A random version of Sperner's theorem

Andrew Treglown

University of Birmingham

BCC, July 2015

Joint work with József Balogh (University of Illinois) and Richard Mycroft (University of Birmingham)

Birmingham, September 18-20 2015

- Plenary speakers: Noga Alon, Keith Ball, Béla Bollobás, Timothy Gowers, Stefanie Petermichl, and Aner Shalev
- Invited Combinatorics speakers: József Balogh, Mihyun Kang, Michael Krivelevich, Marc Noy, Wojciech Samotij, Mathias Schacht, Benny Sudakov
- Chance for postdocs to give talks, student poster session
- Registration: Free for students, £20 otherwise.

http://web.mat.bham.ac.uk/emslmsweekend/

伺い イヨト イヨト

Recently, there has been a focus on developing *random* analogues of classical theorems in Combinatorics:

- Ramsey's theorem: Frankl, Rödl, Łuczak, Ruciński, Voigt, Conlon, Gowers, Friedgut, Tetali...
- Turán's theorem: Haxell, Kohayakawa, Łuczak, Schacht, Conlon, Gowers, Balogh, Morris, Samotij...
- Erdős–Ko–Rado theorem: Balogh, Bohman, Mubayi, Hamm, Kahn,...
- Szemerédi's theorem: Kohayakawa, Łuczak, Rödl, Schacht, Conlon, Gowers, Balogh, Morris, Samotij ...

See survey 'Combinatorial theorems relative to a random set' (Conlon) for more details.

伺下 イヨト イヨト

Antichains and Sperner's theorem

- $[n] := \{1, \ldots, n\}$
- $\mathcal{P}(n)$ denotes power set of [n]
- $\mathcal{A} \subseteq \mathcal{P}(n)$ antichain if $\nexists A, B \in \mathcal{A}$ s.t. $A \subset B$

Theorem (Sperner, 1928)

The largest antichain in $\mathcal{P}(n)$ has size $\binom{n}{\lfloor n/2 \rfloor}$.

The Random model $\mathcal{P}(n, p)$

- \$\mathcal{P}(n, p)\$ is obtained from \$\mathcal{P}(n)\$ by selecting each element of \$\mathcal{P}(n)\$ with probability \$p\$
- Model first considered by Rényi (1961) who determined the probability threshold for the property that $\mathcal{P}(n, p)$ is not an antichain itself

Question (Kohayakawa and Kreuter)

For what values of p does the following hold? With high probability, the largest antichain in $\mathcal{P}(n, p)$ has size

$$(1+o(1))p\binom{n}{n/2}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proposition (Osthus 2000)

Suppose p = c/n where c > 0 is fixed. Whp largest antichain in $\mathcal{P}(n, p)$ has size at least

$$(1+o(1))(1+e^{-c/2})p\binom{n}{n/2}.$$

Theorem (Osthus 2000)

If pn/log n $\rightarrow \infty$, then whp the largest antichain in $\mathcal{P}(n,p)$ has size

$$(1+o(1))p\binom{n}{n/2}.$$

・ 同・ ・ ヨ・

TRS 40

Theorem (Balogh, Mycroft, T. 2014)

 $\forall \varepsilon > 0, \exists C \text{ s.t. if } p > C/n \text{ then whp largest antichain in } \mathcal{P}(n, p)$ has size at most

$$(1+\varepsilon)p\binom{n}{n/2}.$$

- Completely solves Kohayakawa–Kreuter question
- Independently proven by Collares Neto and Morris

TRR 40

Theorem (Balogh, Mycroft, T. 2014)

 $\forall \varepsilon > 0, \exists C \text{ s.t. if } p > C/n \text{ then whp largest antichain in } \mathcal{P}(n, p)$ has size at most

$$(1+\varepsilon)p\binom{n}{n/2}.$$

Naïve strategy:

- If A antichain then whp intersection of A in $\mathcal{P}(n, p)$ is $(1 \pm \varepsilon)p|A|$.
- Sum up these events
- Problem is there are too many events!! (Kleitman: 2^{(1+o(1)) n/2} antichains)

Lemma

There is a collection \mathcal{F} where each $F \in \mathcal{F}$ is a subset of $\mathcal{P}(n)$ and (i) $|\mathcal{F}| = o(2^{\binom{n}{n/2}});$ (ii) $|F| \le (1 + \varepsilon/2) \binom{n}{n/2}$ for all $F \in \mathcal{F}$; (iii) Every antichain lies in some element of \mathcal{F} .

- Example of a Container result
- (i)-(ii) ensures that whp P(n, p) contains at most
 (1 + ε)p(ⁿ_{n/2}) elements from F for all F ∈ F;
- (iii) implies whp every antichain in $\mathcal{P}(n,p)$ has size at most $(1+\varepsilon)p\binom{n}{n/2}$

高 とう モン・ く ヨ と

Lemma

There is a collection \mathcal{F} where each $F \in \mathcal{F}$ is a subset of $\mathcal{P}(n)$ and (i) $|\mathcal{F}| = o(2^{\binom{n}{n/2}});$ (ii) $|F| \le (1 + \varepsilon/2)\binom{n}{n/2}$ for all $F \in \mathcal{F}$; (iii) Every antichain lies in some element of \mathcal{F} .

Define auxiliary graph G where:

- $V(G) = \mathcal{P}(n);$
- A and B are adjacent if and only if $A \subset B$ or $B \subset A$.

So the independent sets in G are precisely the antichains in $\mathcal{P}(n)$.

FRA AP

Fix total ordering v_1, \ldots, v_{2^n} of vertices in G. Fix independent set I in GAlgorithm: Let $G_0 = G$: $S = \emptyset$. Step i: Let $u \in V(G_{i-1})$ s.t. $d_{G_{i-1}}(u) = \Delta(G_{i-1})$ • If $u \notin I$ set $G_i := G_{i-1} \setminus \{u\}$. • If $u \in I$ and $d_{G_{i-1}}(u) \geq \varepsilon n$ add u to S and let $G_i := G_{i-1} \setminus (\{u\} \cup N_G(u)).$ • If $u \in I$ and $d_{G_{i-1}}(u) < \varepsilon n$ add u to S, set $G_i := G_{i-1} \setminus \{u\}$ and stop.

At end define container $F := S \cup V(G_i)$.

高 とう モン・ く ヨ と

Question

For what values of p does the following hold? With high probability, the largest antichain in $\mathcal{P}(n, p)$ consists precisely of the elements of the middle layer.

• Hamm and Kahn (2014+) have answered question in the affirmative for $p > 1 - \varepsilon$ for some fixed $\varepsilon > 0$.