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On solution-free sets of integers II

by

Robert Hancock and Andrew Treglown (Birmingham)

1. Introduction. In this paper we study solution-free sets of integers,
that is, sets that contain no solution to a given linear equation L. In par-
ticular, we investigate the size of the largest such subset of [n] := {1, . . . , n}
and the number of maximal solution-free subsets of [n].

More precisely, consider a fixed linear equation L of the form

a1x1 + · · ·+ akxk = b

where a1, . . . , ak, b ∈ Z. If b = 0 we say that L is homogeneous. If∑
i∈[k]

ai = b = 0

then we say that L is translation-invariant. A solution (x1, . . . , xk) to L is
said to be trivial if L is translation-invariant and if there exists a partition
P1, . . . , P` of [k] such that:

(i) xi = xj for every i, j in the same partition class Pr;
(ii) for each r ∈ [`],

∑
i∈Pr

ai = 0.

A set A ⊆ [n] is L-free if A does not contain any non-trivial solutions to L.
If L is clear from the context, then we simply say A is solution-free.

Many of the most famous results in combinatorial number theory con-
cern solution-free sets. For example, Schur’s theorem [25] states that if n is
sufficiently large then [n] cannot be partitioned into r sum-free sets (i.e. L
is x+ y = z). Roth’s theorem [20] states that the largest progression-free set
(i.e. L is x1 + x2 = 2x3) has size o(n), whilst a classical result of Erdős and
Turán [10] determines, up to an error term, the size of the largest Sidon set
(i.e. L is x1 + x2 = x3 + x4).
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1.1. The size of the largest solution-free set. As indicated above,
a key question in the study of L-free sets is to establish the size µL(n) of
the largest L-free subset of [n]. The study of this question for general L
was initiated by Ruzsa [21, 22], who established, amongst other results, that
in general µL(n) = o(n) if L is translation-invariant and µL(n) = Ω(n)
otherwise. When L is a homogeneous equation in two variables, the value of
µL(n) is known exactly and an extremal L-free set can be found by greedy
choice. See [15] for further details.

For homogeneous linear equations in three variables, the picture is not as
clear. First note we may assume without loss of generality that the equation
is of the form px + qy = rz, where p, q, r are fixed positive integers, and
gcd(p, q, r) = 1.

Now consider the following two natural candidates for extremal sets. Let
t := gcd(p, q) and let a be the unique non-negative integer 0 ≤ a < t such
that n− a is divisible by t. The interval

In :=

[⌊
r(n− a)
p+ q

⌋
+ 1, n

]
is L-free. To see this observe that since gcd(p, q, r) = 1 and gcd(p, q) = t,
any solution (x, y, z) to L with x, y, z ∈ In must have z divisible by t. Since
px+qy > r(n−a), z must lie in [n−a+1, n]; however, then z is not divisible
by t and so In is L-free. Note that if r = 1 then In = [brn/(p + q)c + 1, n],
though this does not hold in general when r > 1. Notice also that In is only
a candidate for an extremal set if r is ‘small’. Indeed, if r > p + q and n is
sufficiently large then In = ∅. The set

Tn := {x ∈ [n] : x 6≡ 0 mod t}
is also L-free: note that in any solution (x, y, z) to L, z must be divisible by
t since gcd(r, t) = 1. But Tn contains no elements divisible by t.

This raises the following question.

Question 1.1. For which L do we have µL(n) = max{|In|, |Tn|}?

When L is x+y = z it is easy to see that µL(n) = dn/2e, and the interval
In = [bn/2c+ 1, n] is an extremal set of this size. Recently, the authors [14]
established that if L is the equation px+ qy = z with p, q ∈ N, p ≥ 2, then
µL(n) = n−bn/(p+q)c for sufficiently large n. Again this bound is attained
by the interval In. Our first result determines a further class of equations (of
the form px + qy = rz) for which In or Tn gives an L-free set of maximum
size.

Theorem 1.2. Let L denote the equation px+ qy = rz where p ≥ q ≥ r
and p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1. Let t :=
gcd(p, q). Write r1 := p/t and r2 := q/t.
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(i) If q divides p and p+ q ≤ rq then µL(n) = d(q − 1)n/qe.
(ii) If q divides p and p+q ≥ rq then µL(n) = d(p+q−r)(n−a)/(p+q)e+a

where a is the unique non-negative integer 0 ≤ a < q such that n− a is
divisible by q.

(iii) If q does not divide p, t > 1 and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
then µL(n) = d(t− 1)n/te.

Theorem 1.2(ii) was already proven (for large enough n) in [14] in the
special case when r = 1. (Note though that our work in [14] determines µL(n)
for many equations L not covered by Theorem 1.2.) Previously, Hegarty [15]
proved Theorem 1.2(i) in the case when p = q. In Section 3 we also give a
generalisation of Theorem 1.2 concerning some linear equations with more
variables (see Corollary 3.2).

Notice that in the case when q divides p, Theorem 1.2 gives a dichotomy
for the value of µL(n): when p+ q ≤ rq the set Tn is a largest L-free subset
of [n], whilst when p+ q ≥ rq the interval In is a largest L-free subset of [n].
Theorem 1.2 does not provide us with as much information for the case when
q does not divide p; note though that a similar dichotomy does not occur in
this case. Take the equation 3x + 2y = 2z; here we have |In| ≈ 3n/5 and
|Tn| = 0. However, the set An := {x ∈ [n] : x 6≡ 0 mod 2 or x > 2n/3} has
size |An| ≈ 2n/3 and is L-free, since any solution (x, y, z) to L must have
x even and x ≤ 2n/3. It would be very interesting to fully resolve the case
where p ≥ q ≥ r and q does not divide p.

For equations px+qy = rz where r is bigger than p, q, there are a range of
cases where an extremal set is known and it is neither In nor Tn; see [6, 9, 15]
for these, and also other results on the size of the largest L-free subset of [n]
for various L.

1.2. The number of maximal solution-free sets. Given a linear
equation L, write f(n,L) for the number of L-free subsets of [n]. Observe that
all possible subsets of an L-free set are also L-free, and so f(n,L) ≥ 2µL(n).
In fact, in general this trivial lower bound is not too far from the precise value
of f(n,L). Indeed, Green [12] showed that if L is a homogeneous linear equa-
tion, then f(n,L) = 2µL(n)+o(n) (here the o(n) may depend on L). (Recall
though that if L is translation-invariant then µL(n) = o(n), so Green’s the-
orem only tells us that f(n,L) = 2o(n) for such L.) In the case of sum-free
sets, Green [11] and independently Sapozhenko [23] showed that there are
constants C1 and C2 such that f(n,L) = (Ci+o(1))2

n/2 for all n ≡ i mod 2.
This resolved a conjecture of Cameron and Erdős [7].

