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Abstract. Given a linear equation L, a set A ⊆ [n] is L-free if A does not contain any ‘non-trivial’
solutions to L. In this paper we consider the following three general questions:

(i) What is the size of the largest L-free subset of [n]?
(ii) How many L-free subsets of [n] are there?

(iii) How many maximal L-free subsets of [n] are there?
We completely resolve (i) in the case when L is the equation px + qy = z for fixed p, q ∈ N where
p ≥ 2. Further, up to a multiplicative constant, we answer (ii) for a wide class of such equations L,
thereby refining a special case of a result of Green [18]. We also give various bounds on the number
of maximal L-free subsets of [n] for three-variable homogeneous linear equations L. For this, we
make use of container and removal lemmas of Green [18].

1. Introduction

Let [n] := {1, . . . , n} and consider a fixed linear equation L of the form

a1x1 + · · ·+ akxk = b(1)

where a1, . . . , ak, b ∈ Z. If b = 0 we say that L is homogeneous. If∑
i∈[k]

ai = b = 0

then we say that L is translation-invariant. Let L be translation-invariant. Then notice that
(x, . . . , x) is a ‘trivial’ solution of (1) for any x. More generally, a solution (x1, . . . , xk) to L is said
to be trivial if there exists a partition P1, . . . , P` of [k] so that:

(i) xi = xj for every i, j in the same partition class Pr;
(ii) For each r ∈ [`],

∑
i∈Pr

ai = 0.

A set A ⊆ [n] is L-free if A does not contain any non-trivial solutions to L. If the equation L is
clear from the context, then we simply say A is solution-free.

The notion of an L-free set encapsulates many fundamental topics in combinatorial number
theory. Indeed, in the case when L is x1 + x2 = x3 we call an L-free set a sum-free set. This
is a notion that dates back to 1916 when Schur [34] proved that, if n is sufficiently large, any
r-colouring of [n] yields a monochromatic triple x, y, z such that x + y = z. Sidon sets (when L
is x1 + x2 = x3 + x4) have also been extensively studied. For example, a classical result of Erdős
and Turán [16] asserts that the largest Sidon set in [n] has size (1 + o(1))

√
n. In the case when

L is x1 + x2 = 2x3 an L-free set is simply a progression-free set. Roth’s theorem [27] states that
the largest progression-free subset of [n] has size o(n). In [28, 29], Ruzsa instigated the study of
solution-free sets for general linear equations.

In this paper we prove a number of results concerning L-free subsets of [n] where L is a homo-
geneous linear equation in three variables. In particular, our work is motivated by the following
general questions:

(i) What is the size of the largest L-free subset of [n]?
(ii) How many L-free subsets of [n] are there?
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(iii) How many maximal L-free subsets of [n] are there?

We make progress on all three of these questions. For each question we use tools from graph theory;
for (i) and (ii) our methods are somewhat elementary. For (iii) our method is more involved and
utilises container and removal lemmas of Green [18].

1.1. The size of the largest solution-free set. As highlighted above, a central question in the
study of L-free sets is to establish the size µL(n) of the largest L-free subset of [n]. It is not difficult
to see that the largest sum-free subset of [n] has size dn/2e, and this bound is attained by the set
of odd numbers in [n] and by the interval [bn/2c+ 1, n].

When L is x1 + x2 = 2x3, µL(n) = o(n) by Roth’s theorem. In fact, very recently Bloom [9]
proved that there is a constant C such that every set A ⊆ [n] with |A| ≥ Cn(log log n)4/ log n
contains a three-term arithmetic progression. On the other hand, Behrend [7] showed that there is
a constant c > 0 so that µL(n) ≥ n exp(−c

√
log n). See [15, 19] for the best known lower bound on

µL(n) in this case.
More generally, it is known that µL(n) = o(n) if L is translation-invariant and µL(n) = Ω(n)

otherwise (see [28]). For other (exact) bounds on µL(n) for various linear equations L see, for
example, [28, 29, 6, 14, 21].

In this paper we mainly focus on L-free subsets of [n] for linear equations L of the form px+qy = z
where p ≥ 2 and q ≥ 1 are fixed integers. Notice that for such a linear equation L, the interval
[bn/(p+q)c+1, n] is an L-free set. Our first result implies that this is the largest such L-free subset
of [n]. Let min(S) denote the smallest element in a finite set S ⊆ N.

Theorem 1. Let L denote the equation px+ qy = z where p ≥ q and p ≥ 2, p, q ∈ N. Let S be an
L-free subset of [n], and let min(S) = b n

p+q c − t where t is a non-negative integer.

(i) If 0 ≤ t < ( p+q−1
p+q+p/q )b n

p+q c then |S| ≤ d (p+q−1)np+q e − bpq tc.

(ii) If t ≥ ( p+q−1
p+q+p/q )b n

p+q c then |S| ≤ (q2+1)n
q2+q+1

provided that

n ≥ max
{3(q2 + q + 1)(q3 + p(q2 + q + 1))

q2 + 1
,
5(q2 + q + 1)(q5 + p(q4 + q3 + q2 + q + 1))

q4 + (p− 1)q3 + q2 + 1

}
.

In both cases of Theorem 1 we observe that |S| ≤ n−b n
p+q c, hence the following corollary holds.

Corollary 2. Let L denote the equation px + qy = z where p ≥ q and p ≥ 2, p, q ∈ N. If n is
sufficiently large then µL(n) = n− b n

p+q c.

Roughly, Theorem 1 implies that every L-free subset of [n] is ‘interval like’ or ‘small’. In the case
of sum-free subsets (i.e. when p = q = 1), a result of Deshouillers, Freiman, Sós and Temkin [13]
provides very precise structural information on the sum-free subsets of [n]. Loosely speaking, they
showed that a sum-free subset of [n] is ‘interval like’, ‘small’ or consists entirely of odd numbers.

In the case when p = q, Corollary 2 was proven by Hegarty [21] (without a lower bound on n).

1.2. The number of solution-free sets. Write f(n,L) for the number of L-free subsets of [n].
In the case when L is x+ y = z, define f(n) := f(n,L).

By considering all possible subsets of [n] consisting of odd numbers, one observes that there are at

least 2n/2 sum-free subsets of [n]. Cameron and Erdős [11] conjectured that in fact f(n) = Θ(2n/2).
This conjecture was proven independently by Green [17] and Sapozhenko [30]. In fact, they showed

that there are constants C1 and C2 such that f(n) = (Ci + o(1))2n/2 for all n ≡ i mod 2.

Results from [23, 32] imply that there are between 2(1.16+o(1))
√
n and 2(6.45+o(1))

√
n Sidon sets in

[n]. There are also several results concerning the number of so-called (k, `)-sum-free subsets of [n]
(see, e.g., [8, 10, 33]).
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More generally, given a linear equation L, there are at least 2µL(n) L-free subsets of [n]. In light

of the situation for sum-free sets one may ask whether, in general, f(n,L) = Θ(2µL(n)). However,
Cameron and Erdős [11] observed that this is false for translation-invariant L. In particular, given
such an L-free set, any translation of it is also L-free.

Green [18] though showed that given a homogeneous linear equation L, f(n,L) = 2µL(n)+o(n)

(where here the o(n) may depend on L). Our next result implies that one can omit the term o(n)
in the exponent for certain types of linear equation L.

Theorem 3. Fix p, q ∈ N where (i) q ≥ 2 and p > q(3q − 2)/(2q − 2) or (ii) q = 1 and p ≥ 3. Let
L denote the equation px+ qy = z. Then

f(n,L) = Θ(2µL(n)).

1.3. The number of maximal solution-free sets. Given a linear equation L, we say that
S ⊆ [n] is a maximal L-free subset of [n] if it is L-free and it is not properly contained in another
L-free subset of [n]. Write fmax(n,L) for the number of maximal L-free subsets of [n]. In the case
when L is x+ y = z, define fmax(n) := fmax(n,L).

