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Problem

H1
0 (!) the standard Sobolev space of functions with zero trace on

@!.
Let ⌦ be a bounded open polyhedral domain in Rd , d = 2, 3 and let
@⌦ denote its boundary. We consider the second order equation

(|) �r · (aru) = f in ⌦,

where a 2 [L1(⌦)]d⇥d is a positive definite tensor and f 2 L2(⌦).
For simplicity of the presentation, we impose homogeneous Dirichlet
boundary condition u = 0 on @⌦, although this appears not to be
an essential restriction. We shall denote by || · ||

a

:= k
p
ar(·)k the,

so-called, energy norm.
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FEM

Let T be a conforming subdivision of ⌦ into disjoint simplicial
elements  2 T . We assume that the subdivision T is shape-regular
and that it is constructed via a�ne mappings F, where F : ̂! ,
with non-singular Jacobian, where ̂ is the reference simplex.
For a nonnegative integer r , we denote by P

r

(̂), the set of all
polynomials of total degree at most r , defined on ̂. We consider
the finite element space

V := {V 2 H1
0 (⌦) : V | � F 2 P

r

(̂),  2 T }.
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FEM

By � we denote the union of all (d � 1)-dimensional element faces
associated with the subdivision T (including the boundary). Further
we decompose � into two disjoint subsets � = @⌦ [ �int, where

�int := �\@⌦. We define h := (µ
d

())1/d ,  2 T , where µ
d

is the
d-dimensional Lebesgue measure. Also, for two (generic) elements
+, � sharing a face e := @+ \ @� ⇢ �int we define
h
e

:= µ
d�1(e). We collect these quantities into the element-wise

constant function h : ⌦! R, with h| = h,  2 T and h|
e

= h
e

,
e 2 �. The families of meshes constructed by the algorithms
presented in this work will be conforming and shape-regular.
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FEM

The finite element method reads:

(F) find U 2 V such that a(U,V ) = l(V ) 8V 2 V,

where the bilinear form a : H1
0 (⌦)⇥H1

0 (⌦)! R and the linear form
l : H1

0 (⌦)! R are given by

a(w , v) :=

Z

⌦
arw ·rv dx and l(v) :=

Z

⌦
fv dx ,

respectively, for w , v 2 H1
0 (⌦).
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FEM

Let now {�
i

}1iN

denote a set of basis functions for V so that

U =
N

X

i=1

u

i

�
i

,

and let A
ij

= a(�
j

,�
i

), b

k

= l(�
k

), i , j , k = 1, · · · ,N. With this
notation, the linear system corresponding to is

Au = b,

where A 2 IRN⇥N is the sti↵ness matrix corresponding to a set of
basis functions {�

i

}1iN

.
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AFEM

For every face e 2 �int, we define the jump across e of a scalar
function w , defined in an open neighbourhood of e, by

[w ](x) = lim
t!0

�

w(x � tn
e

)� w(x + tn
e

)
⌘

,

for x 2 e, where n
e

denotes a normal vector to e. (Note that the
jump is only uniquely defined up to a sign, which is unimportant for
the discussion below.) For any subset M ⇢ T (i.e., M is a
collection of elements of T ), we define the local estimator by

⌘T (U,M) :=
⇣

X

2M

⇣

h2kf+r·(arU)k2+
X

e2�
int

\@
h
e

k[arU·n
e

]k2
e

⌘⌘1/2
.
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AFEM

Algorithm 1. AFEM algorithm

Set parameter 0 < ✓  1. Set m = 0.
While convergence criterion not satisfied

1. Solve exactly (F) to obtain Ue

m

(the exact solution).
2. Compute local estimators ⌘T

m

(Ue

m

,),  2 T
m

.
3. Mark elements M

m

for refinement in T
m

using (Dörfler marking)
⌘2T

m

(Ue

m

,M
m

) � ✓ ⌘2T
m

(Ue

m

, T
m

).
4. Refine M

m

to obtain new mesh T
m+1. Set m m + 1.

End
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AFEM

SOLVE! ESTIMATE! MARK! REFINE

Theorem
There exist constants ⇠ > 0 and 0 < ↵ < 1 such that

ku�Ue

m+1k
2
a

+⇠⌘2T
m+1

(Ue

m+1, Tm+1)  ↵
⇣

ku � Ue

m

k2
a

+ ⇠⌘2T
m

(Ue

m

, T
m

)
⌘

.