Far less is known about the number fmax(n,L) of maximal L-free subsets
of [n]. (We say that A ⊆ [n] is a maximal L-free subset of [n] if it is L-free
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and it is not properly contained in another L-free subset of [n].) In the case
when L is x + y = z, Cameron and Erdős [8] asked whether fmax(n,L) ≤
f(n,L)/2εn for some constant ε > 0; a few years later Łuczak and Schoen [19]
confirmed this to be true. After further progress on the problem [26, 2],
Balogh, Liu, Sharifzadeh and Treglown [3] proved the following sharp result
for maximal sum-free sets: For each 1 ≤ i ≤ 4, there is a constant Ci such
that, given any n ≡ i mod 4, fmax(n,L) = (Ci + o(1))2n/4.

For other linear equations L, it is also natural to ask whether there
are significantly fewer maximal L-free subsets of [n] than there are L-free
subsets. In [14] we showed that this is the case for all non-translation-
invariant three-variable homogeneous equations L. In particular in this case
fmax(n,L) ≤ 3(µL(n)−µ

∗
L(n))/3+o(n) where µ∗L(n) denotes the number of ele-

ments in [n] which do not lie in any non-trivial solution to L that only con-
sists of elements from [n]. We also gave other upper bounds on fmax(n,L)
for equations of the form px+ qy = z for fixed p, q ∈ N which in most cases
yielded better bounds (see [14]).

In this paper we prove the following result.

Theorem 1.3. Let L denote the equation px+ qy = rz where p ≥ q ≥ r
and p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1. Let t :=
gcd(p, q). Then

fmax(n,L) ≤ 2Crn/q+o(n) where C := 1− t

p+ q

(
p2 + (p− t)(q − t)

p2

)
.

For a wide class of equations L this is the current best known upper
bound on fmax(n,L); see the appendix for more details. When p = q ≥ 2
and r = 1, the upper bound given by Theorem 1.3 is actually exact up to
the error term in the exponent.

Theorem 1.4. Let L denote the equation qx+ qy = z where q ≥ 2 is an
integer. Then

fmax(n,L) = 2n/(2q)+o(n).

In Section 4 we will also generalise Theorem 1.3 to consider some linear
equations with more variables (see Theorem 4.1).

For the proof of both Theorems 1.2 and 1.3, a simple but crucial tool is
a result (Lemma 2.5) which ensures that a certain auxiliary graph contains
a large collection of disjoint edges. To prove Theorem 1.3 we also make use
of container and removal lemmas of Green [12] (see Section 2.1).

In the next section we collect together a number of useful tools and
lemmas. We prove our results on the size of the largest solution-free subset
of [n], and on the number of maximal solution-free subsets of [n], in Sections 3
and 4 respectively.
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2. Containers, link hypergraphs and the main lemmas

2.1. Container and removal lemmas. Observe that we can formulate
the study of L-free sets in terms of independent sets in hypergraphs. Let H
denote the hypergraph with vertex set [n] and edges corresponding to non-
trivial solutions to L. Then an independent set inH is precisely an L-free set.
The method of containers roughly states that for certain (hyper)graphs G,
the independent sets of G lie only in a small number of subsets of V (G)
called containers, where each container is an ‘almost independent set’. In
general, the method of containers has had a wide number of applications to
combinatorics and other areas; the method for graphs was first developed
by Kleitman and Winston [16, 17]. More recently, the hypergraph container
method was developed by Balogh, Morris and Samotij [4], and independently
by Saxton and Thomason [24]. In this section we introduce a container lemma
of Green [12] for L-free sets.

Lemma 2.1(i)–(iii) is stated explicitly in [12, Proposition 9.1]. Part (iv)
follows as an immediate consequence of part (i) and Lemma 2.2 below.

Lemma 2.1 ([12]). Fix a k-variable homogeneous linear equation L. There
exists a family F of subsets of [n] with the following properties:

(i) Every F ∈ F has at most o(nk−1) solutions to L.
(ii) If S ⊆ [n] is L-free, then S is a subset of some F ∈ F .
(iii) |F| = 2o(n).
(iv) Every F ∈ F has size at most µL(n) + o(n).

We call the elements of F containers. Observe that Lemma 2.1(iv) gives
a bound on the size of the containers in terms of µL(n), even when µL(n) is
not known.

The following removal lemma is a special case of a result of Green [12,
Theorem 1.5]. This result was also generalised to systems of linear equations
by Král’, Serra and Vena [18, Theorem 2].

Lemma 2.2 ([12]). Fix a k-variable homogeneous linear equation L. Sup-
pose that A ⊆ [n] is a set containing o(nk−1) solutions to L. Then there exist
B and C such that A = B ∪ C where B is L-free and |C| = o(n).

We will use both the above results to obtain bounds on the number of
maximal L-free sets.

2.2. Link hypergraphs. One can turn the problem of counting the
number of maximal L-free subsets of [n] into one of counting maximal inde-
pendent sets in an auxiliary graph. Similar techniques were used in [26, 2,
3, 14], and in the graph setting in [5, 1]. To be more precise, let B and S
be disjoint subsets of [n] and fix a three-variable linear equation L. The link
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graph LS [B] of S on B has vertex set B, and an edge set consisting of the
following two types of edges:

(i) two vertices x and y are adjacent if there exists an element z ∈ S such
that {x, y, z} is an L-triple;

(ii) there is a loop at a vertex x if there exists an element z ∈ S or elements
z, z′ ∈ S such that {x, x, z} or {x, z, z′} is an L-triple.

Here by L-triple we simply mean a multiset {x, y, z} which forms a solution
to L.

Consider the following generalisation of a link graph LS [B] to that of a
link hypergraph: Let B and S be disjoint subsets of [n] and let L denote the
equation p1x1 + · · ·+ pkxk = 0 where p1, . . . , pk are fixed non-zero integers.
The link hypergraph LS [B] of S on B has vertex set B; it has an edge set
consisting of hyperedges between s ≤ k distinct vertices v1, . . . , vs of B
whenever there is a solution (x1, . . . , xk) to L in which {x1, . . . , xk} ⊆ S ∪
{v1, . . . , vs} and {v1, . . . , vs} ⊆ {x1, . . . , xk}. In this definition one could have
edges corresponding to trivial solutions. However, in our applications, since
we only consider non-translation-invariant equations, there are no trivial
solutions.

The link graph lemmas in [14, Lemmas 12 and 15] can easily be extended
to the hypergraph case.

Lemma 2.3. Let L denote a non-translation-invariant linear equation.
Suppose that B,S are disjoint L-free subsets of [n]. If I ⊆ B is such that
S ∪ I is a maximal L-free subset of [n], then I is a maximal independent set
in the link hypergraph LS [B].

