
Embeddings in graphs via degree sequence
conditions

Andrew Treglown

University of Birmingham

August 27th 2018

Includes joint work with Joseph Hyde and Hong Liu; Fiachra Knox;
Katherine Staden.

Andrew Treglown Embeddings in graphs via degree sequence conditions



Minimum degree conditions

Question

What minimum degree condition forces a graph to contain a given
spanning substructure?

Theorem (Dirac 1952)

δ(G ) ≥ |G |/2 =⇒ G contains a Hamilton cycle.

Easy to see minimum degree is best-possible

However, can significantly improve on Dirac...
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Pósa’s theorem

Theorem (Pósa 1963)

Let G be a graph with degree sequence d1 ≤ · · · ≤ dn. G is
Hamiltonian if

di ≥ i + 1 ∀ i < n/2.
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Pósa’s theorem

Theorem (Pósa 1963)

Let G be a graph with degree sequence d1 ≤ · · · ≤ dn. G is
Hamiltonian if

di ≥ i + 1 ∀ i < n/2.

Much stronger than Dirac’s theorem

Condition best-possible in sense cannot replace with
di ≥ i even for a single value of i
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Chvátal’s theorem

Theorem (Chvátal 1972)

Let G be a graph with degree sequence d1 ≤ · · · ≤ dn. G is
Hamiltonian if

di ≥ i + 1 or dn−i ≥ n − i ∀ i < n/2.

Chvátal’s theorem characterises all those ‘Hamiltonian degree
sequences’.

Andrew Treglown Embeddings in graphs via degree sequence conditions



Question

Why study degree sequence conditions?

Prove much more general analogues of classical minimum
degree results

Provides a useful setting to refine/develop methods
(e.g. developing absorbing and regularity methods to deal
with ‘small’ degree vertices)
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Perfect tilings in graphs

An H-tiling in G is a collection of vertex-disjoint copies of H
in G .

An H-tiling is perfect if it covers all vertices in G .

Theorem (Hajnal, Szemerédi 1970)

G graph, |G | = n where r |n and

δ(G ) ≥ (1− 1/r) n

=⇒ G contains a perfect Kr -tiling.
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Degree sequence conditions

Conjecture (Balogh, Kostochka and T. 2013)

G graph, |G | = n where r |n with degree sequence d1 ≤ · · · ≤ dn
such that:

(α) di ≥ (1− 2/r)n + i for all i < n/r ;

(β) dn/r+1 ≥ (1− 1/r)n.

=⇒ G contains a perfect Kr -tiling.

If true, stronger than Hajnal–Szemerédi since n/r vertices
allowed ‘small’ degree.

If true, best-possible.
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Degree sequence conditions

T. (2016) asymptotically resolved the conjecture.
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di ≥ (1− 2/r + η) n + i
∀ i < n/r

Andrew Treglown Embeddings in graphs via degree sequence conditions



Tilings in graphs

Komlós (2000) asymptotically determined the minimum
degree threshold that forces an H-tiling covering an xth
proportion of the vertices of G for all graphs H and all
x ∈ (0, 1).

Komlós’s bound depends on the so-called critical chromatic
number of H

Very recently, Piguet and Saumell (2018+) and Hyde, Liu, T.
(2018+) proved different types of degree sequence versions of
this result.
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Powers of Hamilton cycles

Conjecture (Pósa 1962)

G n-vertex and
δ(G ) ≥ 2n/3

=⇒ G contains square of a Hamilton cycle

Proved for large graphs by Komlós, Sárközy and Szemerédi (1996)
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Powers of Hamilton cycles

Theorem (Staden and T. 2017)

∀ η > 0 ∃ n0 ∈ N s.t. if G on n ≥ n0 vertices with

di ≥
(

1

3
+ η

)
n + i for all i ≤ n

3

=⇒ G contains the square of a Hamilton cycle.
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Powers of Hamilton cycles

Theorem (Staden and T. 2017)

∀ η > 0 ∃ n0 ∈ N s.t. if G on n ≥ n0 vertices with

di ≥
(

1

3
+ η

)
n + i for all i ≤ n

3

=⇒ G contains the square of a Hamilton cycle.

Doesn’t quite imply Komlós–Sárközy–Szemerédi

Up to error terms, the ‘slope’ is best-possible

Perhaps surprisingly ηn cannot be replaced by o(
√
n) here!

Open problem

Prove a version for kth powers of Hamilton cycles
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Embedding spanning trees

Theorem (Komlós, Sárközy and Szemerédi 1995)

∀ γ > 0, ∆ ∈ N, ∃ n0 ∈ N s.t. if G is n-vertex where n ≥ n0 and

δ(G ) ≥ (1/2 + γ)n

=⇒ G contains every spanning tree T with ∆(T ) ≤ ∆.

Theorem (Knox, T. 2013)

∀ γ > 0, ∆ ∈ N, ∃ n0 ∈ N s.t. if G is n-vertex where n ≥ n0 and

di ≥ i + γn ∀ i < n/2

=⇒ G contains every spanning tree T with ∆(T ) ≤ ∆.

In fact proved a much more general bipartite bandwidth theorem.
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Embedding spanning trees

Theorem (Komlós, Sárközy and Szemerédi 2001)

∀ γ > 0, ∃ n0 ∈ N, c > 0 s.t. if G is n-vertex where n ≥ n0 and

δ(G ) ≥ (1/2 + γ)n

=⇒ G contains every spanning tree T with ∆(T ) ≤ cn/ log n.

∆(T ) condition best-possible.

Open problem

Prove a degree sequence version of this result!
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Further research directions

Prove a degree sequence version of the Bandwidth theorem
(a special case of Knox-T. (2013) resolves the bipartite case)

Directed graphs

e.g. the Nash–Williams conjecture for Hamilton cycles
Asymptotic results due to Kühn, Osthus, T. (2010);
Christofides, Keevash, Kühn and Osthus (2010).

Hypergraphs

e.g. perfect matching, Hamilton cycles, tilings...
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