(Cascon, Kreuzer, Nochetto, and Siebert SINUM 2008)
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AFEM 7�! iAFEM

SOLVE! ESTIMATE! MARK! REFINE
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AFEM 7�! iAFEM

APPROXIMATE! ESTIMATE! MARK! REFINE
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AFEM 7�! iAFEM

Algorithm 2. Inexact AFEM

Set parameters 0 < ✓  1, µ and ⌫. Initialise Ũ0. Set m = 1.
While convergence criterion not satisfied

1. Solve inexactly (F) to obtain Ũ
m

so that
kŨ

m�1 � U
m�1k

2 + µkŨ
m

� U
m

k2  ⌫⌘2
m�1(Ũm�1),

for some values µ and ⌫ is satisfied.
2. Compute local estimators ⌘T̃

m

(Ũ
m

,),  2 T̃
m

.

3. Mark elements M̃
m

for refinement in T̃
m

using
⌘2T

m

(Ũ
m

,M
m

) � ✓ ⌘2T
m

(Ũ
m

, T
m

).

4. Refine M̃
m

to obtain new mesh T̃
m+1. Set m m + 1.

End
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AFEM 7�! iAFEM

Theorem
Let u, Ũ

m

and Ũ
m+1, m � 1 (approximations of U

m

and U
m+1

solutions on T̃
m

and T̃
m+1) , be such that

||Ũ
m

� U
m

||2
a

+ µ||Ũ
m+1 � U

m+1||
2
a

 ⌫⌘2
m

(Ũ
m

),

with

µ :=
1 + ⇠C1(1 + ��1)

✏⇠
�

1 + 2C2)
, ⌫ :=

�

✏
�

1 + 2C2C1)
,

where 0 < ✏ < 1, ⇠ :=
�

2C1(1 + �)(1 + ��1)
��1

, and �, �, � and ✏
are chosen small enough, so that (1� ⌧✓)(1 + �) + 2✏C2 + � < 1.
Then, there exist a constant 0 < ↵ < 1, depending only on the
shape regularity of T̃1 and on the marking parameter ✓, such that

||u � Ũ
m+1||

2
a

+ ⇠⌘2
m+1(Ũm+1)  ↵

�

||u � Ũ
m

||2
a

+ ⇠⌘2
m

(Ũ
m

)
�

.

(A., Georgoulis, and Loghin SISC, 2013)
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AFEM 7�! iAFEM

||Ũ
m

� U
m

||2
a

+ µ||Ũ
m+1 � U

m+1||
2
a

 ⌫⌘2
m

(Ũ
m

),
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AFEM 7�! iAFEM

||Ũ
m

� U
m

||2
a
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AFEM 7�! iAFEM

A

m

u

m

= b

m

.

The matrices A
m

2 IRN

m

⇥N

m with {N
m

}
m

an increasing sequence.

kU
m

� Uk

m

k
a

= ku
m

� u

k

m

k
A

m

where hx, yi
A

:= x

T

Ay, x, y 2 IRN , A 2 RN⇥N , denotes the

standard inner product weighted by A in RN , with the
corresponding norm kxk

A

:=
p

hx, xi
A

.
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Krylov + CG

I We need a method that includes an energy-norm estimator
(possibly an upper bound) of the errors!

I It would be desirable to have a monotonic sequence!
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Krylov + CG

Let uk
m

2 IRN

m be the k-th CG iterate at step m of the adaptive
algorithm and by Uk

m

the corresponding function in Ṽ
m

. We denote
the residual by r

k

m

:= b

m

�A

m

u

k

m

and note that the energy norm of
the error can be expressed as a dual norm of the residual:

kU
m

� Uk

m

k
a

= ku
m

� u

k

m

k
A

m

= krk
m

k
A

�1
m

,
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Krylov + CG

It is well-known that the Conjugate Gradient method minimises the
energy norm of the error, namely

u

k

m

= arg min
u2K

k

(r
0
m

,A
m

)
ku

m

� uk
A

m

,

where K
k

(r0
m

,A
m

) :=
n

r

0
m

,A
m

r

0
m

, · · · ,Ak�1
m

r

0
m

o

is the Krylov

subspace of dimension k . Thus, the energy norm of the error
decreases monotonically and the criterion needed will be satisfied for
all Uk

m

with k > k⇤ for some k⇤.
In addition, there are various established numerical techniques that
provide bounds or estimates for the energy norm of the error at each
step.
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Krylov + CG