Let MIS(G) denote the number of maximal independent sets in G. The
above result can be used in conjunction with the container lemma as follows.
Let F = A ∪B be a container as in Lemma 2.1, where |A| = o(n) and B is
L-free. Observe that any maximal L-free subset of [n] in F can be found by
first selecting an L-free subset S ⊆ A, and then extending S in B. Then the
number of extensions of S in B is bounded by MIS(LS [B]) by Lemma 2.3.

We can also use link graphs to obtain lower bounds.

Lemma 2.4. Let L denote a non-translation-invariant linear equation.
Suppose that B,S are disjoint L-free subsets of [n]. Let H be an induced
subgraph of the link graph LS [B]. Then fmax(n,L) ≥ MIS(H).

2.3. The main lemmas. Here we use a specific link graph as a means
to bound the number of elements in a solution-free subset of [n].

Let L denote the equation px+ qy = rz where p ≥ q ≥ r and p, q, r are
fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q) and write
r1 := p/t, r2 := q/t. Fix M ∈ [n] such that M is divisible by t. We define
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the graph GM to have vertex set [drM/qe− 1] and an edge between x and y
whenever px+ qy = rM .

Lemma 2.5. The graph GM contains a collection E of vertex-disjoint
edges where

|E| =
⌊

rM

r2(p+ q)

⌋
+ (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
and at most one edge in E is a loop.

Proof. All edges in GM are pairs of the form {s, (rM − sp)/q} for some
s ∈ N since ps+q(rM−sp)/q = rM . As p = r1t and q = r2t where r1 and r2
are coprime, for a fixed integer s precisely one element in {(rM−(s−j)p)/q :
0 ≤ j < r2} is an integer. (Note here we are using the fact that M is
divisible by t.) In other words there exists a unique x ∈ N, 1 ≤ x ≤ r2,
such that (rM − xp)/q is an integer, and all edges in GM are of the form
{x+ ar2, (rM − xp)/q− ar1} for some non-negative integer a. In particular,
there is an edge provided a satisfies (rM − xp)/q − ar1 ∈ N.

Write y := (rM − xp)/q. Note that if x+ ar2 ≤ rM/(p+ q), then

y − ar1 =
rM − (x+ ar2)p

q
≥ rM − prM/(p+ q)

q
=

rM

p+ q
.

Hence there are brM/(r2(p+ q))c distinct edges in GM which have the form
{x+ar2, y−ar1} with x+ar2 ≤ rM/(p+q) ≤ y−ar1. Note that one of these
edges may be a loop. (This will be at rM/(p+q) when rM/(p+q) ∈ N.) Call
this collection of edges E1. Our next aim is to find an additional collection
E2 of edges in GM that is vertex-disjoint from E1.

Note that x + ar2 ≡ x mod r2 and y − ar1 ≡ y mod r1. Also we have
p(rM/p) + q(0) = rM and drM/pe ≤ drM/qe, hence there are at least⌊(⌈

rM

p

⌉
− 1−

⌊
rM

p+ q

⌋)/
r2

⌋
≥
⌊(

rM

p
− rM

p+ q
− 1

)/
r2

⌋
=

⌊
rM

r1(p+ q)
− 1

r2

⌋
edges in GM of the form {x + ar2, y − ar1} with x + ar2 > rM/(p + q).
Consider a set of r1r2 edges {{x+ ar2 + br2, y − ar1 − br1} : 0 ≤ b < r1r2}
for a fixed a. Since r1 and r2 are coprime, precisely r2 of these edges (one in
r1 of them) have x + ar2 + br2 ≡ y mod r1, and precisely r1 of these edges
have y − ar1 − br1 ≡ x mod r2. (Also, precisely one edge satisfies both.) In
all other cases, since x+ar2+ br2 6≡ y mod r1 and y−ar1− br1 6≡ x mod r2,
the edge {x+ ar2 + br2, y − ar1 − br1} is vertex-disjoint from E1. Hence we
obtain a set E2 of at least (r1r2−r1−r2+1)bbrM/(r1(p+q))−1/r2c/(r1r2)c
additional distinct edges. Thus E := E1 ∪ E2 is our desired set.
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Observe that the graph GM is a link graph LS [B], where S := {M} and
B := [drM/qe−1]. If we wish to extend a solution-free set S to a solution-free
subset of S ∪ B, then we must pick an independent set in LS [B]. Similarly
if we wish to obtain a solution-free subset of [n] which contains M divisible
by t, then we must pick an independent set in GM . This is the idea behind
the following key lemma, which allows us to bound the number of elements
in such an L-free set.

Lemma 2.6. Let L denote the equation px+qy = rz where p ≥ q ≥ r and
p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q)
and write r1 := p/t and r2 := q/t. Let S be an L-free subset of [n]. If M ∈ S
is divisible by t, then S contains at most⌈

rM

q

⌉
− 1−

⌊
rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
elements from [drM/qe − 1].

Proof. Consider the graph GM and observe that its edges correspond to
L-triples: since p ≥ q ≥ r there is an edge between x and y precisely when
{x, y,M} is an L-triple. Hence if I ⊆ V (GM ) is such that I ∪ {M} is an
L-free subset of [n] then I is an independent set in GM . As a consequence,
if we find a set of vertex-disjoint edges in GM of size J , then S contains at
most drM/qe − 1 − J elements from [drM/qe − 1]. The result then follows
by applying Lemma 2.5.

Note that if L denotes the equation x+y = z, then in Lemma 2.6 we are
simply saying that if a sum-free set S contains M , then it cannot contain
both 1 and M − 1, it cannot contain both 2 and M − 2, and so on. So in a
sense this lemma is a generalisation of the proof that sum-free subsets of [n]
cannot contain more than dn/2e elements.

Now let L denote the equation px+qy = rz where p ≥ q ≥ r and p, q, r are
fixed positive integers satisfying gcd(p, q, r) = 1, and let t := gcd(p, q). Recall
that Tn := {x ∈ [n] : x 6≡ 0 mod t} is L-free. Lemma 2.6 roughly implies
that every L-free subset of [n] must have ‘not too many small elements’ or
must ‘look like’ Tn. Clearly this lemma gives rise to an upper bound on the
size of the largest L-free subset of [n]. In Section 4 we also show that this
lemma can be used to obtain an upper bound on the number of maximal
L-free subsets of [n].

The following simple proposition allows us to extend our results for lin-
ear equations with three variables to linear equations with more than three
variables.

