Embeddings in graphs via degree sequence conditions

University of Birmingham

August 27th 2018

Includes joint work with Joseph Hyde and Hong Liu; Fiachra Knox; Katherine Staden.

Andrew Treglown Embeddings in graphs via degree sequence conditions

Question

What minimum degree condition forces a graph to contain a given spanning substructure?

Theorem (Dirac 1952)

 $\delta(G) \ge |G|/2 \implies G$ contains a Hamilton cycle.

- Easy to see minimum degree is best-possible
- However, can significantly improve on Dirac...

(人間) (人) (人) (人)

Question

What minimum degree condition forces a graph to contain a given spanning substructure?

Theorem (Dirac 1952)

 $\delta(G) \ge |G|/2 \implies G$ contains a Hamilton cycle.

- Easy to see minimum degree is best-possible
- However, can significantly improve on Dirac...

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Pósa 1963)

Let G be a graph with degree sequence $d_1 \leq \cdots \leq d_n$. G is Hamiltonian if

 $d_i \geq i+1 \quad \forall \ i < n/2.$

Theorem (Pósa 1963)

Let G be a graph with degree sequence $d_1 \leq \cdots \leq d_n$. G is Hamiltonian if

$$d_i \geq i+1 \quad \forall \ i < n/2.$$

- Much stronger than Dirac's theorem
- Condition best-possible in sense cannot replace with d_i ≥ i even for a single value of i

Theorem (Chvátal 1972)

Let G be a graph with degree sequence $d_1 \leq \cdots \leq d_n$. G is Hamiltonian if

$$d_i \ge i+1$$
 or $d_{n-i} \ge n-i$ $\forall i < n/2$.

• Chvátal's theorem characterises all those 'Hamiltonian degree sequences'.

Question

Why study degree sequence conditions?

- Prove much more general analogues of classical minimum degree results
- Provides a useful setting to refine/develop methods (e.g. developing absorbing and regularity methods to deal with 'small' degree vertices)

- 4 同 6 4 日 6 4 日 6

Question

Why study degree sequence conditions?

- Prove much more general analogues of classical minimum degree results
- Provides a useful setting to refine/develop methods (e.g. developing absorbing and regularity methods to deal with 'small' degree vertices)

- An *H*-tiling in *G* is a collection of vertex-disjoint copies of *H* in *G*.
- An *H*-tiling is perfect if it covers all vertices in *G*.

$$\begin{array}{c} \mathbb{A} \ \mathbb{A} \ \mathbb{A} \\ \mathbb{A} \ \mathbb{A} \ \mathbb{A} \\ \mathbb{A} \ \mathbb{A} \ \mathbb{A} \end{array}$$

Theorem (Hajnal, Szemerédi 1970)

G graph,
$$|G| = n$$
 where $r|n$ and $\delta(G) \ge (1 - 1/r)$.

 \implies G contains a perfect K_r-tiling.

Conjecture (Balogh, Kostochka and T. 2013)

G graph, |G| = n where r|n with degree sequence $d_1 \leq \cdots \leq d_n$ such that:

(
$$\alpha$$
) $d_i \ge (1-2/r)n + i$ for all $i < n/r$;

(
$$\beta$$
) $d_{n/r+1} \ge (1-1/r)n$.

=

$$\Rightarrow$$
 G contains a perfect K_r -tiling.

- If true, stronger than Hajnal–Szemerédi since *n*/*r* vertices allowed 'small' degree.
- If true, best-possible.

(4月) イヨト イヨト

T. (2016) asymptotically resolved the conjecture.

 $d_i \geq (1-2/r+\eta) n + i$ $\forall i < n/r$

- Komlós (2000) asymptotically determined the minimum degree threshold that forces an *H*-tiling covering an *x*th proportion of the vertices of *G* for *all* graphs *H* and all *x* ∈ (0, 1).
- Komlós's bound depends on the so-called *critical chromatic number* of *H*
- Very recently, Piguet and Saumell (2018+) and Hyde, Liu, T. (2018+) proved different types of degree sequence versions of this result.

- (目) - (日) - (日)

- Komlós (2000) asymptotically determined the minimum degree threshold that forces an *H*-tiling covering an *x*th proportion of the vertices of *G* for *all* graphs *H* and all *x* ∈ (0, 1).
- Komlós's bound depends on the so-called *critical chromatic number* of *H*
- Very recently, Piguet and Saumell (2018+) and Hyde, Liu, T. (2018+) proved different types of degree sequence versions of this result.