We note that these properties do not hold in general, and that for
non-symmetric problems, the best choice of iterative method
remains unclear.
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Error bounds for CG method

Algorithm 3. Conjugate Gradient Algorithm

Set u0 := 0;p0 := r

0 := b;�0 := kr
0k2;

For j = 0, 1, . . . until convergence do
v

j = Ap

j ; �
j

= �
j

/(rj · vj);
u

j+1 = u

j + �
j

p

j ; r

j+1 = r

j � �
j

u

j ; �
j+1 = kr

j+1k2;
�
j+1 = �

j+1/�j ; p

j+1 = r

j+1 + �
j+1p

j ;
End
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Error bounds for CG method

The above algorithm constructs implicitly a Lanczos
tridiagonalisation

V

T

k

AV

k

= T

k

,

where V

T

k

V = I

k

and T

k

2 IRk⇥k s.t.

T

k

=

0

B

B

B

B

B

@

↵1 �1 0
�1 ↵2 �2

. . .
. . .

. . .
↵
k�1 �

k�1

0 �
k�1 ↵

k

1

C

C

C

C

C

A

.

where for j = 1, . . . , k ,

↵
j

=
1

�
j�1

+
�
j�1

�
j�2

, �
j

=

p
�
j

�

��
j�1

�

�

,

with ��1 = 1,�0 = 0.
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Error bounds for CG method: Hestenes and Stiefel

Hestenes-Stiefel rule (1952)

e
(k)
A

= ku� u

kk2
A

=
N

X

k+1

�
j

krjk2.
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Error bounds for CG method: Hestenes and Stiefel

Under the assumption that e(k+d)
A

<< e
(k)
A

, where the integer d
denotes a suitable delay, the Hestenes and Stiefel estimate is given
by the formula (see A. 2003, Strakoš and Tichý, 2002)

ku� u

kk2
A

⇡
k+d

X

j=k+1

�
j

krjk2.

d = 10 is indicated as a successful compromise, and numerical
experiments support this conclusion (Golub and Meurant 97, A.
2004, and Golub-Meurant Matrices, Moments and Quadrature with
Applications, 2010. However, numerical experiments indicate that
the cheaper choice d = 5 can be reliable if the solution u is
reasonably regular; in general, one can expect d to be required to be
larger for ill-conditioned problems. Strakoš and Tichý, 2002 proved
that it is numerically stable
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Preconditioning

Let B a non singular matrix: the symmetric preconditioned system is

B

�T

AB

�1
y = B

�T

b

�

y = Bu

�

The dual norm of the preconditioned residual is equal to the dual
norm of the original residual; i.e. the energy norm is
“preconditioning invariant” for H-S.
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The Golub and Meurant bounds

The A-norm of the error at each CG step can be written in the
following way, using the orthogonality r

T

k

u

k = 0,

ku� u

kk2
A

= kr
k

k2
A

�1 = b

T

A

�1
b� b

T

u

k .

Thus, the main di�culty in evaluating the above quantity is in the
evaluation of the first term on the right-hand side. This term can be
written as

F (A) = b

T

A

�1
b =

Z �
max

(A)

�
min

(A)
��1d!(�),

where the measure ! is a non-decreasing step function with jump
discontinuities depending on the Fourier coe�cients of b at the
eigenvalues of A. Golub and Meurant used this formulation to
provide upper and lower bounds on the CG error, by employing
Gauss, Gauss-Radau and Gauss-Lobatto quadrature rules,
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The Golub and Meurant bounds

The Gauss quadrature approach can be shown to be equivalent to
the Hestenes and Stiefel estimate above.

14 / 33



The use of stopping criteria for iterative Krylov methods in designing adaptive methods for PDEs Mario Arioli

The Golub and Meurant bounds

The only guaranteed upper bound for the A-norm of the CG error
uses a Gauss-Radau quadrature associated with the measure ! and
with one node prescribed at � < �min(A).
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The Golub and Meurant bounds

The only guaranteed upper bound for the A-norm of the CG error
uses a Gauss-Radau quadrature associated with the measure ! and
with one node prescribed at � < �min(A). Let

T̂
k+1 =

0

B

B

B

B

B

@

↵1 �1 0
�1 ↵2 �2

. . .
. . .