Proposition 2.7. Let L1 denote the equation p1x1 + · · · + pkxk = b
where p1, . . . , pk, b ∈ Z and let L2 denote the equation (p1 + p2)x1 + p3x2 +
· · ·+ pkxk−1 = b. Then µL1(n) ≤ µL2(n).
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Proof. If (p1 + p2)x1 + p3x2 + · · · + pkxk−1 = b for some xi ∈ [n], 1 ≤
i ≤ k− 1, then p1x1+ p2x1+ p3x2+ · · ·+ pkxk−1 = b. Hence any solution to
L2 in [n] gives rise to a solution to L1 in [n]. So if A ⊆ [n] is L1-free, then A
is also L2-free. Hence the size of the largest L2-free set is at least the size of
the largest L1-free set.

We will also make use of the following trivial fact.

Fact 2.8. Suppose L1 is a linear equation and L2 is a positive integer
multiple of L1. Then the set of L1-free subsets of [n] is precisely the set of
L2-free subsets of [n]. In particular µL1(n) = µL2(n), f(n,L1) = f(n,L2)
and fmax(n,L1) = fmax(n,L2).

The two results above allow us to extend the use of Lemma 2.6 to equa-
tions with more than three variables.

Lemma 2.9. Let L denote the equation p1x1 + · · · + pkxk = 0 where
pi ∈ Z. Suppose there is a partition of the pi into three non-empty parts P1,
P2 and P3 where p′ :=

∑
pj∈P1

pj, q′ :=
∑

pj∈P2
pj and r′ := −

∑
pj∈P3

pj
satisfy p′ ≥ q′ ≥ r′ ≥ 1. Let t′ := gcd(p′, q′, r′) and write p := p′/t′, q := q′/t′

and r := r′/t′. Let t := gcd(p, q) and write r1 := p/t and r2 := q/t. Let S be
an L-free subset of [n]. If M ∈ S is divisible by t, then S contains at most⌈

rM

q

⌉
− 1−

⌊
rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
elements from [drM/qe − 1].

Proof. Let L′ denote the equation px+ qy = rz. Now observe by repeat-
edly applying Proposition 2.7 and Fact 2.8 that any L-free set is also an
L′-free set. Hence S must be L′-free, and so we simply apply Lemma 2.6.

This bounds the number of ‘small elements’ in solution-free sets for equa-
tions with more than three variables, and in Theorem 4.1 we will use this
lemma to obtain a result for the number of maximal solution-free sets.

3. The size of the largest solution-free set. The aim of this section
is to use our results from the previous section to obtain bounds on µL(n)
for linear equations L of the form px + qy = rz with p ≥ q ≥ r positive
integers, and also linear equations with more than three variables. As previ-
ously mentioned, we can use Lemma 2.6 to obtain a bound on the size of a
solution-free set.

Corollary 3.1. Let L denote the equation px+qy = rz where p ≥ q ≥ r
and p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1. Let S be an
L-free subset of [n] and suppose M is the largest element of S divisible by
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t := gcd(p, q). Write r1 := p/t and r2 := q/t. Then

|S| ≤M −
⌊

rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
+

⌈
(n−M)(t− 1)

t

⌉
.

Proof. By Lemma 2.6, S contains at most drM/qe−1−brM/(r2(p+q))c
− (r1r2 − r1 − r2 + 1)bbrM/(r1(p + q)) − 1/r2c/(r1r2)c elements from
[drM/qe − 1]. Also, it cannot contain any element larger than M and di-
visible by t.

Note that in the statement of Corollary 3.1 we are implicitly assuming
that M exists. If it does not then |S| ≤ dn(t− 1)/te.

We are now ready to prove Theorem 1.2, which determines µL(n) for a
wide class of equations of the form px+ qy = rz where p ≥ q ≥ r and p, q, r
are fixed positive integers.

Theorem 1.2. Let L denote the equation px+ qy = rz where p ≥ q ≥ r
and p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1. Let t :=
gcd(p, q). Write r1 := p/t and r2 := q/t.

(i) If q divides p and p+ q ≤ rq then µL(n) = d(q − 1)n/qe.
(ii) If q divides p and p+q ≥ rq then µL(n) = d(p+q−r)(n−a)/(p+q)e+a

where a is the unique non-negative integer 0 ≤ a < q such that n− a is
divisible by q.

(iii) If q does not divide p, t > 1 and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
,

then µL(n) = d(t− 1)n/te.
Proof. Let S be an L-free subset of [n] and suppose M is the largest

element of S divisible by t. If S does not contain an element divisible by t,
set M := 0. If q divides p then t = q and r2 = 1, and hence by Corollary 3.1
we have

|S| ≤
⌈
(p+ q − r)M

p+ q

⌉
+

⌈
(n−M)(q − 1)

q

⌉
.(3.1)

(This is true even in the case M = 0.)
If p+q ≤ rq then |S| ≤ d(q−1)M/qe+d(n−M)(q−1)/qe = dn(q−1)/qe

since M is divisible by q. Observe that Tn := {x ∈ [n] : x 6≡ 0 mod t} is an
L-free set attaining this size, and so this proves (i).

For (ii) we will show that (3.1) is an increasing function of M (when
restricted to running through M divisible by t), and hence it will be max-
imised by taking M = n − a. Then |S| ≤ d(p + q − r)(n − a)/(p + q)e + a.
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Observe that the interval In := [br(n − a)/(p + q)c + 1, n] is an L-free set
attaining this size, and so this proves (ii), provided (3.1) is an increasing
function of M .

Since M must be divisible by t = q, write M ′ := M/q, and so (3.1) can
be written as⌈
((r1 + 1)q − r)M ′

r1 + 1

⌉
+

⌈
n(q − 1)

q

⌉
−M ′(q−1) =M ′+

⌈
−rM ′

r1 + 1

⌉
+

⌈
n(q − 1)

q

⌉
.

Now observe that the difference between successive terms M ′ and M ′ + 1 is
given by

M ′ + 1 +

⌈
−r(M ′ + 1)

r1 + 1

⌉
−M ′ −

⌈
−rM ′

r1 + 1

⌉
= 1 +

⌈
−rM ′

r1 + 1
− r

r1 + 1

⌉
−
⌈
−rM ′

r1 + 1

⌉
≥ 0,

where the inequality follows since r1 + 1 ≥ r. Hence (3.1) is an increasing
function of M as required.

