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Abstract. Given graphs H1, H2, a graph G is (H1, H2)-Ramsey if for every colouring of the
edges of G with red and blue, there is a red copy of H1 or a blue copy of H2. In this paper we
investigate Ramsey questions in the setting of randomly perturbed graphs: this is a random graph
model introduced by Bohman, Frieze and Martin [8] in which one starts with a dense graph and
then adds a given number of random edges to it. The study of Ramsey properties of randomly
perturbed graphs was initiated by Krivelevich, Sudakov and Tetali [30] in 2006; they determined
how many random edges must be added to a dense graph to ensure the resulting graph is with high
probability (K3,Kt)-Ramsey (for t ≥ 3). They also raised the question of generalising this result to
pairs of graphs other than (K3,Kt). We make significant progress on this question, giving a precise
solution in the case when H1 = Ks and H2 = Kt where s, t ≥ 5. Although we again show that
one requires polynomially fewer edges than in the purely random graph, our result shows that the
problem in this case is quite different to the (K3,Kt)-Ramsey question. Moreover, we give bounds
for the corresponding (K4,Kt)-Ramsey question; together with a construction of Powierski [37] this
resolves the (K4,K4)-Ramsey problem.

We also give a precise solution to the analogous question in the case when both H1 = Cs and
H2 = Ct are cycles. Additionally we consider the corresponding multicolour problem. Our final
result gives another generalisation of the Krivelevich, Sudakov and Tetali [30] result. Specifically,
we determine how many random edges must be added to a dense graph to ensure the resulting
graph is with high probability (Cs,Kt)-Ramsey (for odd s ≥ 5 and t ≥ 4).

To prove our results we combine a mixture of approaches, employing the container method,
the regularity method as well as dependent random choice, and apply robust extensions of recent
asymmetric random Ramsey results.

MSC2000: 5C55, 5C80, 5D10.

1. Introduction

Let G and H be graphs and r ∈ N. We say that G is (H, r)-Ramsey if every r-colouring of
G yields a monochromatic copy of H in G. More generally, for graphs H1, . . . ,Hr, a graph G is
(H1, . . . ,Hr)-Ramsey if for any r-colouring of G there is a copy of Hi in colour i for some i ∈ [r].
In the case r = 2, we shall take the first colour to be red and the second colour to be blue.
Ramsey’s classic theorem tells us that if n ∈ N is sufficiently large then Kn is (H1, . . . ,Hr)-Ramsey.
Whilst in general for given graphs H1, . . . ,Hr it seems out of reach to determine the smallest
n =: R(H1, . . . ,Hr) with this property, much effort has gone into establishing good upper and
lower bounds on R(H1, . . . ,Hr) (particularly in the case when the Hi are cliques; see e.g. [12, 42]).

1.1. Ramsey properties of random graphs. There has also been significant interest in un-
derstanding Ramsey properties of the random graph G(n, p). Recall that G(n, p) has vertex set
[n] := {1, . . . , n} and each edge is present with probability p, independently of all other choices.
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Seminal work of Rödl and Ruciński [38, 39, 40] determined the threshold for the (H, r)-Ramsey
property in G(n, p) for all fixed H and r ≥ 2. Before we state their result (in a slightly restricted
form) we require two definitions. Given a graph H, set d2(H) := 0 if e(H) = 0; d2(H) := 1/2
when H is precisely an edge and define d2(H) := (e(H) − 1)/(v(H) − 2) otherwise. Then de-
fine m2(H) := maxH′⊆H d2(H ′) to be the 2-density of H. We say that H is strictly 2-balanced
if m2(H ′) < m2(H) for all H ′ ( H. Rödl and Ruciński showed that the 2-density of H is the
parameter that governs the threshold for the (H, r)-Ramsey property in G(n, p).