A significant proportion of the sum-free subsets of [n] lie in just two maximal sum-free sets,
namely the set of odd numbers in [n] and the interval [bn/2c+1, n]. This led Cameron and Erdős [12]
to ask whether fmax(n) = o(f(n)) or even fmax(n) ≤ f(n)/2εn for some constant ε > 0.  Luczak

and Schoen [25] answered this question in the affirmative, showing that fmax(n) ≤ 2n/2−2
−28n for

sufficiently large n. Later, Wolfovitz [35] proved that fmax(n) ≤ 23n/8+o(n). Very recently, Balogh,
Liu, Sharifzadeh and Treglown [2, 3] proved the following: For each 1 ≤ i ≤ 4, there is a constant

Ci such that, given any n ≡ i mod 4, fmax(n) = (Ci + o(1))2n/4.
Except for sum-free sets, the problem of determining the number of maximal solution-free subsets

of [n] remains wide open. In this paper we give a number of bounds on fmax(n,L) for homogeneous
linear equations L in three variables. The next result gives a general upper bound for such L.
Given a three-variable linear equation L, an L-triple is a multiset {x, y, z} which forms a solution
to L. Let µ∗L(n) denote the number of elements x ∈ [n] that do not lie in any L-triple in [n].

Theorem 4. Let L be a fixed homogenous three-variable linear equation. Then

fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n).

Theorem 4 together with the aforementioned result of Green shows that fmax(n,L) is significantly
smaller than f(n,L) for all homogeneous three-variable linear equations L that are not translation-
invariant. So in this sense it can be viewed as a generalisation of the result of  Luczak and Schoen.
The proof of Theorem 4 is a simple application of container and removal lemmas of Green [18]. The
same idea was used to prove results in [5, 2, 3]. Although at first sight the bound in Theorem 4
may seem crude, perhaps surprisingly there are equations L where the value of fmax(n,L) is close
to this bound (see Proposition 21 in Section 5).

On the other hand, the following result shows that there are linear equations where the bound
in Theorem 4 is far from tight.

Theorem 5. Let L denote the equation px+qy = z where p ≥ q ≥ 2 are integers so that p ≤ q2−q
and gcd(p, q) = q. Then

fmax(n,L) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n).

In the case when L is the equation 2x + 2y = z we provide a matching lower bound. Again
though, we suspect there are equations L where the bound in Theorem 5 is far from tight. The
proof of Theorem 5 applies Theorem 1 as well as the container and removal lemmas of Green [18].

We also provide another upper bound on fmax(n,L) for a more general class of linear equations.
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Theorem 6. Let L denote the equation px+ qy = z where p ≥ q, p ≥ 2 and p, q ∈ N. Then

fmax(n,L) ≤ 2
µL(bn−p

q
c)+o(n)

.

Further, if q ≥ 2 and p > q(3q − 2)/(2q − 2) or q = 1 and p ≥ 3 then

fmax(n,L) = O(2
µL(bn−p

q
c)

).

In Section 5 we discuss in what cases a bound as in Theorem 6 is stronger than the bound in
Theorem 5 (and vice versa). We also provide lower bounds on fmax(n,L) for all equations L of the
form px+ qy = z where p, q ≥ 2 are integers; see Proposition 24.

Our results suggest that, in contrast to the case of f(n,L), it is unlikely there is a ‘simple’ general
asymptotic formula for fmax(n,L) for all homogeneous linear equations L. It would be extremely
interesting to make further progress on this problem.

The paper is organised as follows. In the next section we collect together a number of useful
tools. In Section 3 we prove Theorem 1. Theorem 3 is proven in Section 4. We prove our results
on the number of maximal L-free sets in Section 5.

2. Containers and independent sets in graphs

2.1. Container and removal lemmas. Recently the method of containers has proven powerful
in tackling a range of problems in combinatorics and other areas, in particular due to the work of
Balogh, Morris and Samotij [4] and Saxton and Thomason [31]. Roughly speaking this method
states that for certain (hyper)graphs G, the independent sets of G lie only in a small number of
subsets of V (G) called containers, where each container is an ‘almost independent set’.

Recall that, given a three-variable linear equation L, an L-triple is a multiset {x, y, z} which
forms a solution to L. Let H denote the hypergraph with vertex set [n] and edges corresponding
to L-triples. Then an independent set in H is precisely an L-free set.

The following container lemma is a special case of a result of Green (Proposition 9.1 of [18]).
Lemma 7(i)–(iii) is stated explicitly in [18]. Lemma 7(iv) follows as an immediate consequence of
Lemma 7(i) and Lemma 8 below.

Lemma 7. [18] Fix a three-variable homogeneous linear equation L. There exists a family F of
subsets of [n] with the following properties:

(i) Every F ∈ F has at most o(n2) L-triples.
(ii) If S ⊆ [n] is L-free, then S is a subset of some F ∈ F .

(iii) |F| = 2o(n).
(iv) Every F ∈ F has size at most µL(n) + o(n).

Throughout the paper we refer to the elements of F as containers. Notice that Lemma 7(iv)
gives a bound on the size of the containers in terms of µL(n) even though, in general, the precise
value of µL(n) is not known.

The following removal lemma is a special case of a result of Green (Theorem 1.5 in [18]). This
result was also generalised to systems of linear equations by Král’, Serra and Vena (Theorem 2
in [24]).

Lemma 8. [18] Fix a three-variable homogeneous linear equation L. Suppose that A ⊆ [n] is a set
containing o(n2) L-triples. Then there exist B and C such that A = B ∪ C where B is L-free and
|C| = o(n).

We will also apply the following bound on the number of L-free sets.

Theorem 9. [18] Fix a homogeneous linear equation L. Then f(n,L) = 2µL(n)+o(n).

We will use the above results to deduce upper bounds on the number of maximal L-free sets
(Theorems 4, 5 and 6).
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2.2. Independent sets in graphs. Let G be a graph and consider any subset X ⊆ V (G). Let
IS(G) denote the number of independent sets in G. Let G[X] denote the induced subgraph of G
on the vertex set X and G \X denote the induced subgraph of G on the vertex set V (G) \X.

Fact 10. Let G be a graph and let A1, . . . , Ar be a partition of V (G). Then IS(G) ≤
∏r
i=1 IS(G[Ai]).

The following simple lemma will be used in the proof of Theorem 3.

Lemma 11. Let G be a graph on n vertices and M be a matching in G which consists of e edges.
Suppose that v ∈ V (G) lies in M . Then the number of independent sets in G which contain v is at
most 3e−1 · 2n−2e.
Proof. First note that the number of independent sets in G which contain v is at most IS(G \X)
where X consists of v and its neighbour in M . Let A1, . . . , Ae be a partition of the vertex set
V (G \X), where if 1 ≤ i ≤ e− 1 then Ai contains precisely the two vertices from some edge in M .
So |Ae| = n− 2e. Clearly IS(G[Ai]) = 3 for 1 ≤ i ≤ e− 1 and IS(G[Ae]) ≤ 2n−2e. The result then
follows by Fact 10. �

2.3. Link graphs and maximal independent sets. We obtain many of our results by counting
the number of maximal independent sets in various auxiliary graphs. Similar techniques were used
in [35, 2, 3], and in the graph setting in [5, 1]. To be more precise, let B and S be disjoint subsets
of [n] and fix a three-variable linear equation L. The link graph LS [B] of S on B has vertex set B,
and an edge set consisting of the following two types of edges:

(i) Two vertices x and y are adjacent if there exists an element z ∈ S such that {x, y, z} is an
L-triple;

(ii) There is a loop at a vertex x if there exists an element z ∈ S or elements z, z′ ∈ S such that
{x, x, z} or {x, z, z′} is an L-triple.

Notice that since the only possible trivial solutions to a three-variable linear equation L are of the
form {x, x, x}, all the edges in LS [B] correspond to non-trivial L-triples.

The following simple lemma was stated in [2, 3] for sum-free sets, but extends to three-variable
linear equations.

Lemma 12. Fix a three-variable linear equation L. Suppose that B,S are disjoint L-free subsets of
[n]. If I ⊆ B is such that S ∪ I is a maximal L-free subset of [n], then I is a maximal independent
set in G := LS [B].

Let MIS(G) denote the number of maximal independent sets in G. Suppose we have a container
F ∈ F as in Lemma 7 and suppose F = A∪B where B is L-free. Observe that any maximal L-free
subset of [n] in F can be found by first choosing an L-free set S ⊆ A, and then extending S in
B. Note that by Lemma 12, the number of possible extensions of S in B (which we shall refer to
as N(S,B)) is bounded from above by the number of maximal independent sets in the link graph
LS [B] (i.e. we have N(S,B) ≤ MIS(LS [B])). Hence Lemma 12 is a useful tool for bounding the
number of maximal L-free subsets of [n].

In particular, we will apply the following result in combination with Lemma 12. The first part
was proven by Moon and Moser [26] and the second part by Hujter and Tuza [22]. We use the first
condition in the proof of Theorems 4 and 5.

Theorem 13. Suppose that G is a graph on n vertices possibly with loops. Then the following
bounds hold.