For (iii), if M = 0 then |S| ≤ dn(t− 1)/te as required. So assume M ≥ t.
Then by Corollary 3.1 we have

|S| ≤M −
⌊

rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
+

⌈
(n−M)(t− 1)

t

⌉
≤M − rM

r2(p+ q)
+ 1− r1r2 − r1 − r2 + 1

r1r2

(
rM

r1(p+ q)
− 1

r2
− 1

)
+ r1r2 − r1 − r2 + 1− M(t− 1)

t
+

⌈
n(t− 1)

t

⌉
≤
⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3−M

(
r(r21 + (r1 − 1)(r2 − 1))

tr21r2(r1 + r2)
− 1

t

)
=

⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3

−M
(
r

tr2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)−1
− 1

t

)
≤
⌈
n(t− 1)

t

⌉
+ r1r2 − r1 − r2 + 3−M

(
r1r2 − r1 − r2 + 4

t
− 1

t

)
≤
⌈
n(t− 1)

t

⌉
,

where the penultimate inequality follows by our lower bound on r, and the
last inequality follows by using M ≥ t.
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For Theorem 1.2(iii) it is easy to check that actually given the conditions
on r we must always have t > 1 (we just state t > 1 in the theorem for
clarity). As an example, p := 3t, q := 2t, r ≥ 41, and t ≥ r/2 gives a set of
equations which satisfy the conditions of Theorem 1.2(iii).

Theorem 1.2 together with Proposition 2.7 yield results for µL(n) where
L is an equation with more than three variables. Full details can be found
in [13].

Corollary 3.2. Let L denote the equation a1x1 + · · · + akxk + b1y1 +
· · · + b`y` = c1z1 + · · · + cmzm where the ai, bi, ci ∈ N and p′ :=

∑
i ai,

q′ :=
∑

i bi and r
′ :=

∑
i ci satisfy p

′ ≥ q′ ≥ r′. Let t′ := gcd(p′, q′, r′) and
write p := p′/t′, q := q′/t′ and r := r′/t′. Let t := gcd(p, q).

(i) If m = 1, ` = 1, q′ = b1 divides ai for all 1 ≤ i ≤ k and p+ q ≤ rq then
µL(n) = d(q − 1)n/qe.

(ii) If q divides p and p + q ≥ rq then d(p + q − r)n/(p + q)e ≤ µL(n) ≤
d(p+q−r)(n−a)/(p+q)e+a where a is the unique non-negative integer
0 ≤ a < q such that n− a is divisible by q.

(iii) Write r1 := p/t and r2 := q/t. If q does not divide p, m = 1, tt′ divides
ai and bj for 1 ≤ i ≤ k, 1 ≤ j ≤ ` and

r > (r1r2 − r1 − r2 + 4)r2

(
r1 + 1 +

r2 − 1

r21 + (r1 − 1)(r2 − 1)

)
then µL(n) = d(t− 1)n/te.

4. The number of maximal solution-free sets. We start this section
with the proof of Theorem 1.3.

Theorem 1.3. Let L denote the equation px+ qy = rz where p ≥ q ≥ r
and p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1. Let t :=
gcd(p, q). Then

fmax(n,L) ≤ 2Crn/q+o(n) where C := 1− t

p+ q

(
p2 + (p− t)(q − t)

p2

)
.

Proof. First note that C lies between 1/2 and 1− t/(p+ q). Indeed, if q
divides p, then C = 1 − q/(p + q) ≥ 1/2 since p ≥ q. Otherwise, p > q > t,
and so (p−t)(q−t) < p2. Hence t(p2+(p−t)(q−t))/(p2(p+q)) < 2t/(p+q) ≤
2(q/2)/(p + q) < 1/2, and so C > 1/2. We observe that C ≤ 1 − t/(p + q)
since p ≥ q ≥ t.

Let F denote the set of containers obtained by applying Lemma 2.1. Since
every maximal L-free subset of [n] lies in at least one of the 2o(n) containers,
it suffices to show that every F ∈ F houses at most 2Crn/q+o(n) maximal
L-free sets.
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Let F ∈ F . By Lemmas 2.1(i) and 2.2, F = A ∪ B where |A| = o(n),
|B| ≤ µL(n) and B is L-free. Define M := max{x ∈ B : x ≡ 0 mod t} and
u := max{brM/qc, brn/2qc}. Every maximal L-free set which lies in such a
container can be constructed by:

(i) picking S1 ⊆ A to be L-free;
(ii) adding a set S2 ⊆ [u] ∩B so that S1 ∪ S2 is L-free;
(iii) choosing a set S3 ⊆ [u + 1, n] ∩ B so that S1 ∪ S2 ∪ S3 is a maximal

L-free subset of [n].

There are 2o(n) ways to pick S1. If M ≤ n/2 then u = brn/2qc, and so there
are at most 2rn/2q ≤ 2Crn/q ways to pick S2 so that S1 ∪ S2 is L-free. Write
r1 := p/t and r2 := q/t. If M ≥ n/2 then since M is divisible by t, we apply
Lemma 2.6 to show that

|[u] ∩B| = |[brM/qc] ∩B|

≤
⌊
rM

q

⌋
−
⌊

rM

r2(p+ q)

⌋
− (r1r2 − r1 − r2 + 1)

⌊⌊
rM

r1(p+ q)
− 1

r2

⌋
1

r1r2

⌋
=
CrM

q
+ o(n).

Hence there are at most 2CrM/q+o(n) ≤ 2Crn/q+o(n) ways to pick S2 so that
S1 ∪ S2 is L-free.

LetB′ := [u+1, n]∩B. For step (iii) we calculate the number of extensions
of S1 ∪ S2 to B′. Observe by Lemma 2.3 that this is bounded above by
MIS(LS1∪S2 [B

′]). We will show that this link graph has only one maximal
independent set. Then combining steps (i)–(iii) we see that F contains at
most 2o(n) × 2Crn/q+o(n) = 2Crn/q+o(n) maximal L-free sets, as desired.

If the link graph only contains loops and isolated vertices, then it has
only one maximal independent set. For it to have an edge between distinct
vertices, either we must have x, z ∈ B′, y ∈ S1∪S2 such that px+qy = rz or
py+ qx = rz, or we must have x, y ∈ B′, z ∈ S1∪S2 such that px+ qy = rz.

The first of these events does not occur since otherwise rz ≥ q(x+ y) >
qx ≥ q(brM/qc + 1) > rM and so z > M . Since z is part of the solution
px + qy = rz and gcd(p, q, r) = 1, it must be divisible by t. However this
contradicts z > M as we have z ∈ B, and M was defined to be the largest
element in B divisible by t.

If M > n/2 then the second event does not occur since rz = px + qy ≥
q(x + y) ≥ 2q(brM/qc + 1) > 2rM > rn and so z > n. If M ≤ n/2
then the second event does not occur since rz = px + qy ≥ q(x + y) ≥
2q(brn/2qc+ 1) > rn and so again z > n.
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Note that when r = 1, Theorem 1.3 gives us new results for equations
of the form px + qy = z. The authors previously obtained results for such
equations in [14]. In the appendix below we give a summary describing which
result gives the best upper bound for various values of p and q.