Theorem 1.1 ([38, 39, 40]). Let r ≥ 2 be a positive integer and let H be a graph that is not a
forest consisting of stars and paths of length 3. There are positive constants c, C such that

lim
n→∞

P[G(n, p) is (H, r)-Ramsey] =

{
0 if p < cn−1/m2(H);

1 if p > Cn−1/m2(H).

We remark that a short proof of Theorem 1.1 was recently given in [35]. There has also been
attention on the more general problem of determining the threshold of the (H1, . . . ,Hr)-Ramsey
property in G(n, p). In particular, the focal question in the area is the following conjecture of
Kohayakawa and Kreuter [25]. To state it, we need to introduce the asymmetric density of H1, H2

where m2(H1) ≥ m2(H2) via

(1.1) m2(H1, H2) := max

{
e(H ′1)

v(H ′1)− 2 + 1/m2(H2)
: H ′1 ⊆ H1 and e(H ′1) ≥ 1

}
.

We say that H1 is strictly balanced with respect to m2(·, H2) if no H ′1 ( H1 with at least one edge
maximises (1.1).

Conjecture 1.2 ([25]). For any graphs H1, . . . ,Hr with m2(H1) ≥ . . . ≥ m2(Hr) > 1, there are
positive constants c, C > 0 such that

lim
n→∞

P [G(n, p) is (H1, . . . ,Hr)-Ramsey] =

{
0 if p < cn−1/m2(H1,H2);

1 if p > Cn−1/m2(H1,H2).

Note that this conjectured threshold only depends on the ‘joint density’ of the densest two
graphs H1, H2. Further, notice m2(H1) ≥ m2(H1, H2) ≥ m2(H2) with equality if and only if
m2(H1) = m2(H2). Thus Conjecture 1.2 would generalise Theorem 1.1. The initial work on
Conjecture 1.2 focused on the cases of cycles and cliques. (We take a similar approach in this paper
when considering the analogous question in the perturbed setting.) In particular, Kohayakawa
and Kreuter [25] confirmed Conjecture 1.2 when the Hi are cycles. When each Hi is a clique, the
0-statement was resolved by Marciniszyn, Skokan, Spöhel and Steger [32], who also observed that
the approach used by Kohayakawa and Kreuter [25] implies the 1-statement of Conjecture 1.2 holds
when H1 is strictly 2-balanced provided the so-called K LR conjecture holds. This latter conjecture
was proven by Balogh, Morris and Samotij [3], thereby proving the 1-statement of Conjecture 1.2
holds for strictly 2-balanced graphs H1. Hancock, Staden and Treglown [22] then proved a general
result which implies (a resilient version of) the 1-statement in the case when m2(H1) = m2(H2).
Very recently, Mousset, Nenadov and Samotij [34] have shown the 1-statement is true without any
assumptions regarding the balancedness of H1.

1.2. Ramsey properties of randomly perturbed graphs. Note that the results discussed
above give us precise information about the Ramsey properties of typical graphs of a given density.
Indeed, Theorem 1.1 implies that a typical graph of density p = ω(n−1/m2(H)) is (H, r)-Ramsey

whilst a typical graph of density p = o(n−1/m2(H)) is not (H, r)-Ramsey. In this paper we study
the question of how far away a dense graph is from satisfying a given Ramsey property. The
model of randomly perturbed graphs, introduced by Bohman, Frieze and Martin [8], provides a
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framework for studying such questions. In their model one starts with a dense graph and then adds
a fixed number of random edges to it. A natural problem in this setting is to determine how many
random edges are required to ensure that the resulting graph w.h.p. satisfies a given property.
For example Bohman, Frieze and Martin [8] proved that, given any n-vertex graph G of linear
minimum degree, if one adds a linear number of random edges to G then, w.h.p., the resulting
graph is Hamiltonian. In recent years, a whole host of results have been obtained concerning
embedding spanning subgraphs into a randomly perturbed graph, as well as other properties of the
model; see e.g. [4, 6, 7, 9, 10, 15, 24, 29, 30, 36]. The model has also been investigated in the setting
of directed graphs and hypergraphs (see e.g. [5, 21, 28, 33]). Further, very recently an analogous
model of randomly perturbed sets of integers has been studied [1].