. . .
↵
k

�
k

0 �
k

↵̂
k+1

1

C

C

C

C

C

A

.

where
↵̂
k+1 = �+ �2

k

e

T

k

(T
k

� �I
k

)�1
e

k

with e

k

the k-th column of the k ⇥ k identity matrix.
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The Golub and Meurant bounds

The only guaranteed upper bound for the A-norm of the CG error
uses a Gauss-Radau quadrature associated with the measure ! and
with one node prescribed at � < �min(A). Assuming

0 < � < �min(A), the Cholesky decomposition T̂

k+1 = R̂

T

k+1R̂k+1

can be shown to exist. Let now ŷ

k+1 be the solution of

R̂

T

k+1ŷ
k+1 = kbkê1,

where ê1 denotes the first column of the identity matrix of size
k + 1. Then an upper bound on the CG error is given by

ku� u

k

k
A


�

�

�

ŷ

k+1
k+1

�

�

�

.
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The Golub and Meurant bounds

It is clear that in order to compute this bound, the lower bound � is
required. In fact, experiments show that a close lower bound on the
smallest eigenvalue of A yields tight upper bounds for the CG error
(Golub-Meurant, 2010, A. -Georgoulis-Loghin, 2013).

� and �min(A) depend on the preconditioning!
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Adaptive stopping criteria for CG

Criterion

||Ũ
m

� U
m

||2
a

+ µ||Ũ
m+1 � U

m+1||
2
a

 ⌫⌘2
m

(Ũ
m

),

cannot be employed in a practical context. Instead, the following
generic criteria will be considered:

E (Ũ
m

)2 + µE (Ũ
m+1)

2  ⌫⌘2
m

(Ũ
m

),

where E (Ũ
m

) denotes an estimate or bound for the error
kU

m

� Ũ
m

k
a

. Note that if E (Ũ
m

) is an upper bound, then the result
of the convergence Theorem hold and the inexact AFEM algorithm
is guaranteed to converge. In general, estimates will not provide this
guarantee, though a tight estimate or lower bound could also ensure
the contraction result of the convergence Theorem, possibly at a
di↵erent rate. For such cases, further analysis is required.

16 / 33



The use of stopping criteria for iterative Krylov methods in designing adaptive methods for PDEs Mario Arioli

Test Problem 3D

Problem (|) with a = 1 in ⌦ = (�1, 1)3 and the forcing function

chosen so that the exact solution is u = e�10r
2

. We used the same
Dörfler parameter ✓ = 0.75 and started the adaptive algorithm from
a range of initial regular meshes of tetrahedra and ran the procedure
for m = 10 iterations. The refinement is concentrated near the
origin, where the solution exhibits a sharp exponential decay.
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Numerical experiments

We can estimate � by

I Eigenvalue bounds based on Poincaré inequalities.

I Estimates using the Lanczos algorithm.

and then we can compute

ku� u

k

k
A


�

�

�

ŷ

k+1
k+1

�

�

�

.
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Numerical experiments
We can estimate � by

I Eigenvalue bounds based on Poincaré inequalities.
I Estimates using the Lanczos algorithm.

and then we can compute

ku� u

k

k
A


�

�

�

ŷ

k+1
k+1

�

�

�

.

1. DNR: the ideal bound using the exact dual norm of the
residual;

2. GM1: the Golub-Meurant upper bound with adaptive bounds
based on Poincaré for �min(Am

);
3. GM2: the Golub-Meurant upper bound with global Poincaré

bound for �min(Am

);
4. GM3: the Golub-Meurant criterion with the Lanczos based

estimator for �min(Am

) with c = 1/2;
5. HS: the Hestenes-Stiefel estimator with a delay of d = 5 steps.
6. ER(|log tol |): the standard Euclidean residual with various

stopping tolerances tol .
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Selected experiments

N0 = 142 N0 = 779 N0 = 5, 191

method N

m

ku � Ũ

m

k
a

mv N

m

ku � Ũ

m

k
a

mv N

m

ku � Ũ

m

k
a

mv

exact 19,579 8.9670e-2 – 131,250 4.7497e-2 – 950,961 † –

DNR 19,507 8.9617e-2 120 131,452 4.7744e-2 302 † † †
GM1 19,573 8.9665e-2 179 131,243 4.7498e-2 447 951,057 2.4695e-2 1,065