When L denotes the equation qx + qy = z for some positive integer
q ≥ 2, [14, Proposition 26(iii)] gives a lower bound of fmax(n,L) ≥ 2(n−6q)/2q.
Combining this with Theorem 1.3 gives us the following asymptotically exact
result.

Theorem 1.4. Let L denote the equation qx+ qy = z where q ≥ 2 is an
integer. Then

fmax(n,L) = 2n/(2q)+o(n).

By adapting the proof of Theorem 1.3 we obtain the following result for
fmax(n,L) for some equations with more than three variables.

Theorem 4.1. Let L denote the equation p1x1 + · · ·+ pkxk = rz where
p1, . . . , pk, r ∈ N satisfy gcd(p1, . . . , pk, r) = 1 and p1 ≥ · · · ≥ pk ≥ r. Sup-
pose that p :=

∑k−1
i=1 pi and q := pk satisfy t := gcd(p, q) = gcd(p1, . . . , pk).

Then

fmax(n,L) ≤ 2Crn/q+o(n) where C := 1− t

p+ q

(
p2 + (p− t)(q − t)

p2

)
.

Proof. We follow the proof of Theorem 1.3 precisely (except for using
Lemma 2.9 instead of Lemma 2.6 in step (ii)) up until counting the number
of ways of extending S1 ∪S2 to a maximal L-free set in B′ := [u+1, n]∩B.
Observe by Lemma 2.3 that this is bounded above by MIS(LS1∪S2 [B

′]) since
B′ and S1∪S2 are L-free. To see that B′ is L-free, suppose (x1, . . . , xk, z) is a
solution within B′ and note that rz = p1x1+· · ·+pkxk > pkxk ≥ q(rM/q) =
rM and so z > M . (Here we need the fact that each pi is positive.) Since
gcd(p1, . . . , pk, r) = 1 and gcd(p, q) = gcd(p1, . . . , pk), we have gcd(t, r) = 1,
and so in any solution to L, z must be divisible by t. However, this contradicts
z > M , as we have z ∈ B, and M was defined to be the largest element in
B divisible by t.

We will show that this link hypergraph LS1∪S2 [B
′] has only one maximal

independent set (and hence the number of maximal L-free sets contained
in F is at most 2Crn/q+o(n) as required).

If the link hypergraph only contains loops and isolated vertices, then
it has only one maximal independent set. For it to have a hyperedge be-
tween at least two vertices, there must exist a solution (x1, . . . , xk, z) where
either there is a hyperedge with distinct vertices xi, z ∈ B′ for some 1 ≤
i ≤ k and {x1, . . . , xi−1, xi+1, . . . , xk} ⊆ B′ ∪ S1 ∪ S2, or there is a hy-
peredge with distinct vertices xi, xj ∈ B′ for some 1 ≤ i < j ≤ k and
{x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . , xk, z} ⊆ B′ ∪ S1 ∪ S2.
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Suppose that the first event occurs with (x1, . . . , xk, z). Then rz =
p1x1 + · · ·+ pkxk > pixi ≥ pkxi = qxi ≥ q(rM/q) = rM and so z > M . But
since z is part of a solution, it must be divisible by t. This contradicts z ∈ B,
since M was defined to be the largest element in B divisible by t.

If M > n/2 then the second event does not occur since rz = p1x1 +
· · · + pkxk > pk(xi + xj) ≥ 2q(brM/qc + 1) > 2rM > rn and so z > n. If
M ≤ n/2 then the second event does not occur since rz = p1x1+· · ·+pkxk >
pk(xi + xj) ≥ 2q(brn/(2q)c+ 1) > rn and so again z > n.

We end the section with a lower bound.

Proposition 4.2. Let L denote the equation qx+ qy = rz where q > r
and q, r are fixed positive integers satisfying gcd(q, r) = 1. Then

fmax(n,L) ≥ 2dbrn/2q−rq/2c(q−1)/qe−1.

Proof. Let B be the L-free set {z ∈ [n] : z 6≡ 0 mod q}. Let M :=
max{z ∈ [n] : rz/q2 ∈ [n]}; so M > n− q2. Let S := {M} and consider the
link graph LS [B]. Note that if i ∈ B where i < rM/q then rM/q−i ∈ B. This
follows since rM/q2 ∈ N and so rM/q− i 6≡ 0 mod q. Hence there is an edge
in LS [B] between every such i and rM/q− i since q(i+rM/q− i) = rM . By
running through all i ∈ B we obtain a total of dbrM/(2q)c(q−1)/qe disjoint
edges in LS [B], of which at most one is a loop (at rM/2q if it is an integer
not congruent to 0 modulo q). Hence we obtain an induced matching E in
LS [B] of size dbrM/(2q)c(q−1)/qe−1 ≥ dbrn/(2q)− rq/2c(q−1)/qe−1. It
is easy to see that the matching E contains 2|E| maximal independent sets.
Since E is an induced subgraph of LS [B], by applying Lemma 2.4 we obtain
the result.

Question 4.3. Let L denote the equation qx+ qy = rz where q > r ≥ 2
and q, r are fixed positive integers satisfying gcd(q, r) = 1. Does fmax(n,L)
equal 2rn(q−1)/(2q2)+o(n)?

In the appendix, just before Proposition A.5, we describe the value of
µ∗L(n). We remark that, using this, it turns out that for equations L as in
Question 4.3, we have 2rn(q−1)/(2q

2)+o(n) = 2(µL(n)−µ
∗
L(n))/2+o(n).

5. Concluding remarks. In this paper we have used Lemma 2.5 as
a tool to prove results on both the size of the largest solution-free sub-
set of [n] and on the number of maximal solution-free subsets of [n]. Re-
call that Green [12] showed that if L is a homogeneous linear equation,
then f(n,L) = 2µL(n)+o(n). One can actually very easily apply Lemma 2.5
to obtain f(n,L) = Θ(2µL(n)) for some linear equations L of the form
px+ qy = rz where p ≥ q ≥ r are positive integers. However, the results
we obtain seem quite niche. Thus, we defer their statement and proof to the
thesis of the first author [13].
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The crucial trick used in the proof of Theorems 1.3 and 4.1 was to choose
our sets S carefully so that the link hypergraphs LS [B] each contain precisely
one maximal independent set. In other applications of this method [2, 3, 14]
the approach had been instead to obtain other structural properties of the
link graphs (such as being triangle-free) to ensure there are not too many
maximal independent sets in LS [B]. It would be interesting to see if the ap-
proach of our paper can be applied to obtain other (exact) results in the area.

Although we have found an initial bound on fmax(n,L) for some equa-
tions with more than three variables, we still do not know in general if there
are significantly fewer maximal L-free subsets of [n] than there are L-free
subsets of [n]. Progress on giving general upper bounds on the number of
maximal independent sets in (non-uniform) hypergraphs should (through
the method of link hypergraphs) yield results in this direction.