(i) MIS(G) ≤ 3n/3;

(ii) MIS(G) ≤ 2n/2 if G is additionally triangle-free.

To prove Theorem 5 we will combine Theorem 13(ii) and the following result.
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Lemma 14. Let L denote the equation px+ qy = z where p ≥ q ≥ 2 and p, q ∈ N. Let A ⊆ [1, u]
and let B ⊆ [u+1, n] for some u ∈ [n]. Consider the link graph G := LA[B] of A on B. If q2 ≥ p+q
then G is triangle-free.

Proof. Suppose that q2 ≥ p + q and suppose for a contradiction there is a triangle in G
with vertices b1 < b2 < b3. By definition of the link graph, there exist s1, s2, s3 ∈ A such that
{b1, b2, s1}, {b2, b3, s2}, {b1, b3, s3} are L-triples.

Since all numbers in A are smaller than all numbers in B we have 1 ≤ s1, s2, s3 < b1 < b2 < b3.
Also, since p ≥ q ≥ 2, for each of our L-triples {bi, bj , sk} (where bi < bj) it follows that bj must
play the role of z in L.

Define a multiset {ri ∈ {p, q} : 1 ≤ i ≤ 6, r1 6= r2, r3 6= r4, r5 6= r6}. Consider the three equations
r1b1 + r2s1 = b2, r3b2 + r4s2 = b3 and r5b1 + r6s3 = b3. Combining the second and third gives
b2 = (r5b1 + r6s3 − r4s2)/r3. Then combining this with the first equation gives (r1r3 − r5)b1 +
r2r3s1 + r4s2 = r6s3. Now since s3 < b1 and all terms are at least 1, for such an inequality to
hold we must have r1r3 − r5 < r6. Since r5 6= r6 this means we have r1r3 < p + q. Hence as
r1, r3 ∈ {p, q}, in order for G to have a triangle at least one of p2 < p+ q, q2 < p+ q and pq < p+ q
must be satisfied. Since p ≥ q ≥ 2, the first and third are not true and so we must have q2 < p+ q,
a contradiction. �

We also use link graphs as a means to obtain lower bounds on the number of maximal L-free
sets. We apply the following result in Propositions 21 and 24.

Lemma 15. Fix a three-variable linear equation L. Suppose that B,S are disjoint L-free subsets
of [n]. Let H be an induced subgraph of the link graph LS [B]. Then fmax(n,L) ≥MIS(H).

Proof. Suppose I and J are different maximal independent sets in H. First note that S ∪ I and
S ∪J are L-free by definition of the link graph. Both cannot lie in the same maximal L-free subset
of [n]. To see this, observe by definition of I and J , there exists i ∈ I \ J . There must exist s ∈ S,
j ∈ J such that {i, j, s} forms an L-triple, else J ∪ {i} would be an independent set in H, which
contradicts the maximality of J . Hence any maximal L-free subset of [n] containing S ∪J does not
contain i. Similarly there exists j ∈ J \ I such that any maximal L-free subset of [n] containing
S ∪ I does not contain j. The result immediately follows. �

3. The size of the largest solution-free set

Throughout this section, L will denote the equation px+qy = z where p ≥ q and p ≥ 2, p, q ∈ N.
The aim of this section is to determine the size of the largest L-free subset of [n]. In fact, we will
prove a richer structural result on L-free sets (Theorem 1). For this, we will introduce the following
auxiliary graph Gm: Let m ∈ [n] be fixed. We define the graph Gm to have vertex set [m,n] and
edges between c and pm + qc for all c ∈ [m,n] such that pm + qc ≤ n. We will also make use of
these auxiliary graphs in Section 4.

Fact 16. .

(i) The size of the largest L-free subset S of [n] with min(S) = m is at most the size of the
largest independent set in Gm which contains m.

(ii) The number of L-free subsets S of [n] with min(S) = m is at most the number of independent
sets in Gm which contain m.

Proof. Let S be an L-free subset of [n] with min(S) = m. Since {m, c, pm + qc} is an L-triple
contained in [n] for all c ∈ [m,n] such that pm + qc ≤ n, S cannot contain both c and pm + qc.
Hence any L-free subset of [n] with minimum element m is also an independent set in Gm which
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contains m (although the converse does not necessarily hold). This immediately implies (i) and
(ii). �

Note that Gm is a union of disjoint paths (possibly isolated vertices). We refer to the connected
components of Gm as the path components. Given Gm, we define y0 := n, and for i ≥ 1 define
yi := max{v ∈ V (Gm)| pm + qv ≤ yi−1}. Thus we have yi = byi−1−pm

q c. For Gm we also define k

to be the largest i such that yi ∈ [m,n], and refer to k as the path parameter of Gm. We define
the size of a path component to be the number of vertices in it, and we define N(Gm, i) to be the
number of path components of size i in Gm.

Fact 17. The graph Gm consists entirely of disjoint path components, where for each 1 ≤ i ≤ k− 1
there are yi−1 + yi+1− 2yi path components of size i, there are yk−1− 2yk +m− 1 path components
of size k and yk −m+ 1 path components of size k + 1.

Proof. Every vertex c ∈ V (Gm) satisfying yj+1 < c ≤ yj for some 0 ≤ j ≤ k − 1 is in a path in
Gm which contains precisely j vertices which are larger than it, whereas every vertex c > yj is not
in such a path. All the vertices in [m, yk] are in paths which contain precisely k vertices which are
larger than it, all vertices in [yk + 1, yk−1] are in paths which contain precisely k− 1 vertices which
are larger than it, and so on.

Let Ai be the interval [yi + 1, yi−1] for 1 ≤ i ≤ k and let Ak+1 be the interval [m, yk]. There are
|[m, yk]| = yk −m + 1 path components of size k + 1 in Gm. For i ≤ k all vertices in Ai are the
smallest vertex in a path on i vertices, however they may not be the smallest vertex in their path
component. In fact, by definition of the yi, all paths which start in Aj for some j must include
precisely one vertex from each set Aj−1, Aj−2, . . . , A1. This means that for i ≤ k, the number of
path components of size i in Gm is precisely |Ai| − |Ai+1|. For i ≤ k − 1 this is yi−1 + yi+1 − 2yi
and for i = k this is yk−1 − 2yk +m− 1. �

We now use the graphs Gm and the above facts to obtain the bound for the size of the largest
L-free subset of [n] as stated in Theorem 1.

Proof of Theorem 1. Let t be a non-negative integer. To prove (i) suppose that t < ( p+q−1
p+q+p/q )b n

p+q c.
Suppose S is an L-free set contained in [b n

p+q c − t, n] where m := b n
p+q c − t ∈ S. By Fact 16(i) we

wish to prove that the largest independent set in Gm containing m has size at most d (p+q−1)np+q e−bpq tc.
Since |V (Gm)| = d (p+q−1)np+q e + t + 1 it suffices to show that any independent set I in Gm satisfies

|V (Gm) \ I| ≥ b(p+ q)t/qc+ 1.
For 0 ≤ i ≤ b(p + q)t/qc, there is an edge between m + i and (p + q)m + qi. Note that since

i ≤ b(p+ q)t/qc and q ≤ p we have that the largest vertex in any of these edges is indeed at most
n:

(p+ q)(b n
p+q c − t) + qi ≤ n− (p+ q)t+ qb(p+ q)t/qc ≤ n− (p+ q)t+ q(p+ q)t/q = n.

Since I can only contain one vertex from each of these edges, we have proven (i), provided that
these edges are disjoint. It suffices to show that b n

p+q c + bpt/qc < (p + q)m = (p + q)(b n
p+q c − t)

since the left hand side is the largest element of the set {m + i : 0 ≤ i ≤ b(p + q)t/qc}. But this

immediately follows since t < ( p+q−1
p+q+p/q )b n

p+q c.
To prove (ii) let t ≥ ( p+q−1

p+q+p/q )b n
p+q c and suppose S is an L-free subset of [n] with m := min(S) =

b n
p+q c− t. By Fact 16(i) |S| is at most the size of the largest independent set in Gm which contains

m. We will first show that Gm has path parameter k ≥ 2, and then the case q = 1 follows easily.
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Define ` := bk/2c and

Ck :=

(2`+1∑
i=0

(−1)(−q)i + p
∑̀
i=0

q2i

q2`+1 + p
2∑̀
i=0

qi

)
.

We will show that if q ≥ 2 then the largest independent set in Gm has size at most Ckn + k. We
then further bound this from above by (q2 + 1)n/(q2 + q + 1) for n sufficiently large.