GM2 19,582 8.9672e-2 250 131,232 4.7497e-2 570 950,988 2.4696e-2 1,292

GM3 19,510 8.9682e-2 151 131,251 4.7484e-2 353 951,077 2.4695e-2 1,018

HS 19,648 9.0596e-2 120 131,606 4.9477e-2 291 958,982 2.6542e-2 676

ER(6) 19,587 8.9677e-2 238 131,246 4.7497e-2 465 951,239 2.4692e-2 958

ER(8) 19,579 8.9670e-2 331 131,250 4.7497e-2 649 950,954 2.4697e-2 1,505

ER(10) 19,579 8.9670e-2 412 131,250 4.7497e-2 840 950,932 2.4697e-2 2,001

Table: Performance of stopping criteria: errors and matvecs (mv) for Test
Problem 3 (m = 10) for various N0. Legend: †: out of memory; �: does
not apply; ⇤: does not exist.

mv := matvecs(m) =
P

m

k=1
nnz(A

k

)
nnz(A

m

) · its(k),
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Generalizations to Mixed FEM
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Commutative diagram between Hilbert spaces

M N?

M? N

A ?

A

N �1NMM�1

21 / 33



The use of stopping criteria for iterative Krylov methods in designing adaptive methods for PDEs Mario Arioli

Problem and theoretical background

Let M 2 IRm⇥m and N 2 IRn⇥n be symmetric positive definite
matrices, and let A 2 IRm⇥n (m � n) be a full rank matrix. In the
following, we will use the following Hilbert spaces

M = {v 2 IRm; kvk2
M

= v

T

Mv}

N = {q 2 IRn; kqk2
N

= q

T

Nq}

and their dual spaces

M? = {w 2 IRm; kwk2
M

�1 = w

T

M

�1
w}

N? = {y 2 IRn; kyk2
N

�1 = y

T

N

�1
y}.
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Problem and theoretical background

We will denote by

(v1, v2)M = v

T

1 Mv2, 8v1, v2 2M

and
(q1,q2)N = q

T

1 Nq2, 8q1,q2 2 N

the scalar products for M and N, and by

(w1,w2)
M

�1 = w

T

1 M
�1

w2, 8w1,w2 2M?

and
(y1, y2)

N

�1 = y

T

1 N
�1

y2, 8y1, y2 2 N?

the respective scalar product for their dual spaces. Finally, we will
denote by h·, ·iM?,M and by h·, ·iN?,N, respectively the action of a
linear functional on the primal vectors.
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Problem and theoretical background

We remark that, using the previous notation, the matrix A is the
representation of a linear operator A from N to M?. In particular,
for each fixed q 2 N we also have from the Riesz theorem that

hAq, viM?,M = (v,M�1
Aq)

M

= v

T

Aq, Aq 2M? 8q 2 N.

Moreover, the matrix A

? representing the adjoint operator of A can
be defined as

hA?
g, fiN?,N = (f,N�1

A

T

g)
N

= f

T

A

T

g, A

T

g 2 N? 8g 2M,

where A

? = N

�1
A

T .
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Problem and theoretical background

We will call the critical points for the functional

� =
x

T

Ap

kpk
N

kxk
M

(1)

the “elliptic singular values” �
i

and the “elliptic singular vectors”
p

i

2 N and x

i

2M, of A.
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Mixed FEM

We assume to use RT0 mixed FEM (Brezzi and Fortin book)
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Linear algebra framework

min
u

�1

2
kuk2

M

such that: AT

u = b, u 2M, b 2 N? .

The augmented system that gives the optimality conditions for this
problem is



M A

A

T 0

� 

u

p

�

=



0
b

�

.
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Linear algebra framework

Several problems can be reduced to the previous case. The general
problem

min
A

T

w=r

1

2
w

T

Ww � g

T

w

where the matrix W is positive semidefinite and
ker(W) \ ker(AT ) = 0 can be reformulated by choosing 1 � ⌫ � 0
and

M = W + ⌫AN�1
A

T

u = w �M

�1
g

b = r � A

T

M

�1
g.

9

>

=

>

;

The non singularity of M follows from ker(W) \ ker(AT ) = 0 and
the equivalence between the two systems follows from the simple
change of variable defined by the second equation.
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Linear algebra framework

We point out that the previous transformation is the algebraic
version of the preconditioner for the H

div

-based di↵erential problems
described by Arnold, Falk, and Winther, Math. Comp., 1997. In this
particular case, the new M is the Grammian of the true norm of H

div

computed on the finite-element test functions used to approximate
the continuous problem and in its optimality as a preconditioner is
proved by Arnold, Falk, and Winther, Math. Comp., 1997.