The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich,
Sudakov and Tetali [30] in 2006. They considered the question of how many random edges one
needs to add to any dense graph to ensure with high probability the resulting graph is (H1, H2)-
Ramsey. Specifically, they resolved this question in the case when H1 = Kt and H2 = K3 for
any t ≥ 3. In this paper we give several generalisations of their result. Further, we look at the
following more refined question: given any fixed 0 < d < 1, how many random edges does one need
to add to any graph G of density at least d to ensure with high probability the resulting graph is
(H1, H2)-Ramsey? In order to present our results we define a threshold function below.

Definition 1.3 (Perturbed Ramsey threshold probability). Given a density 0 < d < 1, a number
of colours r ∈ N and a sequence of graphs (H1, H2, . . . ,Hr), the perturbed Ramsey threshold
probability p(n;H1, H2, . . . ,Hr, d) satisfies the following.

(i) If p = p(n) = ω(p(n;H1, H2, . . . ,Hr, d)), then for any sequence (Gn)n∈N of n-vertex graphs
with density at least d, the graph Gn ∪G(n, p) is (H1, H2, . . . ,Hr)-Ramsey with high prob-
ability.

(ii) If p = p(n) = o(p(n;H1, H2, . . . ,Hr, d)), for some sequence (Gn)n∈N of n-vertex graphs
with density at least d, the graph Gn ∪G(n, p) is with high probability not (H1, H2, . . . ,Hr)-
Ramsey.

If it is the case that every sufficiently large graph of density at least d is (H1, H2, . . . ,Hr)-Ramsey
then we define p(n;H1, H2, . . . ,Hr, d) := 0. In the symmetric case, where H1 = H2 = . . . = Hr =
H, we denote the threshold by p(n; r,H, d).

We begin by observing some simple lower and upper bounds on the perturbed Ramsey threshold
probability, which will serve as points of reference for our results.

Observation 1.4. The following bounds on p(n;H1, H2, d) hold:

(i) If d ≤ 1 − 1/k and H2 is not k-partite, then we may take G to be a complete balanced
k-partite graph and colour all its edges blue. As long as G(n, p) is H1-free, we may colour
all its uncoloured edges red, and so p(n;H1, H2, d) is at least the threshold probability for
the appearance of H1 in G(n, p).

(ii) If G(n, p) alone is already (H1, H2)-Ramsey, then G ∪ G(n, p) will be as well. Since the
1-statement of Conjecture 1.2 is known to hold, it follows that for any d and graphs H1 and
H2 with m2(H1) ≥ m2(H2) > 1, we have p(n;H1, H2, d) ≤ n−1/m2(H1,H2).

(iii) Suppose there is a (k+ 1)-chromatic graph H that is (H1, H2)-Ramsey. If d > 1− 1/k, the
Erdős–Stone–Simonovits Theorem [17] implies any sufficiently large graph of density d will
contain H, and thus will already be (H1, H2)-Ramsey before the addition of any random
edges. Hence p(n;H1, H2, d) = 0 for d > 1− 1/k.

In particular, parts (i) and (ii) imply n−2/(t−1) ≤ p(n;Kt,Ks, d) ≤ n−2(ts+t−2s)/(t(t−1)(s+1)) for
integers t ≥ s ≥ 3 and density d ≤ s−2

s−1 .
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The aforementioned result of Krivelevich, Sudakov and Tetali [30] shows that the lower bound
given by Observation 1.4(i) is in fact tight for the (Kt,K3)-Ramsey problem.

Theorem 1.5 ([30]). For 0 < d ≤ 1/2 and t ≥ 3, we have p(n;Kt,K3, d) = n−2/(t−1).

