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Minimum degree conditions
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Minimum degree conditions

1. C,: Hamilton 2. Perfect 3. C’: rth power of
cycle K,-packing a Hamilton cycle
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Dirac 1952 Hajnal-Szemerédi (Pésa 1962,
1970 Seymour 1974)
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Degree sequence conditions

e The minimum degree condition in each of these results is
best-possible.

e This does not mean we cannot strengthen these results
considerably though.

Degree sequence of G: write the degrees of vertices in G as
d <dr<...<dp,.
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Degree sequence results
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Degree sequence results

2. Perfect
K,-packing n

AMNA ol
AAA degree
2L T

w|3

T. 2014+ 0, 20 n

vertices
7

Andrew Treglown



Main result
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Doesn’t quite imply Komlés—Sarkozy—Szemerédi theorem.
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An extremal example
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An extremal example
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An extremal example

+i forall i< would be best possible for triangle packing:
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An extremal example

+i forall i< would be best possible for triangle packing:

wl| s

w3

vertices 2?" — 21 + 1 i1
i
So our result is best possible up to the nn term.

...but in fact nn cannot be replaced by o(1/n).
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Proof idea

leftover
%
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Remove a randomly chosen
reservoir R of order o(n). Any two
square paths can be connected via
R.

Find a collection of vertex-disjoint
square paths which cover

(1 — o(1))n vertices in the
remaining graph.

Connect successive square paths
into a cycle via R.

Square cycle of length (1 — o(1))n.

Hamilton square cycle.
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Use the regularity lemma to find
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which inherit the structure of the
reduced graph.
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Open problems and questions

e Is it true that any (large) graph G on n vertices with degree
sequence at least

n
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contains a square Hamilton cycle?
( = Komlés-Sarkozy-Szemerédi)
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e What about higher powers of Hamilton cycles? Does the
degree sequence

d: > r_1+ L fori< 2
H E—— n ) or | E——
"= \r+1 K ~—r+1

guarantee the r'" power of a Hamilton cycle?
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