Note that by Fact 17, to prove that k ≥ 2 for Gm it suffices to show that there is a path on 3
vertices in Gm. By definition of k, m lies on a path P on k + 1 vertices. Write P = v0v1 · · · vk

where m = v0 and observe that vj = (qj + p
j−1∑
i=0

qi)m for 0 ≤ j ≤ k. To prove k ≥ 2 it suffices

to show that there is indeed a vertex (q2 + pq + p)m in V (Gm), i.e. (q2 + pq + p)m ≤ n. Note

that since t ≥ ( p+q−1
p+q+p/q )b n

p+q c, we have m = b n
p+q c − t ≤ (p+q+p/q−p−q+1

p+q+p/q )b n
p+q c = ( p+q

q2+pq+p
)b n
p+q c.

Hence (q2 + pq + p)m ≤ n as desired.

When q = 1 observe that yi = yi−1 − pm, so for i ≤ k − 1 by Fact 17 we have N(Gm, i) =
yi−1 + yi+1 − 2yi = yi + pm + yi − pm − 2yi = 0. Hence Gm consists entirely of a union of
path components of size either k or k + 1. Since at most di/2e vertices of a path on i vertices
can be in an independent set and k ≥ 2, the largest independent set in Gm has size at most
2n/3 = (q2 + 1)n/(q2 + q + 1) in this case, as desired. So now consider the case when q ≥ 2. We
calculate the maximum size of an independent set in Gm:

k+1∑
i=1

di/2e ·N(Gm, i)

=

( k−1∑
i=1

di/2e · (yi−1 + yi+1 − 2yi)

)
+ dk/2e(yk−1 +m− 1− 2yk) + d(k + 1)/2e(yk −m+ 1)

= y0 +

( k∑
i=1

(d(i− 1)/2e − 2di/2e+ d(i+ 1)/2e)yi
)

+ (m− 1)(dk/2e − d(k + 1)/2e).(2)

Here we used Fact 17 in the first equality. For i odd, the coefficient of yi in (2) is (i − 1)/2 −
2(i+ 1)/2 + (i+ 1)/2 = −1. For i even, the coefficient of yi in (2) is i/2− 2i/2 + (i+ 2)/2 = 1.

The following bounds are obtained from the definition of yi and k:

(a)
(
n− qj + 1− pm

j−1∑
i=0

qi
)
/qj ≤ yj ≤

(
n− pm

j−1∑
i=0

qi
)
/qj ;

(b) n/
(
qk+1 + p

k∑
i=0

qi
)
< m ≤ n/

(
qk + p

k−1∑
i=0

qi
)
.

Let ` := bk/2c (note k ≥ 2 so ` ≥ 1). First suppose k is odd, i.e. k = 2`+ 1. Using (2), the size
of the largest independent set in Gm is bounded above by

8



y0 +
( k∑
i=1

(d(i− 1)/2e − 2di/2e+ d(i+ 1)/2e)yi
)

+ (m− 1)(dk/2e − d(k + 1)/2e)

= y0 − y1 + y2 − y3 + · · ·+ y2` − y2`+1

(a)

≤ n−
(n− pm− q + 1

q

)
+
(n− pm(1 + q)

q2

)
−
(n− pm(1 + q + q2)− q3 + 1

q3

)

+ · · · −

(n− (pm 2∑̀
i=0

qi
)
− q2`+1 + 1

q2`+1

)

=n
(

1− 1

q
+

1

q2
− · · · − 1

q2`+1

)
+m

(p
q

+
p

q3
+ · · ·+ p

q2`+1

)
+
q − 1

q
+
q3 − 1

q3
+ · · ·+ q2`+1 − 1

q2`+1

(b)

≤ n

q2`+1

( 2`+1∑
i=0

(−1)(−q)i
)

+

(
n

q2`+1 + p
2∑̀
i=0

qi

)(p ∑̀
i=0

q2i

q2`+1

)
+
k + 1

2

=

([ 2`+1∑
i=0

(−1)(−q)i
]
(q2`+1 + p

2∑̀
i=0

qi) + p
∑̀
i=0

q2i

q2`+1(q2`+1 + p
2∑̀
i=0

qi)

)
n+

k + 1

2

=

(2`+1∑
i=0

(−q)i+2`+1 + p
∑̀
i=0

q2i+2`+1

q2`+1(q2`+1 + p
2∑̀
i=0

qi)

)
n+

k + 1

2
=

(2`+1∑
i=0

(−1)(−q)i + p
∑̀
i=0

q2i

q2`+1 + p
2∑̀
i=0

qi

)
n+

k + 1

2

=Ckn+
k + 1

2
≤ Ckn+ k.

(Note that some of our calculations above did indeed require q ≥ 2.) By definition, m ≥ yk+1 + 1
and for k even, we have Ck = Ck+1. So if k is even (k = 2`) then we have

y0 +
( k∑
i=1

(d(i− 1)/2e − 2di/2e+ d(i+ 1)/2e)yi
)

+ (m− 1)(dk/2e − d(k + 1)/2e)

= y0 − y1 + y2 − y3 + ...+ y2` −m+ 1 ≤ y0 − y1 + y2 − y3 + ...+ y2` − y2`+1

≤Ck+1n+
k + 2

2
≤ Ckn+ k.

The penultimate inequality follows by using calculations from the odd case. The last inequality
follows since k ≥ 2 and Ck = Ck+1. Thus we have shown that |S| ≤ Ckn + k and we know that
k ≥ 2. It remains to show that

Ckn+ k ≤ (q2 + 1)n

q2 + q + 1
(3)

9



for k ≥ 2 and n sufficiently large.

We know that m ≤ n/(qk + p
k−1∑
i=0

qi) and so n ≥ qk + p
k−1∑
i=0

qi, therefore condition (3) is met if

( q2 + 1

q2 + q + 1
− Ck

)(
qk + p

k−1∑
i=0

qi
)
≥ k.(4)

Claim 18. For k ≥ 6, (4) holds.

Since the proof of Claim 18 is just a technical calculation, we defer it to the appendix.
The claim is not a result which generally holds for 2 ≤ k ≤ 5 so instead we directly cal-

culate how large n should be to satisfy (3) in these cases. For k = 3 and k = 5 we obtain

n ≥ 3(q3+p(q2+q+1))(q2+q+1)
q2+1

and n ≥ 5(q5+p(q4+q3+q2+q+1))(q2+q+1)
q4+(p−1)q3+q2+1

respectively. For k = 2 and k = 4

we obtain weaker bounds. Hence taking n to be sufficiently large (larger than these two bounds),

we have Ckn+ k ≤ (q2+1)n
q2+q+1

for all k ≥ 2.

�

4. The number of solution-free sets

Recall a theorem of Green [18] states that f(n,L) = 2µL(n)+o(n) for any fixed homogeneous
linear equation L. The aim of this section is to replace the term o(n) here with a constant for many
equations L. This will be achieved in Theorem 20, which immediately implies Theorem 3. Denote
by f(n,L,m) the number of L-free subsets of [n] with minimum element m. We first give bounds
on f(n,L,m) for linear equations L of the form px+ qy = z.

Lemma 19. Let L denote the equation px+ qy = z where p ≥ q and p ≥ 2, p, q ∈ N.

(i) If m ≥ b n
p+q c+ 1 then f(n,L,m) = 2n−m.

(ii) If m = b n
p+q c then f(n,L,m) ≤ 2µL(n)−1.

(iii) If q ≥ 2, m = b n
p+q c − t for some positive integer t and Gm has path parameter 1, then

f(n,L,m) ≤ 2µL(n)−3/5+t(3q−2p)/(5q).
(iv) If q ≥ 2, m = b n

p+q c − t for some positive integer t and Gm has path parameter k ≥ 2, then

f(n,L,m) ≤ (4/3) · 2(5q2−2q+2)n/(5q2).
(v) If q = 1, Gm has path parameter `, and m = b n

`p+1c − t for some integer t, then f(n,L,m) ≤
2(7`p+3p)n/(10`p+10)+t(7−3p)/10.

Proof. First note that (i) is trivial since all subsets S ⊆ [n] with min(S) ≥ b n
p+q c+ 1 are L-free.

