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Overview

In this talk we are interested in perfect matchings and packings in
k-graphs H:

perfect matchings = vertex-disjoint edges covering all of V (H)

perfect F -packings = vertex-disjoint copies of F covering all
of V (H)

Edmonds’ Algorithm: can find a perfect matching in a graph
(if it exists) in polynomial time

If k ≥ 3 decision problem is NP-complete (Karp; Garey and
Johnson)

Graph perfect packings: decision problem is NP-complete,
unless the packing corresponds to a matching (Hell,
Kirkpatrick)
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Perfect matchings in k-graphs

Let H be a k-graph and S ⊆ V (H).

dH(S) = # edges containing S ;

δ`(H) = min{dH(S) : |S | = `} (for fixed 1 ≤ ` ≤ k − 1);

δ1(H) = minimum vertex degree;

δk−1(H) = minimum codegree.

Conjecture (Hàn, Person Schacht; Kühn, Osthus)

Given an n-vertex k-graph H and fixed 1 ≤ ` ≤ k − 1. If

δ`(H) ≥ max
{(

1
2 + o(1)

) (n−`
k−`
)
,
(
1− (1− 1

k )k−` + o(1)
) (n−`

k−`
)}

=⇒ perfect matching in H.

Known for:

` = k − 1 (Rödl, Ruciński, Szemerédi)

` ≥ k/2 (Pikhurko; T. and Zhao)

` ≥ 0.42k (Han)

some small values of k , `.

Andrew Treglown The complexity of perfect matchings and packings in dense graphs



Perfect matchings in k-graphs

Let H be a k-graph and S ⊆ V (H).

dH(S) = # edges containing S ;

δ`(H) = min{dH(S) : |S | = `} (for fixed 1 ≤ ` ≤ k − 1);

δ1(H) = minimum vertex degree;

δk−1(H) = minimum codegree.
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The decision problem

Let PM(k , `, δ) denote the decision problem of whether a

k-graph H with δ`(H) ≥ δ
(|H|−`

k−`
)

contains a perfect matching.

Results:

PM(k, k − 1, 1/k) is in P
(Karpiński, Ruciński and Szymańska; Keevash, Knox and
Mycroft; Han)

PM(k, `, δ) is NP-complete if δ < (1− (1− 1/k)k−`)
(Szymańska)

Conjecture (Keevash, Knox, Mycroft)

PM(k , `, δ) is in P if δ > (1− (1− 1/k)k−`)

Intuition: beyond ‘space barrier’ can decide in polynomial time
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Conjecture (Keevash, Knox, Mycroft)

PM(k , `, δ) is in P if δ > (1− (1− 1/k)k−`)

Intuition: beyond ‘space barrier’ can decide in polynomial time

Andrew Treglown The complexity of perfect matchings and packings in dense graphs



The decision problem

Conjecture (Keevash, Knox, Mycroft)

PM(k , `, δ) is in P if δ > (1− (1− 1/k)k−`)

Theorem (Han and T.)

Conjecture true for

(k − 1)/2 ≤ ` ≤ (1 + log(2/3))k ≈ 0.5945k

Proof is one page consequence of a general black-box for
matching and packing problems.

If one solves the ‘almost’ perfect matching problem then our
result immediately extends to all ` ≤ (1 + log(2/3))k .
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Perfect packings in graphs

Kühn and Osthus determined, up to an additive constant, the
minimum degree threshold that forces a perfect F -packing for
any fixed graph F

Again there are two types of extremal example: space barriers
and divisibility barriers.

Theorem (Han and T.)

“Above space barrier we can always decide in polynomial time
whether a graph contains a perfect F -packing.”

This answers a question of Yuster in the negative.
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