1.3. Our results. Krivelevich, Sudakov and Tetali [30] raised the question of extending Theo-
rem 1.5 to other pairs of graphs (H1, H2). In this paper, we make the first progress on this question
since it was raised in 2006, focusing on the cases where the Hi are cliques or cycles. In our first
result we resolve their question in the case of cliques of size at least 5.

Theorem 1.6. For 0 < d ≤ 1/2 and t ≥ s ≥ 5, we have p(n;Kt,Ks, d) = n−1/m2(Kt,Kds/2e).

Recall that in the random graph setting one needs Θ(n2−1/m2(Kt,Ks)) random edges to ensure
G(n, p) is with high probability (Kt,Ks)-Ramsey. On the other hand, Theorem 1.6 shows that

adding just ω(n2−1/m2(Kt,Kds/2e)) random edges is already enough to make any dense n-vertex

graph (Kt,Ks)-Ramsey. (In fact, in the proof we see that we only require Θ(n2−1/m2(Kt,Kds/2e))
random edges.)

To see that this is best possible, consider the complete balanced bipartite graph G on n vertices.
Indeed, if G(n, p) is such that there is a 2-colouring without a red Kt or blue Kds/2e, then by further
colouring all the edges in G blue, one obtains a 2-colouring of G∪G(n, p) without a red Kt or blue
Ks.

As one might expect, if one starts with an even denser graph G, one needs less randomness
to be (Kt,Ks)-Ramsey, and we prove a stronger version of Theorem 1.6 that also gives exact (or
log-asymptotically exact) results for larger densities d.

Theorem 1.7. Given an integer k ≥ 2, let d be such that 1 − 1/(k − 1) < d ≤ 1 − 1/k, and let s
and t be fixed integers with 2k + 1 ≤ s ≤ t. If

(i) k = 2 (that is, 0 < d ≤ 1/2), or
(ii) s ≡ 1 (mod k),

then p(n;Kt,Ks, d) = n−1/m2(Kt,Kds/ke). Otherwise, if

(iii) k ≥ 3 and s 6≡ 1 (mod k),

we have p(n;Kt,Ks, d) = n−(1−o(1))/m2(Kt,Kds/ke).

Comparing this result to the bounds in Observation 1.4, we note that in these cases, the thresholds
lie strictly between the lower and upper bound, unlike when s = 3. Moreover, perhaps surprisingly,
we see that if s < s′ ≤ t and ds/ke = ds′/ke, the perturbed Ramsey threshold probabilities for the
pairs (Kt,Ks) and (Kt,Ks′) are essentially the same.

In light of Theorems 1.5 and 1.6, in the setting of cliques, the Krivelevich–Sudakov–Tetali ques-
tion now remains open only in the (Kt,K4) case. As we will see in the next proposition though,
this problem exhibits a different behaviour to the other cases.

Proposition 1.8. For k ≥ 2, let 1 − 1/(k − 1) < d ≤ 1 − 1/k. If k + 2 ≤ s ≤ 2k and t ≥ s,

we have n−2t/(t(t−1)+dt/ae) ≤ p(n;Kt,Ks, d) ≤ n−2/t, where a is the smallest integer for which
R(Ka+1,Ks−k) > k.

It is worth noting that the formula in Theorem 1.7, had it also been valid for k + 2 ≤ s ≤ 2k,
would have implied the lower bound of n−2/(t−1) from Observation 1.4 is (essentially) correct. While
Theorem 1.5 shows this to be the case for s = 3, the lower bound in Proposition 1.8 is higher,
highlighting that the threshold probability truly does behave differently when k + 2 ≤ s ≤ 2k.
The upper bound in Proposition 1.8 also represents an improvement over the upper bound from
Observation 1.4 .
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Remark. After making our manuscript available online, we learnt of the simultaneous and inde-
pendent work of Powierski [37]. He proves Theorem 1.6 in the case s = t ≥ 5 odd, and improves the
lower bound of Proposition 1.8 when k = 2 and s = t = 4. In particular, combined with our upper
bound from Proposition 1.8 this shows p(n;K4,K4, d) = n−1/2 for 0 < d ≤ 1/2. Thus, the question
from [30] is now resolved for the (Kt,Kt)-Ramsey problem for all t ≥ 3. We suspect though that
resolving the (Kt,K4)-Ramsey problem for all t ≥ 5 will be a significant challenge.