By Fact 16(ii) we know that f(n,L,m) is at most the number of independent sets in Gm which
contain m. For (ii), there is one edge between m = b n

p+q c and (p+ q)m ≤ n in Gm, hence there are

at most 2
n−b n

p+q
c−1

= 2µL(n)−1 independent sets in Gm containing m.
For (iii) suppose q ≥ 2 and m = b n

p+q c − t for some t ∈ N. Notice that Gm contains a matching

on y1−m+ 1 edges, namely there is an edge between c and pm+ qc for c ∈ [m, y1]. Observe that

3/4 ≤ 2−2/5 and also

y1 −m =

⌊
n− pm

q

⌋
−m ≥ n− (p+ q)m− q

q
≥ t(p+ q)

q
− 1.

Hence by Lemma 11 the total number of independent sets in Gm which contain m is at most

2n−m−2(y1−m)−13y1−m ≤ 2µL(n)−1+t(3/4)y1−m

≤ 2µL(n)−1+t(3/4)t(p+q)/q−1 ≤ 2µL(n)−3/5+t(3q−2p)/(5q),
10



as desired.
For (iv) suppose q ≥ 2, m = b n

p+q c − t for some positive integer t and Gm has path parameter

k ≥ 2. First note that

y1 − y2 =

⌊
n− pm

q

⌋
−

⌊
bn−pmq c − pm

q

⌋
≥ n− pm− q

q
− n− pm− qpm

q2

=
(q − 1)n+ pm− q2

q2
≥ (q − 1)n

q2
− 1.

Define F (i) to be the ith Fibonacci number where F (1) = F (2) = 1. There are F (i + 2)
independent sets (including the empty set) in a path of length i. Recall the following Fibonacci
identity: F (i+ 2)F (i)− F (i+ 1)2 = (−1)i+1. If i is even and a > b then(

F (i)F (i+ 2)

F (i+ 1)2

)a(F (i+ 1)F (i+ 3)

F (i+ 2)2

)b
=

(
F (i+ 1)2 − 1

F (i+ 1)2

)a(F (i+ 2)2 + 1

F (i+ 2)2

)b
≤ 1.

Also observe that by omitting (F (i + 1)F (i + 3)/F (i + 2)2)b the inequality still holds. By use of
Fact 17 and applying the above bounds, we can bound from above the number of independent sets
in Gm as required:

2y0+y2−2y13y1+y3−2y25y2+y4−2y3 . . . F (k + 1)yk−2+yk−2yk−1F (k + 2)yk−1+m−2yk−1F (k + 3)yk−m+1

= 2y0+y2−2y13y1−2y25y2
(

3 · 8
52

)y3(5 · 13

82

)y4
· · ·
(
F (k + 1) · F (k + 3)

F (k + 2)2

)yk(F (k + 2)

F (k + 3)

)m−1
≤ 2y0+y2−2y13y1−2y25y2 ≤ 2y0+y2−2y1+y23y1−y2 = 2y0(3/4)y1−y2 ≤ 2n(3/4)(q−1)n/q

2−1

≤ (4/3) · 2n−2(q−1)n/(5q2) = (4/3) · 2(5q2−2q+2)n/(5q2).

For (v), since yi = n− ipm Fact 17 implies that if Gm has path parameter `, then Gm is a union

of paths of length ` and ` + 1. We use the bound F (i) ≤ 2(7i−11)/10 (a simple proof by induction
which holds for i ≥ 2). Since m < y` = n − `pm we can write m = b n

`p+1c − t for some integer

t ≥ 0. Now using these bounds, we have

F (`+ 2)y`−1−2y`+mF (`+ 3)y`−m = F (`+ 2)(`p+p+1)m−nF (`+ 3)n−(`p+1)m

≤ 2(3+7`)((`p+p+1)m−n)/10+(10+7`)(n−(`p+1)m)/10 = 2(7n+(3p−7)m)/10

≤ 2(7n+(3p−7)(n/(`p+1)−t))/10 = 2(7`p+3p)n/(10`p+10)+t(7−3p)/10.

�

Theorem 20. Let L denote the equation px+ qy = z where p, q ∈ N and

(i) q ≥ 2 and p > q(3q − 2)/(2q − 2) or;
(ii) q = 1 and p ≥ 3.

Then f(n,L) ≤ (3/2+o(1)+C)2µL(n) where for (i) C := 2−2p/(5q)

1−2(3q−2p)/(5q) and for (ii) C := 2(7−3p)/10

1−2(7−3p)/10 .

Proof. For both cases by Lemma 19(i)–(ii) there are at most 3 · 2µL(n)−1 L-free subsets S of
[n] where min(S) ≥ b n

p+q c. For (i), first consider L-free subsets arising from Lemma 19(iv). Since
11



k ≥ 2,

m < y2 =

⌊bn−pmq c − pm
q

⌋
≤ n− pm− qpm

q2

and so m ≤ n/(q2 + pq + p). Now as n→∞,

n/(q2 + pq + p) · (4/3) · 2(5q2−2q+2)n/(5q2)

2µL(n)
=

2log2(4n/(3(q
2+pq+p)))+(5q2−2q+2)n/(5q2)

2µL(n)
→ 0,

as long as we have 2(5q
2−2q+2)n/(5q2) � 2µL(n). This is satisfied if (5q2 − 2q + 2)/(5q2) < (p + q −

1)/(p+ q) which when rearranged, gives p > q(3q − 2)/(2q − 2).

For L-free subsets arising from Lemma 19(iii), set a := 2µL(n)−3/5, r := 2(3q−2p)/(5q) and let
u be the largest t such that Gm with m = b n

p+q c − t has path parameter 1. Then since p >

q(3q − 2)/(2q − 2) > 3q/2 we have |r| < 1 and so

u∑
t=1

2µL(n)−3/5+t(3q−2p)/(5q) ≤
∞∑
t=1

art =

∞∑
t=0

(ar)rt =
ar

1− r
=

2µL(n)−2p/(5q)

1− 2(3q−2p)/(5q)
.

Altogether this implies that f(n,L) ≤ (3/2 + o(1) + C)2µL(n) where C := 2−2p/(5q)

1−2(3q−2p)/(5q) .

For (ii), set a := 2(7kp+3p)n/(10kp+10), set r := 2(7−3p)/10 and let u be the largest t such that Gm
with m := b n

p+q c − t has path parameter k for any fixed k ∈ N. Since p ≥ 3 we have |r| < 1 and so

u∑
t=1

2(7kp+3p)n/(10kp+10)+t(7−3p)/10 ≤
∞∑
t=1

art =

∞∑
t=0

(ar)rt =
ar

1− r
=

2(7kp+3p)n/(10kp+10)+(7−3p)/10

1− 2(7−3p)/10
.

For k = 1 the last term is at most 2(µL(n)+(7−3p)/10)/(1 − 2(7−3p)/10). For k ≥ 2 we obtain a

term which is o(2µL(n)) as n tends to infinity, since (7kp + 3p)n/(10kp + 10) < µL(n) for p ≥ 3.

Therefore, Lemma 19 implies that f(n,L) ≤ (3/2 + o(1) + C)2µL(n) where C := 2(7−3p)/10

1−2(7−3p)/10 .

�

5. The number of maximal solution-free sets

5.1. A general upper bound. Let L be a three-variable linear equation. LetML(n) denote the
set of elements x ∈ [n] such that x ∈ [n] does not lie in any L-triple in [n]. Define µ∗L(n) := |ML(n)|.
For example, if L is translation-invariant then {x, x, x} is an L-triple for all x ∈ [n] so ML(n) = ∅
and µ∗L(n) = 0.

Let L denote the equation px + qy = z where p ≥ 2, p ≥ q and p, q ∈ N. Write u := gcd(p, q).
Then notice that ML(n) ⊇ {s ∈ [n] : s > b(n− p)/qc, u - s}. This follows since if s > b(n− p)/qc
then ps + q ≥ qs + p > n and so s cannot play the role of x or y in an L-triple in [n]. If u - s
then as u|(px+ qy) for any x, y ∈ [n] we have that s cannot play the role of z in an L-triple in [n].
Actually, for large enough n we have ML(n) = {s : s > b(n− p)/qc, u - s} for all such L. We omit
the proof of this here.

We now prove Theorem 4.

Theorem 4. Let L be a fixed homogenous three-variable linear equation. Then

fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n).

Proof. Let F denote the set of containers obtained by applying Lemma 7. Since every L-free
subset of [n] lies in at least one of the 2o(n) containers, it suffices to show that every F ∈ F houses

at most 3(µL(n)−µ
∗
L(n))/3+o(n) maximal L-free subsets.
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Let F ∈ F . By Lemmas 7(i) and 8, F = A ∪ B where |A| = o(n), |B| ≤ µL(n) and B is
L-free. Note that we can add all the elements of ML(n) to B (and thus F ) whilst ensuring that
|B| ≤ µL(n) and B is L-free. So we may assume that ML(n) ⊆ B.

