A random version of Sperner's theorem

LMS-EMS Mathematical Weekend

Birmingham, September 18-20 2015

- Plenary speakers: Noga Alon, Keith Ball, Béla Bollobás, Timothy Gowers, Stefanie Petermichl, and Aner Shalev
- Invited Combinatorics speakers: József Balogh, Mihyun Kang, Michael Krivelevich, Marc Noy, Wojciech Samotij, Mathias Schacht, Benny Sudakov
- Chance for postdocs to give talks, student poster session
- Registration: Free for students, £20 otherwise.
http://web.mat.bham.ac.uk/emslmsweekend/

Random versions of classical theorems

Recently, there has been a focus on developing random analogues of classical theorems in Combinatorics:

- Ramsey's theorem: Frankl, Rödl, Łuczak, Ruciński, Voigt, Conlon, Gowers, Friedgut, Tetali...
- Turán's theorem: Haxell, Kohayakawa, Łuczak, Schacht, Conlon, Gowers, Balogh, Morris, Samotij...
- Erdős-Ko-Rado theorem: Balogh, Bohman, Mubayi, Hamm, Kahn,...
- Szemerédi's theorem: Kohayakawa, Łuczak, Rödl, Schacht, Conlon, Gowers, Balogh, Morris, Samotij ...
See survey 'Combinatorial theorems relative to a random set' (Conlon) for more details.

Antichains and Sperner's theorem

- $[n]:=\{1, \ldots, n\}$
- $\mathcal{P}(n)$ denotes power set of $[n]$
- $\mathcal{A} \subseteq \mathcal{P}(n)$ antichain if $\nexists A, B \in \mathcal{A}$ s.t. $A \subset B$

Theorem (Sperner, 1928)

The largest antichain in $\mathcal{P}(n)$ has size $\binom{n}{\lfloor n / 2\rfloor}$.

The Random model $\mathcal{P}(n, p)$

- $\mathcal{P}(n, p)$ is obtained from $\mathcal{P}(n)$ by selecting each element of $\mathcal{P}(n)$ with probability p
- Model first considered by Rényi (1961) who determined the probability threshold for the property that $\mathcal{P}(n, p)$ is not an antichain itself

Question (Kohayakawa and Kreuter)

For what values of p does the following hold? With high probability, the largest antichain in $\mathcal{P}(n, p)$ has size

$$
(1+o(1)) p\binom{n}{n / 2} .
$$

Previous results

Proposition (Osthus 2000)

Suppose $p=c / n$ where $c>0$ is fixed. Whp largest antichain in $\mathcal{P}(n, p)$ has size at least

$$
(1+o(1))\left(1+e^{-c / 2}\right) p\binom{n}{n / 2}
$$

Theorem (Osthus 2000)

If $p n / \log n \rightarrow \infty$, then whp the largest antichain in $\mathcal{P}(n, p)$ has size

$$
(1+o(1)) p\binom{n}{n / 2}
$$

A random version of Sperner's theorem

Theorem (Balogh, Mycroft, T. 2014)

$\forall \varepsilon>0, \exists C$ s.t. if $p>C / n$ then whp largest antichain in $\mathcal{P}(n, p)$ has size at most

$$
(1+\varepsilon) p\binom{n}{n / 2} .
$$

- Completely solves Kohayakawa-Kreuter question
- Independently proven by Collares Neto and Morris

A random version of Sperner's theorem

Theorem (Balogh, Mycroft, T. 2014)

$\forall \varepsilon>0, \exists C$ s.t. if $p>C / n$ then whp largest antichain in $\mathcal{P}(n, p)$ has size at most

$$
(1+\varepsilon) p\binom{n}{n / 2} .
$$

Naïve strategy:

- If \mathcal{A} antichain then whp intersection of \mathcal{A} in $\mathcal{P}(n, p)$ is $(1 \pm \varepsilon) p|\mathcal{A}|$.
- Sum up these events
- Problem is there are too many events!!
(Kleitman: $2^{(1+o(1))\binom{n}{n / 2}}$ antichains)

Proof strategy

Lemma

There is a collection \mathcal{F} where each $F \in \mathcal{F}$ is a subset of $\mathcal{P}(n)$ and
(i) $|\mathcal{F}|=o\left(2^{\binom{n}{n / 2}}\right.$;
(ii) $|F| \leq(1+\varepsilon / 2)\binom{n}{n / 2}$ for all $F \in \mathcal{F}$;
(iii) Every antichain lies in some element of \mathcal{F}.

- Example of a Container result
- (i)-(ii) ensures that whp $\mathcal{P}(n, p)$ contains at most $(1+\varepsilon) p\binom{n}{n / 2}$ elements from F for all $F \in \mathcal{F}$;
- (iii) implies whp every antichain in $\mathcal{P}(n, p)$ has size at most $(1+\varepsilon) p\binom{n}{n / 2}$

Proof of Container lemma

Lemma

There is a collection \mathcal{F} where each $F \in \mathcal{F}$ is a subset of $\mathcal{P}(n)$ and (i) $|\mathcal{F}|=o\left(2^{\binom{n}{n / 2}}\right.$;
(ii) $|F| \leq(1+\varepsilon / 2)\binom{n}{n / 2}$ for all $F \in \mathcal{F}$;
(iii) Every antichain lies in some element of \mathcal{F}.

Define auxiliary graph G where:

- $V(G)=\mathcal{P}(n)$;
- A and B are adjacent if and only if $A \subset B$ or $B \subset A$.

So the independent sets in G are precisely the antichains in $\mathcal{P}(n)$.

Algorithm for Container lemma

Fix total ordering $v_{1}, \ldots, v_{2^{n}}$ of vertices in G.
Fix independent set l in G

Algorithm:

Let $G_{0}=G ; S=\emptyset$.
Step i :
Let $u \in V\left(G_{i-1}\right)$ s.t. $d_{G_{i-1}}(u)=\Delta\left(G_{i-1}\right)$

- If $u \notin I$ set $G_{i}:=G_{i-1} \backslash\{u\}$.
- If $u \in I$ and $d_{G_{i-1}}(u) \geq \varepsilon n$ add u to S and let $G_{i}:=G_{i-1} \backslash\left(\{u\} \cup N_{G}(u)\right)$.
- If $u \in I$ and $d_{G_{i-1}}(u)<\varepsilon n$ add u to S, set $G_{i}:=G_{i-1} \backslash\{u\}$ and stop.

At end define container $F:=S \cup V\left(G_{i}\right)$.

Open problem

Question

For what values of p does the following hold? With high probability, the largest antichain in $\mathcal{P}(n, p)$ consists precisely of the elements of the middle layer.

- Hamm and Kahn (2014+) have answered question in the affirmative for $p>1-\varepsilon$ for some fixed $\varepsilon>0$.