We next turn our attention to cycles, completely determining the perturbed Ramsey thresholds
for all pairs of cycles and all densities.

Theorem 1.9. Let k, ` ≥ 3 be integers such that either k is odd and ` is even, or they have the
same parity and k ≤ `, and let d ∈ (0, 1). There exist d1 = d1(k, `), d2 = d2(k, `) ∈ [0, 1] such that

p(n;Ck, C`, d) =


n−1 if 0 < d ≤ d1,

n−2 if d1 < d ≤ d2,

0 if d2 < d.

Moreover, the values of d1 and d2 are as given below.

k even k odd
` even ` even ` = 3 ` ≥ 5 odd

d1(k, `) 0 1/2 1/2 1/2
d2(k, `) 0 1/2 4/5 3/4

Theorem 1.9 shows there are at most three phases: an initial phase, where a linear number of
random edges is needed to make a dense graph (Ck, C`)-Ramsey, an intermediate phase, where it
suffices to add a large constant number of edges, and a supercritical phase, where the underlying
graph is dense enough to already be (Ck, C`)-Ramsey. The parities and, in some cases, lengths
of the two cycles in question determine at which densities (if at all) the transitions between these
phases occur. In all cases though, our result demonstrates that one needs significantly fewer random
edges for the perturbed (Ck, C`)-Ramsey question compared to the analogous result in the random
graph setting [25].

We have thus far focused on the perturbed Ramsey thresholds for pairs of graphs, and our next
observation explains why this is the case of greatest interest. Indeed, for the graph pairs we have
studied, our results show that, when adding random edges to a graph of positive density, one needs
significantly less randomness to make the graph (H1, H2)-Ramsey than in G(n, p). However, this
is not the case when there are three or more colours; since the probability threshold for G(n, p)
to be (H, r)-Ramsey does not depend on r, one needs a much denser base graph before requiring
less randomness in the perturbed model. For simplicity we consider only the symmetric case, but
similar remarks can be made in a more general setting.

Observation 1.10. For a graph H and r ≥ 3, set k := min{χ(F ) : F is (H, r−2)-Ramsey}. Then

for d ≤ 1− 1/(k − 1), we have p(n; r,H, d) = n−1/m2(H).

Indeed, if p ≥ Cn−1/m2(H) for some constant C, Theorem 1.1 shows that G(n, p) itself will be
(H, r)-Ramsey, and hence this is an upper bound on the perturbed Ramsey threshold.

For the lower bound, take G to be a complete balanced (k − 1)-partite graph. By definition of
k, we can (r − 2)-colour the edges of G without creating a monochromatic copy of H. We use

the remaining two colours on the edges of G(n, p). By Theorem 1.1, if p ≤ cn−1/m2(H) for some
constant c, then with high probability G(n, p) is not (H, 2)-Ramsey. This thus gives an r-colouring
of G ∪G(n, p) without a monochromatic copy of H.

Despite this, in our next result we consider the symmetric multicoloured perturbed Ramsey
thresholds for long cycles. As predicted by Observation 1.10, there is a large subcritical regime,
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where the perturbed thresholds are the same as those from G(n, p). However, once the underlying
graph is very dense, we observe some similarities to Theorem 1.9. There remains one range of
densities where we have been unable to determine the perturbed threshold.

Theorem 1.11. For a number of colours r ≥ 3 and odd cycle length ` ≥ 2r + 1, we have

p(n; r, C`, d)


= n−1+1/(`−1) 0 ≤ d ≤ 1− 2−r+2,

∈ [n−1, n−1+1/(`−1)] 1− 2−r+2 < d ≤ 1− 2−r+1,

= n−2 1− 2−r+1 < d ≤ 1− 2−r,

= 0 1− 2−r < d ≤ 1.