Each maximal L-free subset of [n] in F can be found by picking a subset S ⊆ A which is L-free,
and extending it in B. The number of ways of doing this is the number of ways of choosing the
subset S multiplied by the number of ways of extending a fixed S in B, which we denote by N(S,B).

Since |A| = o(n), there are 2o(n) choices for S. It therefore suffices to show that for any S ⊆ A, we

have N(S,B) ≤ 3(µL(n)−µ
∗
L(n))/3.

Consider the link graph G := LS [B]. Then by definition, ML(n) is an independent set in G.
Thus, MIS(G) = MIS(G \ML(n)). Further, Lemma 12 and Theorem 13(i) imply that

N(S,B) ≤ MIS(G) = MIS(G \ML(n)) ≤ 3|B\ML(n)|/3 ≤ 3(µL(n)−µ
∗
L(n))/3,

as desired. �

As mentioned in the introduction, Theorem 4 together with Theorem 9 shows that fmax(n,L)
is significantly smaller than f(n,L) for all homogeneous three-variable linear equations L that are
not translation-invariant. So in this sense it can be viewed as a generalisation of a result of  Luczak
and Schoen [25] on sum-free sets.

Let L denote the equation px+y = z for some p ∈ N. Notice that in this case we have µ∗L(n) = 0
for n > p. The next result implies that if p is large then fmax(n,L) is close to the bound in
Theorem 4. So for such equations L, Theorem 4 is close to best possible.

Proposition 21. Given p, n ∈ N where p ≥ 2, let L denote the equation px+ y = z. Then

fmax(n,L) ≥ 3µL(n)/3−2pn/(3(p+1)(3p2−1))−p−5.

Proof. Given p, n ∈ N, let L denote the equation px + y = z. Set s := b (p−1)n
3p2−1 c and a := bn−sp c.

Consider the link graph G := L{s,2s}[a+ 1, a+ 3ps]. Observe that:

2s ≤ (2p− 2)n

3p2 − 1
<

n

p+ 1
<

(3p− 1)n

3p2 − 1
=
n

p
− (p− 1)n

3p3 − p
≤ n− s

p
< a+ 1;

a+ 3ps =

⌊
n− s
p

⌋
+ 3ps ≤ n

p
+

(
3p− 1

p

)
s =

n

p
+

3p2 − 1

p

⌊
(p− 1)n

3p2 − 1

⌋
≤ n+ n(p− 1)

p
= n.

As a consequence, the sets {s, 2s} and [a + 1, a + 3ps] (a subset of [b n
p+1c + 1, n]) are disjoint

L-free sets in [n], and so Lemma 15 implies that fmax(n,L) ≥MIS(G). It remains to show that G

contains at least 3µL(n)/3−2pn/(3(p+1)(3p2−1))−6 maximal independent sets.
Observe that for each i ∈ [ps] there is an edge in G between a+i and a+ps+i (since {s, a+i, a+

i+ps} is an L-triple), an edge between a+ i+ps and a+ i+ 2ps (since {s, a+ i+ps, a+ i+ 2ps} is
an L-triple) and an edge between a+ i and a+ i+ 2ps (since {2s, a+ i, a+ i+ 2ps} is an L-triple).
Also since a > (n− s)/p− 1, we have p(a+ 1) + s > n and hence there are no further edges in G.

Hence G is a collection of ps disjoint triangles, where 4 vertices in G have loops ((p+1)s, (p+2)s,
(2p+ 1)s and (2p+ 2)s). So G has at least 3ps−4 maximal independent sets. Now observe:

ps− 4− µL(n)

3
= p

⌊
(p− 1)n

3p2 − 1

⌋
− 4− n

3
+

1

3

⌊
n

p+ 1

⌋
≥
(
p2 − p
3p2 − 1

− 1

3
+

1

3(p+ 1)

)
n− p− 5

=

(
−2p

3(p+ 1)(3p2 − 1)

)
n− p− 5,

as required. �
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5.2. Upper bounds for px+ qy = z. Let L denote the equation px+ qy = z where p ≥ q, p ≥ 2
and p, q ∈ N. For such L, the next simple result provides an alternative bound to Theorem 4.

Lemma 22. Let L denote the equation px + qy = z where p ≥ q, p ≥ 2 and p, q ∈ N. Then
fmax(n,L) ≤ f(b(n− p)/qc,L).

Proof. Set C := [bn−pq c] and B := [bn−pq c + 1, n]. In particular, B is L-free. Notice that every

maximal L-free subset of [n] can be found by selecting an L-free subset S ⊆ C and then extending
it in B to a maximal one. Suppose we have such an L-free subset S. By Lemma 12, the number of
such extensions of S is at most MIS(LS [B]).

For any L-triple {x, y, z} in [n] satisfying px + qy = z, since z ≤ n, we must have x ≤ n−q
p and

y ≤ n−p
q . Hence x, y ∈ C. This means that there are no L-triples in [n] which contain more than

one element from B. Thus the link graph LS [B] must only contain isolated vertices and loops. So
LS [B] has precisely one maximal independent set. Hence the number of maximal L-free subsets of
[n] is bounded by the number of choices of S in C which are L-free, i.e. f(b(n− p)/qc,L). �

Lemma 22 together with Theorems 3 and 9 immediately implies Theorem 6.
The next result gives a further upper bound on fmax(n,L) for certain linear equations L. Notice

that for such L, Theorem 5 yields a better bound than Theorem 4.

Theorem 5. Let L denote the equation px + qy = z where p ≥ q ≥ 2 are integers so that
p ≤ q2 − q and gcd(p, q) = q. Then

fmax(n,L) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n).

Proof. Let F denote the set of containers obtained by applying Lemma 7. Since every L-free
subset of [n] lies in at least one of the 2o(n) containers, it suffices to show that every F ∈ F houses

at most 2(µL(n)−µ
∗
L(n))/2+o(n) L-free sets.

Let F ∈ F . By Lemmas 7(i) and 8, F = A ∪ B where |A| = o(n), |B| ≤ µL(n) and B is L-free.
Note that we can add all the elements ofML(n) to B (and thus F ) whilst ensuring that |B| ≤ µL(n)
and B is L-free. So we may assume thatML(n) ⊆ B. By Theorem 1, min(B) = b n

p+q c− t for some

non-negative integer t < ( p+q−1
p+q+p/q )b n

p+q c and |B| ≤ d (p+q−1)np+q e − bpq tc, or |B| ≤ (q2+1)n
q2+q+1

.

Case 1: min(B) = b n
p+q c−t for 0 ≤ t < ( p+q−1

p+q+p/q )b n
p+q c. Write F = X∪Y where Y ⊆ [b n

p+q c+1, n]

is L-free, and X ⊆ [1, b n
p+q c]. Note that |X| = t′ + o(n) and |Y | ≤ d (p+q−1)np+q e − bpq tc − t

′ + o(n)

where t′ ≤ t. Also ML(n) ⊆ Y . Choose S ⊆ X to be L-free. Consider the link graph LS [Y ]
and observe that by Lemma 12, N(S, Y ) ≤ MIS(LS [Y ]). (Recall N(S, Y ) denotes the number of
extensions of S in Y to a maximal L-free set.)

Since p ≤ q2 − q, by Lemma 14 LS [Y ] is triangle-free. By definition, ML(n) is an independent
set in LS [Y ] and so MIS(LS [Y ])=MIS(LS [Y \ ML(n)]). Therefore Theorem 13(ii) implies that

MIS(LS [Y ])≤ 2(|Y |−|ML(n)|)/2. Overall, this implies that the number of L-free sets contained in F
is at most

2|X| × 2(|Y |−|ML(n)|)/2 ≤ 2
t′+o(n)+(µL(n)−µ∗L(n)−b

p
q
tc−t′)/2 ≤ 2(µL(n)−µ

∗
L(n))/2+o(n),

as desired.

Case 2: |B| ≤ (q2+1)n
q2+q+1

. In this case |F | ≤ (q2+1)n
q2+q+1

+ o(n). Choose any L-free S ⊆ A (note there

are at most 2o(n) choices for S). Consider the link graph LS [B] and observe by Lemma 12 that
N(S,B) ≤ MIS(LS [B]). Similarly as in Case 1 we have that MIS(LS [B])=MIS(LS [B′]) where
B′ := B \ML(n). By Theorem 13(i),

MIS(LS [B′]) ≤ 3|B
′|/3 ≤ 3((q

2+1)n/(3(q2+q+1))−µ∗L(n)/3) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n).