Appendix. In this appendix we give a summary of the best known
upper bound on fmax(n,L) for equations of the form px + qy = rz where
p ≥ q ≥ r. First we recall some of the results from [14].

Theorem A.1 ([14]). Let L be a fixed homogeneous three-variable linear
equation. Then

fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n).

Theorem A.2 ([14]). Let L denote the equation px + qy = z where
p ≥ q ≥ 2 are integers such that p ≤ q2 − q and gcd(p, q) = q. Then

fmax(n,L) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n).

Theorem A.3 ([14]). Let L denote the equation px + qy = rz where
p ≥ q ≥ r and p, q, r ∈ N. Then

fmax(n,L) ≤ 2µL(rn/q)+o(n).

Proposition A.4 ([14]). Let L denote the equation px + qy = z where
p ≥ q, p ≥ 2 and p, q ∈ N. The best upper bound on fmax(n,L) given by
Theorems A.1, A.2 and A.3 is:

(i) fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n) if gcd(p, q) = q, p ≥ q2, and either

q ≤ 9 or 10 ≤ q ≤ 17 and p < (a − 1)(q2 − q)/(q(2 − a) − 1) where
a := log3(8);

(ii) fmax(n,L) ≤ 2(µL(n)−µ
∗
L(n))/2+o(n) if gcd(p, q) = q and p ≤ q2 − q;

(iii) fmax(n,L) ≤ 2µL(n/q)+o(n) otherwise.

Recall µ∗L(n) denotes the number of elements in [n] which do not lie in
any non-trivial solution to L that only consists of elements from [n]. Let
L denote the equation px + qy = rz where p ≥ q ≥ r and p, q, r are fixed
positive integers satisfying gcd(p, q, r) = 1. Let t := gcd(p, q). Then notice
that S := {s ∈ [n] : s > b(rn − p)/qc, t - s} is a set of elements which do
not lie in any solution to L in [n]. This follows since if s > b(rn− p)/qc then
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ps + q ≥ qs + p > rn and so s cannot play the role of x or y in an L-triple
in [n]. If t - s then as t | (px + qy) for any x, y ∈ [n] but gcd(r, t) = 1, we
see that s cannot play the role of z in an L-triple in [n]. Actually, for large
enough n, every element that does not lie in any solution to L in [n] is in S,
and so µ∗L(n) = |S| = d(n− b(rn− p)/qc)(t− 1)/te for all such L. We omit
the proof of this here.

We can now state the new summary.

Proposition A.5. Let L denote the equation px + qy = rz where p ≥
q ≥ r, p ≥ 2 and p, q, r are fixed positive integers satisfying gcd(p, q, r) = 1.
Let t := gcd(p, q) and a := log2 3. The best upper bound on fmax(n,L) given
by Theorems A.1, A.2, A.3 and 1.3 is:

(i) fmax(n,L) ≤ 3(µL(n)−µ
∗
L(n))/3+o(n) if

(a) r = 1, gcd(p, q) = q, p ≥ max {q2, (q2 − q)a/(q(3− 2a) + a)}, and
q ≤ 9,

(b) r ≥ 2, µL(n) = d(t− 1)n/te, and additionally (1) p 6= q or
(2) 2 ≤ q ≤ 18,

(c) r ≥ 2, q divides p, p+ q ≥ rq and additionally (1) p 6= q or
(2) 2 ≤ q ≤ 18;

(ii) fmax(n,L) ≤ 2Crn/q+o(n) where C := 1− t(p2+(p− t)(q− t))/(p2(p+q))
if

(a) r = 1 and gcd(p, q) 6= q or q > 9 or p < q2 or
p < (q2 − q)a/(q(3− 2a) + a);

(b) r ≥ 2, µL(n) = d(t− 1)n/te, and p = q ≥ 19.

Proof. First suppose that r = 1 (and so µL(n) = d(p+ q− 1)n/(p+ q)e).
Note that C ≤ 1 − t/(p + q) = (p + q − t)/(p + q) ≤ (p + q − 1)/(p + q),
and so the exponent given by Theorem 1.3 is at most the exponent given
by Theorem A.3. For Theorem A.2 we require gcd(p, q) = q and p ≤ q2 − q.
In this case C = p/(p + q) and (p + q − 1)/(2(p + q)) − (q − 1)2/(2q2) =
(2pq + q2 − p− q)/(2q2(p+ q)) ≥ p/(q(p+ q)) = C/q, and so the exponent
given by Theorem 1.3 is at most the exponent given by Theorem A.2.

It remains to check when the bound given by Theorem A.1 is still better
than the bound given by Theorem 1.3. By Proposition A.4 this can only
possibly be the case if gcd(p, q) = q and p ≥ q2. To prove (i)(a) it suffices to
show that

3
(p+q−1)n
3(p+q)

− (q−1)2n

3q2 ≤ 2
pn

q(p+q) ,

or rearranging
p(q(3− 2a) + a) ≥ (q2 − q)a.

If q ≥ 10 then q(3−2a)+a is negative, but then we would require p negative,
a contradiction. Hence we must have q ≤ 9, and then the inequality holds if
p > (q2 − q)a/(q(3− 2a) + a).
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Now suppose that r ≥ 2 and µL(n) = d(t−1)n/te. Then µL(n)−µ∗L(n) =
r(t−1)n/(qt)+o(n) and 3x/3 < 2x, and so Theorem A.1 gives a better bound
than Theorem A.3. We wish to know when

3
r
q

t−1
3t < 2

r
q
(1− t

p+q
(
p2+(p−t)(q−t)

p2
))
.

Write r1 := p/t and r2 := q/t. The above rearranges to give

t
(
(a− 3)r21(r1 + r2) + 3r21 + 3(r1 − 1)(r2 − 1)

)
< ar21(r1 + r2).

The right hand side is positive and the left hand side is negative unless
r1 = r2 = 1. In this case p = q = t, and so we now require 3(q−1)/(3q) < 21/2,
which holds when q ≤ 18.

Finally suppose that r ≥ 2, q divides p and p + q ≥ rq (so µL(n) =
d(p + q − r)n/(p + q)e). Since q divides p, we have t = q and p = r1q,
and so Theorem 1.3 gives a bound of 2rpn/(q(p+q))+o(n). This is better than
Theorem A.3 which gives a bound of 2r(p+q−r)n/(q(p+q))+o(n) since q ≥ r.
Therefore we wish to know when

3
p+q−r
3(p+q)

− (q−r)(q−1)

3q2 < 2
rp

q(p+q) .

