol{Q}_{1, \mathcal{P}} \times G$.

Some numerics for Oseen: some concrete choices for s_{v}

Shaprness of the layers with varying λ.

Figure 9: Meshes: $N=8, \lambda$ (left to right). Using $\boldsymbol{Q}_{1, \mathfrak{P}} \times G$.

Some numerics for Oseen: some concrete choices for s_{v}

$\underline{\text { Shaprness of the layers with varying } \lambda}$.

Figure $9:$ Meshes: $N=8, \lambda$ (left to right). Using $\boldsymbol{Q}_{1, \mathfrak{P}} \times G$.

Some numerics for Oseen: some concrete choices for s_{v}

Shaprness of the layers with varying λ.

s_{v}, γ_{M}	$\lambda=0.5000$	$\lambda=1.0000 \cdot 10^{-2}$	$\lambda=1.0000 \cdot 10^{-4}$
LPS			

Figure 10 : Meshes: $N=8, \lambda$ (left to right). Using $\boldsymbol{Q}_{1, \mathcal{P}} \times \mathcal{M}_{\mathcal{P}}, \alpha_{p}=1$.

Some numerics for Oseen: some concrete choices for s_{v}

Shaprness of the layers with varying λ.

Figure 10: Meshes: $N=8, \lambda$ (left to right). Using $\boldsymbol{Q}_{1, \mathfrak{P}} \times \mathcal{M}_{\mathcal{P}}, \alpha_{p}=1$.

Some numerics for Oseen: some concrete choices for s_{v}

$\underline{\text { Shaprness of the layers with varying } \lambda}$.

s_{v}, γ_{M}	$\lambda=0.5000$	$\lambda=1.0000 \cdot 10^{-2}$	$\lambda=1.0000 \cdot 10^{-4}$

Figure 10: Meshes: $N=8, \lambda$ (left to right). Using $\boldsymbol{Q}_{1, \mathfrak{P}} \times \mathcal{M}_{\mathcal{P}}, \alpha_{p}=1$.

Conclusions and perspectives

(1) Identification of the minimal number of spurious pressure modes on anisotropic meshes.
(2) A new family of inf-sup stable finite element spaces. These enjoy the same approximation properties of the original one.
(3) A stabilised variant penalising these modes in the formulation: stability and optimal convergence.
(9) Extension to the (optimal) $\mathbb{Q}_{1}^{2} \times \mathbb{P}_{0}$ pair, and Oseen.

Perspectives and open questions:

- Adaptivity?
- Triangles?
- Continuous pressures?

Conclusions and perspectives

(1) Identification of the minimal number of spurious pressure modes on anisotropic meshes.
(2) A new family of inf-sup stable finite element spaces. These enjoy the same approximation properties of the original one.
(3) A stabilised variant penalising these modes in the formulation: stability and optimal convergence.
(1) Extension to the (optimal) $\mathbb{Q}_{1}^{2} \times \mathbb{P}_{0}$ pair, and Oseen.

Perspectives and open questions:

- Adaptivity?
- Triangles?
- Continuous pressures?