伺い イヨト イヨト

Powers of Hamilton cycles

(4月) (4日) (4日)

Powers of Hamilton cycles

Proved for large graphs by Komlós, Sárközy and Szemerédi (1996)

Theorem (Staden and T. 2017)

 $\forall \eta > 0 \exists n_0 \in \mathbb{N} \text{ s.t. if } G \text{ on } n \geq n_0 \text{ vertices with}$

$$d_i \geq \left(rac{1}{3} + \eta
ight) n + i \quad ext{for all } i \leq rac{n}{3}$$

⇒ G contains the square of a Hamilton cycle.

Andrew Treglown Embeddings in graphs via degree sequence conditions

Theorem (Staden and T. 2017)

 $\forall \ \eta > 0 \ \exists \ n_0 \in \mathbb{N} \ s.t.$ if G on $n \ge n_0$ vertices with

$$d_i \geq \left(rac{1}{3} + \eta
ight) n + i \quad ext{for all } i \leq rac{n}{3}$$

 \Rightarrow G contains the square of a Hamilton cycle.

- Doesn't quite imply Komlós-Sárközy-Szemerédi
- Up to error terms, the 'slope' is best-possible
- Perhaps surprisingly ηn cannot be replaced by $o(\sqrt{n})$ here!

Open problem

Prove a version for kth powers of Hamilton cycles

- A 🗇 🕨 - A 🖻 🕨 - A 🖻

Theorem (Komlós, Sárközy and Szemerédi 1995)

 $\forall \gamma > 0, \Delta \in \mathbb{N}, \exists n_0 \in \mathbb{N} \text{ s.t. if } G \text{ is n-vertex where } n \ge n_0 \text{ and}$

 $\delta(G) \ge (1/2 + \gamma)n$

 \implies G contains every spanning tree T with $\Delta(T) \leq \Delta$.

Theorem (Knox, T. 2013)

 $\forall \gamma > 0, \Delta \in \mathbb{N}, \exists n_0 \in \mathbb{N} \text{ s.t. if } G \text{ is n-vertex where } n \geq n_0 \text{ and}$

$$d_i \geq i + \gamma n \qquad \forall \ i < n/2$$

 \Rightarrow G contains every spanning tree T with $\Delta(T) \leq \Delta$.

In fact proved a much more general bipartite bandwidth theorem.

REAL ALLAND

Theorem (Komlós, Sárközy and Szemerédi 1995)

 $\forall \gamma > 0, \Delta \in \mathbb{N}, \exists n_0 \in \mathbb{N} \text{ s.t. if } G \text{ is n-vertex where } n \ge n_0 \text{ and}$

 $\delta(G) \geq (1/2 + \gamma)n$

 \implies G contains every spanning tree T with $\Delta(T) \leq \Delta$.

Theorem (Knox, T. 2013)

 $\forall \gamma > 0, \Delta \in \mathbb{N}, \exists n_0 \in \mathbb{N} \text{ s.t. if } G \text{ is n-vertex where } n \ge n_0 \text{ and}$

$$d_i \geq i + \gamma n \qquad \forall \ i < n/2$$

 \implies G contains every spanning tree T with $\Delta(T) \leq \Delta$.

In fact proved a much more general bipartite bandwidth theorem.

ヘロト ヘヨト ヘヨト ヘヨト

Theorem (Komlós, Sárközy and Szemerédi 2001)

 $\forall \gamma > 0, \exists n_0 \in \mathbb{N}, c > 0 \text{ s.t. if } G \text{ is n-vertex where } n \ge n_0 \text{ and}$

 $\delta(G) \geq (1/2 + \gamma)n$

 \implies G contains every spanning tree T with $\Delta(T) \leq cn/\log n$.

• $\Delta(T)$ condition best-possible.

Open problem

Prove a degree sequence version of this result!

(4月) イヨト イヨト

Theorem (Komlós, Sárközy and Szemerédi 2001)

 $\forall \gamma > 0, \exists n_0 \in \mathbb{N}, c > 0 \text{ s.t. if } G \text{ is n-vertex where } n \ge n_0 \text{ and}$

 $\delta(G) \geq (1/2 + \gamma)n$

 \implies G contains every spanning tree T with $\Delta(T) \leq cn/\log n$.

• $\Delta(T)$ condition best-possible.

Open problem

Prove a degree sequence version of this result!

▲圖▶ ▲屋▶ ▲屋▶

PER 40

- Prove a degree sequence version of the Bandwidth theorem (a special case of Knox-T. (2013) resolves the bipartite case)
- Directed graphs
 - e.g. the Nash-Williams conjecture for Hamilton cycles
 - Asymptotic results due to Kühn, Osthus, T. (2010); Christofides, Keevash, Kühn and Osthus (2010).
- Hypergraphs
 - e.g. perfect matching, Hamilton cycles, tilings...

向下 イヨト イヨト