Rearranging, we require r1(a(q + qr − r)/3 − qr) ≤ a(r − q)/3. Now note
a(q + qr − r)/3 − qr is negative when r ≥ 2, so this rearranges to give
r1 ≥ (q − r)/(r − q − rq + 3rq/a). If p > q (so r1 ≥ 2), it suffices to have
2 ≥ (q− r)/(r− q− rq+3rq/a), or rearranging, q(r(2−6/a)+3) ≤ 3r. This
holds since r(2−6/a)+3 is negative for r ≥ 2. Otherwise p = q, and so since
p + q ≥ rq, we find that r = 2. So we require 1 ≥ (q − 2)/((6/a − 3)q + 2),
which holds when q ≤ 18. (In this final case, we have µL(n) = d(t−1)n/te =
d(p+ q − r)n/(p+ q)e = d(q − 1)n/qe.)

Acknowledgements. The second author is supported by EPSRC grant
EP/M016641/1. The authors are grateful to the referee for a careful review
which particularly aided the quality of the exposition in the introduction.

References

[1] J. Balogh, H. Liu, S. Petříčková and M. Sharifzadeh, The typical structure of max-
imal triangle-free graphs, Forum Math. Sigma 3 (2015), e20, 19 pp.

[2] J. Balogh, H. Liu, M. Sharifzadeh and A. Treglown, The number of maximal sum-free
subsets of integers, Proc. Amer. Math. Soc. 143 (2015), 4713–4721.

[3] J. Balogh, H. Liu, M. Sharifzadeh and A. Treglown, Sharp bound on the number of
maximal sum-free subsets of integers, arXiv:1502.07605 (2015).

[4] J. Balogh, R. Morris and W. Samotij, Independent sets in hypergraphs, J. Amer.
Math. Soc. 28 (2015), 669–709.

[5] J. Balogh and S. Petříčková, The number of the maximal triangle-free graphs, Bull.
London Math. Soc. 46 (2014), 1003–1006.

http://dx.doi.org/10.1017/fms.2015.22
http://dx.doi.org/10.1090/S0002-9939-2015-12615-9
http://arxiv.org/abs/1502.07605
http://dx.doi.org/10.1090/S0894-0347-2014-00816-X
http://dx.doi.org/10.1112/blms/bdu059


Solution-free sets of integers 19

[6] A. Baltz, P. Hegarty, J. Knape, U. Larsson and T. Schoen, The structure of maxi-
mum subsets of {1, . . . , n} with no solutions to a+ b = kc, Electron. J. Combin. 12
(2005), R19, 16 pp.

[7] P. Cameron and P. Erdős, On the number of sets of integers with various properties,
in: Number Theory, R. A. Mollin (ed.), de Gruyter, Berlin, 1990, 61–79.

[8] P. Cameron and P. Erdős, Notes on sum-free and related sets, Combin. Probab.
Comput. 8 (1999), 95–107.

[9] K. Dilcher and L. Lucht, On finite pattern-free sets of integers, Acta Arith. 121
(2006), 313–325.

[10] P. Erdős and P. Turán, On a problem of Sidon in additive number theory, and on
some related problems, J. London Math. Soc. 16 (1941), 212–215.

[11] B. Green, The Cameron–Erdős conjecture, Bull. London Math. Soc. 36 (2004), 769–
778.

[12] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications,
Geom. Funct. Anal. 15 (2005), 340–376.

[13] R. Hancock, PhD thesis, Univ. of Birmingham, in preparation.
[14] R. Hancock and A. Treglown, On solution-free sets of integers, Eur. J. Combin., to

appear.
[15] P. Hegarty, Extremal subsets of {1, . . . , n} avoiding solutions to linear equations in

three variables, Electron. J. Combin. 14 (2007), R74, 22 pp.
[16] D. J. Kleitman and K. J. Winston, The asymptotic number of lattices, Ann. Discrete

Math. 6 (1980), 243–249.
[17] D. J. Kleitman and K. J. Winston, On the number of graphs without 4-cycles, Dis-

crete Math. 41 (1982), 167–172.
[18] D. Král’, O. Serra and L. Vena, A removal lemma for systems of linear equations

over finite fields, Israel J. Math. 187 (2012), 193–207.
[19] T. Łuczak and T. Schoen, On the number of maximal sum-free sets, Proc. Amer.

Math. Soc. 129 (2001), 2205–2207.
[20] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.
[21] I. Z. Ruzsa, Solving a linear equation in a set of integers I, Acta Arith. 65 (1993),

259–282.
[22] I. Z. Ruzsa, Solving a linear equation in a set of integers II, Acta Arith. 72 (1995),

385–397.
[23] A. A. Sapozhenko, The Cameron–Erdős conjecture, Dokl. Akad. Nauk 393 (2003),

749–752 (in Russian).
[24] D. Saxton and A. Thomason, Hypergraph containers, Invent. Math. 201 (2015),

925–992.
[25] I. Schur, Über die Kongruenz xm + ym ≡ zm (mod. p), Jahresber. Deutsch. Math.-

Verein. 25 (1916), 114–117.
[26] G. Wolfovitz, Bounds on the number of maximal sum-free sets, Eur. J. Combin. 30

(2009), 1718–1723.

Robert Hancock, Andrew Treglown
School of Mathematics
University of Birmingham
Edgbaston, Birmingham, B15 2TT, UK
E-mail: rah410@bham.ac.uk

a.c.treglown@bham.ac.uk

http://dx.doi.org/10.1515/9783110848632-008
http://dx.doi.org/10.1017/S0963548398003435
http://dx.doi.org/10.4064/aa121-4-2
http://dx.doi.org/10.1112/jlms/s1-16.4.212
http://dx.doi.org/10.1112/S0024609304003650
http://dx.doi.org/10.1007/s00039-005-0509-8
http://dx.doi.org/10.1016/0012-365X(82)90204-7
http://dx.doi.org/10.1007/s11856-011-0080-y
http://dx.doi.org/10.1090/S0002-9939-00-05815-9
http://dx.doi.org/10.1112/jlms/s1-28.1.104
http://dx.doi.org/10.1007/s00222-014-0562-8
http://dx.doi.org/10.1016/j.ejc.2009.03.015


Abstract (will appear on the journal’s web site only)
Given a linear equation L, a set A ⊆ [n] is L-free if A does not contain

any ‘non-trivial’ solutions to L. We determine the precise size of the largest
L-free subset of [n] for several general classes of linear equations L of the
form px + qy = rz for fixed p, q, r ∈ N where p ≥ q ≥ r. Further, for all
such linear equations L, we give an upper bound on the number of maximal
L-free subsets of [n]. When p = q ≥ 2 and r = 1 this bound is exact up to an
error term in the exponent. We make use of container and removal lemmas of
Green to prove this result. Our results also extend to various linear equations
with more than three variables.
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