26 / 33



The use of stopping criteria for iterative Krylov methods in designing adaptive methods for PDEs Mario Arioli

Generalized Golub-Kahan Bidiagonalization

8

>

<

>

:

AQ = MV



B

0

�

V

T

MV = I

m

A

T

V = NQ

h

B

T ; 0
i

Q

T

NQ = I

n

where

B =

2

6

6

6

6

6

6

4

↵1 �2 0 · · · 0

0 ↵2 �3
. . . 0

...
. . .

. . .
. . .

. . .
0 · · · 0 ↵

n�1 �
n

0 · · · 0 0 ↵
n

3

7

7

7

7

7

7

5

.

The singular values of B are linked to the elliptic singular values of
A:
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Generalized Golub-Kahan Bidiagonalization

Algorithm 4.

procedure [U,V,B, u, p] = G-K bidiagonalization(A,M,N, b,maxit);

�1 = kbk
N

�1 ; q1 = N

�1
b/�1;

w = M

�1
Aq1; ↵1 = kwk

M

; v1 = w/↵1;

⇣1 = �1/↵1; d1 = q1/↵1; p
(1)

= �⇣1d1
k = 0; convergence = false;
while convergence = false and k < maxit

k = k + 1;

g = N

�1
⇣
A

T

v

k

� ↵
k

Nq

k

⌘
; �

k+1 = kgk
N

;

q

k+1 = g/�
k+1;

w = M

�1 �
Aq

k+1 � �
k+1Mv

k

�
; ↵

k+1 = kwk
M

;
v

k+1 = w/↵
k+1;

⇣
k+1 = �

�
k+1

↵
k+1

⇣
k

;

d

k+1 =
�
q

k+1 � �
k+1dk

�
/↵

k+1;

u

(k+1
= u

(k)
+ ⇣

k+1vk+1; p
(k+1

= p

(k) � ⇣
k+1dk+1;

[ convergence ] = check(z
k

, . . . )
end while;

end procedure.
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Stopping criteria and error estimates

Let e(k) = u� u

(k)

ke(k)k2
M

=
n

X

j=k+1

⇣2
j

=
�

�

�

�

�

�

ẑ�


z

k

0

�

�

�

�

�

�

�

2

2
.

kp�p(k)k
N

=
�

�

�

�

�

�

QB

�1
✓

ẑ�


z

k

0

�◆

�

�

�

�

�

�

N

 kBk2ke
(k)k

M

=
ke(k)k

M

�
n

.
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A lower bound estimate

Given a threshold ⌧ < 1 and an integer d , we can estimate ke(k)k2
M

by

⇠2
k,d =

k+d+1
X

j=k+1

⇣2
j

< ke(k)k2
M

.
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An upper bound estimate

It would also be useful to have an upper bound estimator of the
error. We can use an approach inspired by the Gauss-Radau
quadrature algorithm and similar to the one described by Golub an
Meurant (book)
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An upper bound estimate

Let 0 < a < �
n

a lower bound for all the singular values of B. We
can then compute the matrix T̂

k+1 as

T̂

k+1 =



T

k

↵
k

�
k

e

k

↵
k

�
k

e

T

k

!
k+1

�

,

where !
k+1 = a2 + �

k

(a2) and �
k

(a2) is the k-entry of the solution
of

⇣

T

k

� a2I
⌘

�(a2) = ↵2
k

�2
k

e

k

.

We point out that the matrix
⇣

T

k

� a2I
⌘

is positive definite and

that T̂
k+1 has one eigenvalue equal to a2.

Analogously to what is done in Golub and Meurant book for the
conjugate gradient method, we can recursively compute �(a2)

k

and
!
k+1 by using the Cholesky decomposition.
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Mixed finite-element

The aim is to have error bounds merging the approximation error for
the mixed finite-element method and the algebraic errors introduced
by the generalized G-K bidiagonalization method. Let H and P be
two Hilbert spaces, and H? and P? the corresponding dual spaces.
Let

a(u, v) : H⇥H! IR b(u, q) : H⇥ P! IR
|a(u, v)|  kak kukH kukH 8u 2 H, 8v 2 H
|b(u, q)|  kbk kvkH kqkP 8u 2 H, 8q 2 P

be continuous bilinear forms with kak and kbk the corresponding
norms. Given f 2 H? and g 2 P?, we seek the solutions u 2 H and
p 2 P of the system

a(u, v) + b(v , p) = hf , viH?,H 8v 2 H
b(u, q) = hg , qiP?,P 8q 2 P.
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Mixed finite-element

We can introduce the operators M , A and its adjoint A ?