14



The last inequality follows since µL(n) = n− bn/(p+ q)c and ML(n) = {s : s > b(n− p)/qc, q - s}
since gcd(p, q) = q.

To see this, first note that

µ∗L(n) =
(q − 1)2n

q2
− o(n).

Hence for the inequality to hold we require that

9((q
2+1)/(q2+q+1)−(q2−2q+1)/(q2)) < 8((p+q−1)/(p+q)−(q

2−2q+1)/(q2)).

Let a := log9 8. This rearranges to give

p >
(1− a)(q4 − q) + q3 + q2

(2a− 1)q3 + (a− 1)(q2 + q − 1)
.

Since p ≥ q it suffices to show that (3a− 2)q3 + (a− 2)(q2 + q) + (2− 2a) > 0. This indeed holds
since q ≥ 2.

Overall, this implies that the number of L-free sets contained in F is at most 2(µL(n)−µ
∗
L(n))/2+o(n),

as desired. �

The proof of Theorem 5 actually generalises to some other equations px+qy = z where gcd(p, q) 6=
q (but still p ≤ q2 − q). However, in these cases Theorem 6 produces a better upper bound on
fmax(n,L). The next result summarises when Theorem 4, 5 or 6 yields the best upper bound on
fmax(n,L). We defer the proof to the appendix.

Proposition 23. Let L denote the equation px + qy = z where p ≥ q, p ≥ 2 and p, q ∈ N. Up to
the error term in the exponent, the best upper bound on fmax(n,L) given by Theorems 4, 5 and 6
is:

(i) fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n) if gcd(p, q) = q, p ≥ q2, and either q ≤ 9 or 10 ≤ q ≤ 17

and p < (a− 1)(q2 − q)/(q(2− a)− 1) where a := log3(8);

(ii) fmax(n,L) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n) if gcd(p, q) = q and p ≤ q2 − q;

(iii) fmax(n,L) ≤ 2µL(b(n−p)/qc)+o(n) otherwise.

5.3. Lower bounds for px + qy = z. The following result provides lower bounds on fmax(n,L)
for all equations L of the form px+ qy = z where p ≥ q ≥ 2.

Proposition 24. Let L denote the equation px + qy = z where p ≥ q ≥ 2 are integers. Suppose
that n > 2p. In each case fmax(n,L) ≥ 2` where ` is defined as follows:

(i) ` := (n(q − 1)− pq + q − 2q2)/q2 if p ≥ q2,
(ii) ` := (n(p− q)− p2 + q2 − 2pq)/(pq) if q < p < q2,

(iii) ` := (n− 6q)/2q if p = q.

Proof. For each case, we shall let B := [b n
p+q c+ 1, n], and consider the link graph G := L{1}[B].

Since B and {1} are L-free, by Lemma 15 it suffices to show that there is an induced subgraph of G
which contains at least 2` maximal independent sets. For each case we will find an induced perfect
matching on 2` vertices in G. (Note there are 2` maximal independent sets in such a matching.)

More specifically, for each case we shall find an interval I := [a, b] for some a, b ∈ V (G) and
let J := {qi + p| i ∈ I}. Note that all edges in G (other than at most one loop) are of the form
{i, qi+ p} and {i, pi+ q}. By our choice of I and J , G[I ∪ J ] will form a perfect matching on 2|I|
vertices if the following conditions hold:

(1) qa+ p > b (which ensures that I ∩ J = ∅),
(2) qb+ p ≤ n (which ensures that J ⊆ [n]),
(3) pa+ q > n (which ensures that the only edges in G are of the form {i, qi+ p}),
(4) p+ q < a (which ensures that there is no loop at a vertex in G[I ∪ J ]).
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Notice that actually we do not require condition (3) to hold in the case when p = q. Indeed, this is
because in this case an edge {i, pi+ q} in G is the same as the edge {i, qi+ p}. Further, there is at
most one loop in G (if p+ q ∈ B). So even if (4) does not hold we will obtain an induced matching
in G on 2|I| − 2 vertices.

Thus, to obtain an induced matching in G on 2|I| − 2 vertices it suffices to choose a and b so
that (1)–(3) hold except when p = q when we only require that (1) and (2) hold.

By choosing b := b(n− p)/qc, (2) holds since qb+ p = qb(n− p)/qc+ p ≤ q(n− p)/q + p = n.
If p ≥ q2 then set a := b(n − q)/q2c + 1. Then a ∈ B and further pa + q ≥ q2a + q >

q2((n− q)/q2) + q = n and qa+ p ≥ qa+ q2 > q((n− q)/q2) + q2 = n/q− 1 + q2 > b(n− p)/qc = b.
So (1) and (3) hold.

If q < p < q2 then set a := b(n − q)/pc + 1. So a ∈ B. Further, pa + q > p((n − q)/p) + q = n
and qa+ p > q((n− q)/p) + p = qn/p− q2/p+ p > qn/q2 − q + p > n/q > b(n− p)/qc = b. So (1)
and (3) hold.

If p = q set a := bn/(p+ q)c+ 1 = bn/(2q)c+ 1 ∈ B. Observe that qa+ q > qn/2q + q > n/2 >
b(n− q)/qc = b since q ≥ 2. So (1) holds.

Now calculating the size of the interval I = [a, b] in each case proves the result:

• If a = b(n− q)/q2c+ 1, then |I| − 1 = b(n− p)/qc − (b(n− q)/q2c+ 1) ≥ (n− p)/q − 1−
(n− q)/q2 − 1 = (n(q − 1)− pq + q − 2q2)/q2.
• If a = b(n− q)/pc+ 1, then |I| − 1 = b(n− p)/qc− (b(n− q)/pc+ 1) ≥ (n− p)/q− 1− (n−
q)/p− 1 = (n(p− q)− p2 + q2 − 2pq)/(pq).
• If a = bn/(p+q)c+1 then |I|−1 = b(n−p)/qc−(bn/(p+q)c+1) ≥ (n−p)/q−1−n/(p+q)−1 =

(pn− (p+ 2q)(p+ q))/(q(p+ q)) = (qn− 6q2)/(2q2) = (n− 6q)/2q.
�

Although the lower bounds in Proposition 24 do not meet the upper bounds in Theorems 5 and 6
in general, Theorem 5 and Proposition 24(iii) do immediately imply the following asymptotically
exact result.

Theorem 25. Let L denote the equation 2x+ 2y = z. Then fmax(n,L) = 2n/4+o(n).

Since submitting this paper, we have also given a general upper bound on fmax(n,L) for equations
L of the form px + qy = rz where p ≥ q ≥ r are fixed positive integers (see [20]). In particular,
our result shows that in the case when p = q ≥ 2, r = 1 the lower bound in Proposition 24(iii) is
correct up to an error term in the exponent.

6. Concluding remarks

The results in the paper show that the parameter fmax(n,L) can exhibit very different behaviour
depending on the linear equation L. Indeed, Theorem 4 gives a ‘crude’ general upper bound on
fmax(n,L) for all homogeneous three-variable linear equations L. (It is crude in the sense that, in
the proof, we do not use any structural information about the link graphs.) However, this bound
is close to the correct value of fmax(n,L) for certain equations L (Proposition 21). On the other
hand, for many equations this bound is far from tight (Theorem 5). Further, for some equations
(x + y = z and 2x + 2y = z) the value of fmax(n,L) is tied to the property that any triangle-

free graph on n vertices contains at most 2n/2 maximal independent sets. Theorem 6 and upper
bounds we have obtained since submitting this paper (see [20]) suggest though that the value of
fmax(n,L) for other equations L may depend on completely different factors. Further progress on
understanding the possible behaviour of fmax(n,L) would be extremely interesting.

We conclude by briefly describing some results concerning equations with more than three vari-
ables. First observe the following simple proposition.
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Proposition 26. Let L1 denote the equation p1x1 + · · ·+ pkxk = b where p1, . . . , pk, b ∈ Z and let
L2 denote the equation (p1 + p2)x1 + p3x2 + · · ·+ pkxk−1 = b. Then µL1(n) ≤ µL2(n).

The proposition is just a simple consequence of the observation that any solution to the equation
L2 gives rise to a solution to the equation L1. So all L1-free subsets of [n] are also L2-free.
Note that for the equations L which satisfy the hypothesis of the following corollary, the interval
[bn/(p+ q)c+ 1, n] is L-free. Hence by applying the above proposition along with Corollary 2, we
attain the following result.

