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Spanning subgraphs of graphs

Question
When does a graph G contain a given spanning subgraph H?

(|G | = n)

Natural spanning structures H:
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Minimum degree conditions

1. Cn: Hamilton
cycle

Dirac 1952

δ(G ) ≥ n/2

2. Perfect
Kr -packing

Hajnal-Szemerédi
1970

r |n
δ(G ) ≥ r−1

r n

3. C r
n : r th power of

a Hamilton cycle

(Pósa 1962,
Seymour 1974)

Komlós-Sárközy-
Szemerédi

1998
δ(G ) ≥ r

r+1n
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Degree sequence conditions

• The minimum degree condition in each of these results is
best-possible.

• This does not mean we cannot strengthen these results
considerably though.

Degree sequence of G : write the degrees of vertices in G as
d1 ≤ d2 ≤ . . . ≤ dn.
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Degree sequence results

1. Cn: Hamilton
cycle

Pósa 1962

di ≥ i + 1 for all i < n
2

vertices
i

1 n
2

n

degree

di

0

n
2

n
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Degree sequence results

1. Cn: Hamilton
cycle

Chvátal 1972

di ≥ i + 1 or dn−i ≥ n − i for all i < n
2

vertices
i

1 n
2

n

degree

di

0

n
2

n
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Degree sequence results

2. Perfect
Kr -packing

T. 2014+

di ≥
(
r−2
r + η

)
n + i for all i ≤ n

r

vertices
i

1 n
3

2n
3

n

degree

di

0

n
3

2n
3

n
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Main result

Theorem (Staden and T.,
2014+)

∀ η > 0 ∃ n0 ∈ N s.t. if G on
n ≥ n0 vertices with

di ≥
(

1

3
+ η

)
n+i for all i ≤ n

3

=⇒ G contains the square of a
Hamilton cycle. vertices

i

1 n
3

2n
3

n

degree

di

0

n
3

2n
3

n

Doesn’t quite imply Komlós–Sárközy–Szemerédi theorem.
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An extremal example

If 3|n and G contains the square
of a Hamilton cycle, then G
contains a perfect triangle
packing.
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An extremal example

di ≥
n

3
+i for all i <

n

3
would be best possible for triangle packing:

vertices
i

1 n
3

2n
3

n

degree

di

0

n
3

2n
3

n
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i
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3
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3

n
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n
3
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3

n
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n
3
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So our result is best possible up to the ηn term.
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An extremal example

di ≥
n

3
+i for all i <

n

3
would be best possible for triangle packing:

vertices
i

1 i n
3

2n
3

n

degree

di

0

n
3

2n
3

n

2n
3 − 2i+ 1

n
3

i− 1

i

So our result is best possible up to the ηn term.
...but in fact ηn cannot be replaced by o(

√
n).
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Proof idea
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Proof idea

R

• Remove a randomly chosen
reservoir R of order o(n). Any two
square paths can be connected via
R.
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Proof idea

R

leftover

• Remove a randomly chosen
reservoir R of order o(n). Any two
square paths can be connected via
R.

• Find a collection of vertex-disjoint
square paths which cover
(1− o(1))n vertices in the
remaining graph.

• Connect successive square paths
into a cycle via R.

→ Square cycle of length (1− o(1))n.

. . .→ Hamilton square cycle.
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Proof idea

R

leftover

Some difficulties...
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Open problems and questions

• Is it true that any (large) graph G on n vertices with degree
sequence at least

n

3
+ 1+ηn,

n

3
+ 2+ηn, . . . ,

2n

3
,

2n

3
, . . . ,

2n

3

contains a square Hamilton cycle?
( =⇒ Komlós-Sárközy-Szemerédi)

• What about higher powers of Hamilton cycles? Does the
degree sequence

di ≥
(
r − 1

r + 1
+ η

)
n + i for i ≤ n

r + 1

guarantee the r th power of a Hamilton cycle?
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