M : H! H?, hM u, viH?⇥H = a(u, v) 8u 2 H, 8v 2 H
A ? : H! P?, hA ?u, qiP?⇥P = b(u, q) 8u 2 H, 8q 2 P
A : P! H?, hv ,A piH⇥H? = b(v , p) 8v 2 H, 8p 2 P

and we have

hA Fu, qiP?⇥P = hu,A qiH⇥H? = b(u, q).

In order to make the following discussion simpler, we assume that
a(u, v) is symmetric and coercive on H

(1) 0 < �1kukH  a(u, u).

However, the coercivity on the kernel of A ?, Ker(A ?) is su�cient.
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Mixed finite-element

We will also assume that 9�0 > 0 such that

(2) sup
v2H

b(v , q)

kvkH
� �0kqkP\Ker(A ) = �0



inf
q02Ker(A )

kq + q0kP
�

.

Under the hypotheses (1), (2), and for any f 2 H? and g 2 Im(A ?)
then there exists (u, p) solution of the system. Moreover, u is
unique and p is definite up to an element of Ker(A ).
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Mixed finite-element
Let now H

h

,! H and P
h

,! P be two finite dimensional subspaces
of H and P. As for the saddle-point problem , we can introduce the
operators A

h

: P
h

! H?
h

and M
h

;H
h

! H?
h

. We also assume that

(3)

8

>

>

<

>

>

:

Ker(A
h

) ⇢ Ker(A )

sup
v

h

2H
h

b(v
h

, q
h

)

kv
h

kH
� �

n

kq
h

kP\Ker(A
h

)

�
n

� �0 > 0.

Under the hypotheses (1), (2), and (3), we have that
9(u

h

, p
h

) 2 H
h

⇥ P
h

solution of

a(u
h

, v
h

) + b(v
h

, p
h

) = hf , v
h

iH?
h

,H
h

8v
h

2 H
h

b(u
h

, q
h

) = hg , q
h

iP?
h

,P
h

8q
h

2 P
h

.

and

ku � u
h

kH + kp � p
h

kP\Ker(A) 



✓

inf
v

h

2H
h

ku � v
h

kH + inf
q

h

2P
h

kp � q
h

kP
◆

,

where  = (kak, kbk,�0,�1) is independent of h.32 / 33
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Mixed finite-element
Let {�

i

}
i=1,...,m be a basis for H

h

and
�

 
j

 

j=1,...,n
be a basis for

P
h

. Then, the matrices M and N are the Grammian matrices of the
operators M and A . In order to use the latter theory, we need to
weaken the hypothesis, made in the introduction, that A be full
rank. In this case, we have that

I s elliptic singular values will be zero;

I however, the G-K bidiagonalization method will still work and,
if Aq1 6= 0, it will compute a matrix B of rank less than or
equal to n � s.

On the basis of the latter observations, the error ke(k)k
M

can be
still computed and the upper bounds of the errors computed by G-K
hold. Finally, we point out the (??) imply that for h # 0 the elliptic
singular values of all A 2 IRm

h

⇥n

h will be bounded with upper and
lower bounds independent of h, i.e.

�0  �n
h

 · · ·  �1  kak.
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Mixed finite-element

Theorem
Under (1), (2), and (3), and denoting by u

⇤ and p

⇤ the vectors
computed at one of the iterates of Algorithm for which
ke(k)k

M

< ⌧ , we have

ku � u⇤kH + kp � p⇤kP\Ker(A ) 

̌

✓

inf
v

h

2H
h

ku � v
h

kH + inf
q

h

2P
h

kp � q
h

kP + ⌧

◆

,

where u⇤ =
P

n

h

i=1 �iu
⇤
i

2 H
h

, p⇤ =
P

n

h

j=1 �ip
⇤
j

2 P
h

and ̌ a
constant independent of h.
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frametitleConclusions?
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frametitleConclusions? Can we use the previous framework to build
an iAMFEM?
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frametitleConclusions? Thank You
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