Corollary 27. Let L denote the equation a1x1 + · · ·+ akxk + b1y1 + · · ·+ b`y` = c1z1 + · · ·+ cmzm
where the ai, bi, ci ∈ N and p′ :=

∑
i ai, q

′ :=
∑

i bi and r′ :=
∑

i ci. Let t′ := gcd(p′, q′, r′) and
write p := p′/t′, q := q′/t′ and r := r′/t′. Suppose that r = 1. Then for sufficiently large n, we
have µL(n) = n− bn/(p+ q)c.

One can define a link hypergraph LS [B] analogous to the notion of a link graph defined in
Section 2.3 (i.e. now hyperedges correspond to solutions to L involving at least one element of
S). We remark that the removal and container lemmas of Green [18] that we applied do hold for
homogeneous linear equations on more than three variables. By arguing as in Lemma 22 (but by
considering a link hypergraph), one can obtain the following simple result.

Proposition 28. Let L denote the equation p1x1+· · ·+psxs = rz where p1 ≥ p2 ≥ · · · ≥ ps > r ≥ 1
are positive integers. Then fmax(n,L) ≤ f(brn/psc,L).

In [20] we obtain further results concerning the number of maximal solution-free sets for linear
equations with more than three variables. However the proof method does not use structural results
such as Theorem 13, and only work for some linear equations. Obtaining similar structural results
for the number of maximal independent sets in (non-uniform) hypergraphs would help to attain
(general) upper bounds for the number of maximal solution-free sets.
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[11] P. Cameron and P. Erdős, On the number of sets of integers with various properties, in Number Theory (R.A.
Mollin, ed.), 61–79, Walter de Gruyter, Berlin, 1990.

[12] P. Cameron and P. Erdős, Notes on sum-free and related sets, Combin. Probab. Comput., 8, (1999), 95–107.
[13] J. Deshouillers, G. Freiman, V. Sós and M. Temkin, On the structure of sum-free sets II, Astérisque, 258, (1999),
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Appendix A

In this appendix we give the proof of Claim 18 and Proposition 23.

A.1. Proof of Claim 18. We use induction on k. Recall that p ≥ q ≥ 2. For the base case k = 6
we directly calculate (4). First note that

q2 + 1

q2 + q + 1
− q7 − q6 + q5 − q4 + q3 − q2 + q − 1 + p(q6 + q4 + q2 + 1)

q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1)
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=
(q6 + (p− 1)q5 + q4 + (p− 1)q3 + q2 + 1)

(q2 + q + 1)(q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1))
,

and so we have( q2 + 1

q2 + q + 1
− C6

)(
q6 + p(q5 + q4 + q3 + q2 + q + 1)

)
=

(q6 + (p− 1)q5 + q4 + (p− 1)q3 + q2 + 1)(q6 + p(q5 + q4 + q3 + q2 + q + 1)

(q2 + q + 1)(q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1))
.

Since p ≥ q ≥ 2 every power of q in the numerator has a coefficient of at least 1 in both
expressions, hence the numerator as a single polynomial in q has positive coefficients. Hence we
can make our fraction smaller by dropping lower powers of q. We then make further use of p ≥ q ≥ 2
to get the desired result:

(q6 + (p− 1)q5 + q4 + (p− 1)q3 + q2 + 1)(q6 + p(q5 + q4 + q3 + q2 + q + 1)

(q2 + q + 1)(q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1))

≥ q12 + (2p− 1)q11 + (p2 + 1)q10 + (p2 + 2p− 1)q9

(q2 + q + 1)(q7 + p(q6 + q5 + q4 + q3 + q2 + q + 1))

≥q
12 + (2p− 1)q11 + (p2 + 1)q10 + (p2 + 2p− 1)q9

(p+ 1)q10

=
q2 + (2p− 1)q + (p2 + 1)

p+ 1
+
p2 + 2p− 1

(p+ 1)q
≥ p2 + 4p+ 3

p+ 1
+

p2 + p

(p+ 1)q
= p+ 3 + p/q ≥ 6 = k.

For the inductive step, assume that (4) holds for k. It suffices to show that Ck ≥ Ck+1 as then
the result holds for k + 1:

( q2 + 1

q2 + q + 1
− Ck+1

)(
qk+1 + p

k∑
i=0

qi
)
≥
( q2 + 1

q2 + q + 1
− Ck

)(
qk+1 + p

k∑
i=0

qi
)

≥ q
( q2 + 1

q2 + q + 1
− Ck

)(
qk + p

k−1∑
i=0

qi
)
≥ qk ≥ k + 1.

For k even, we have Ck = Ck+1 by definition. For k odd, consider the following calculations:

(i) D1 := qk+2
( k∑
i=0

(−1)(−q)i
)
− qk

( k+2∑
i=0

(−1)(−q)i
)

= −qk+1 + qk,

(ii) D2 := pqk+2
( (k−1)/2∑

i=0
q2i
)
− pqk

( (k+1)/2∑
i=0

q2i
)

= −pqk,

(iii) D3 := p
( k+1∑
i=0

qi
)( k∑

i=0
(−1)(−q)i

)
− p
( k−1∑
i=0

qi
)( k+2∑

i=0
(−1)(−q)i

)
= pqk+1 − pqk,

(iv) D4 := p2
( k+1∑
i=0

qi
)( (k−1)/2∑

i=0
q2i
)
− p2

( k−1∑
i=0

qi
)( (k+1)/2∑

i=0
q2i
)

= p2qk.

Using these we have
19



Ck − Ck+1 =

( k∑
i=0

(−1)(−q)i
)

+ p
( (k−1)/2∑

i=0
q2i
)

qk + p
( k−1∑
i=0

qi
) −

( k+2∑
i=0

(−1)(−q)i
)

+ p
( (k+1)/2∑

i=0
q2i
)

qk+2 + p
( k+1∑
i=0

qi
)

=
D1 +D2 +D3 +D4(

qk + p
( k−1∑
i=0

qi
))(

qk+2 + p
( k+1∑
i=0

qi
))

=
(p− 1)qk+1 + (p2 − 2p+ 1)qk(

qk + p
( k−1∑
i=0

qi
))(

qk+2 + p
( k+1∑
i=0

qi
)) ≥ 0,

where the last inequality follows since p, q ≥ 2. �

A.2. Proof of Proposition 23. Suppose that gcd(p, q) = q. To prove (ii) it suffices to show that

µL(n)− µ∗L(n) ≤ 2µL(b(n− p)/qc) + o(n).

Since µL(n) = (p + q − 1)n/(p + q) + o(n), µL(b(n − p)/qc) = (p + q − 1)n/q(p + q) + o(n) and
µ∗L(n) = (q − 1)2n/q2 + o(n), it is easy to check that this inequality holds.

To prove (iii) in the case where t := gcd(p, q) 6= q, it certainly suffices to show that 2µL(b(n −
p)/qc) ≤ µL(n)− µ∗L(n) + o(n). In this case we have µ∗L(n) = (q − 1)(t− 1)/(qt) + o(n), and hence
it suffices to show that t ≤ (pq + q2 − p − q)/(p + 2q − 2). First note that t ≤ q/2 and so q 6= 1.
Now observe that t(p + 2q − 2) ≤ q(p + 2q − 2)/2 = pq/2 + q2 − q ≤ pq + q2 − p − q and so our
inequality on t holds as required.

To prove (iii) in the case where gcd(p, q) = q and p ≥ q2, it suffices to show that

2
(p+q−1)n
(p+q)q ≤ 3

(p+q−1)n
3(p+q)

− (q−1)2n

3q2 .

Let a := log3(8). The inequality can be rearranged to give

p((2− a)q − 1) ≥ (a− 1)(q2 − q).
If q ≥ 10 then ((2− a)q − 1) is positive and so we require p ≥ (a− 1)(q2 − q)/((2− a)q − 1). Note
that for q ≥ 18 this always holds since p ≥ q2 ≥ (a− 1)(q2 − q)/((2− a)q − 1).

To prove (i), suppose that gcd(p, q) = q. It suffices to show that

3
(p+q−1)n
3(p+q)

− (q−1)2n

3q2 ≤ 2
(p+q−1)n
(p+q)q ,

or rearranging
p((2− a)q − 1) ≤ (a− 1)(q2 − q).

If q ≤ 9 then ((2 − a)q − 1) is negative and so the inequality holds as the right hand side is non-
negative. If 10 ≤ q ≤ 17 then the inequality holds if p ≤ (a− 1)(q2 − q)/((2− a)q − 1). �
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