Finally, we combine these different settings, determining the perturbed Ramsey thresholds for
odd cycles versus cliques. Our last result provides a different extension of Theorem 1.5, showing
that the same perturbed Ramsey threshold remains valid if K3 is replaced with any odd cycle.

Theorem 1.12. For any clique size t ≥ 4, odd cycle length ` ≥ 5, and density 0 < d ≤ 1/2, we

have p(n;Kt, C`, d) = n−2/(t−1).

We note that the missing cases are covered by previous results; when ` = 3, the threshold is
given by Theorem 1.5, while the case t = 3 is covered by Theorem 1.9. Theorem 1.12 is perhaps of
additional interest as it is the only example of the perturbed Ramsey question where we know the
threshold precisely, but the analogous question in the setting of random graphs remains open.

1.4. Notation and organisation of the paper. Let G be a graph. We define V (G) to be the
vertex set of G and E(G) to be the edge set of G. Define v(G) := |V (G)| and e(G) := |E(G)|. For
each x ∈ V (G), we define the neighbourhood of x in G to be NG(x) := {y ∈ V (G) : xy ∈ E(G)} and
define dG(x) := |NG(x)|. We define ∆(G) to be the maximum degree of G; that is, the maximum
value of dG(x) over all x ∈ V (G). Given X ⊆ V (G) we write NG(X) := ∩x∈XNG(x) for the
common neighbourhood of X in G.

Let X ⊆ V (G). Then G[X] is the graph induced by X on G and has vertex set X and edge set
EG(X) := {xy ∈ E(G) : x, y ∈ X}. Similarly, if A,B ⊆ V (G) are disjoint, we write G[A,B] for the
bipartite graph with vertex classes A and B and edge set EG(A,B) := {xy ∈ E(G) : x ∈ A, y ∈ B},
and define eG(A,B) := |EG(A,B)|. We will often drop the subscript G from our notation if the
graph under consideration is clear from context.

Given two graphs G,H on the same vertex set V we write G ∪ H for the graph with vertex
set V and edge set E(G) ∪ E(H). We shall assume the vertex set of an n-vertex graph to be
[n] := {1, 2, . . . , n}, unless otherwise specified.

Given a set A and k ∈ N we denote by Ak the set of all ordered k-tupes (a1, . . . , ak) of elements

from A, while
(
A
k

)
denotes the set of all (unordered) k-element subsets {a1, . . . , ak} of A.

Suppose H1, . . . ,Hs and H ′1, . . . ,H
′
t are graphs. We write R({H1, . . . ,Hs}, {H ′1, . . . ,H ′t}) for the

smallest n ∈ N such that whenever Kn is 2-coloured, there is a red copy of some Hi (with 1 ≤ i ≤ s)
or there is a blue copy of some H ′j (with 1 ≤ j ≤ t).

We write 0 < a � b � c < 1 to mean that we can choose the constants a, b, c from right to
left, with each constant sufficiently small with respect to those preceding it. More precisely, there
exist non-decreasing functions f : (0, 1] → (0, 1] and g : (0, 1] → (0, 1] such that for all b ≤ f(c)
and a ≤ g(b) our calculations and arguments in our proofs are correct. Thus a� b implies that we
may assume e.g. a < b or a < b2, as needed. Hierarchies of different lengths are defined similarly.

We will also use the standard asymptotic notation. Given two positive functions α, β : N → R,
we write α = o(β) and β = ω(α) if limn→∞ α/β = 0. We emphasise that while in certain texts,
α = o(β) and α� β are used interchangeably, that is not the case here.

The paper is organised as follows. In the next section we introduce useful tools concerning
structures in dense, random, and randomly perturbed graphs. Then in Section 3 we give the proofs
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of all of our main results. Some concluding remarks are given in Section 4. Finally, we include
proofs of the less standard results from Section 2 in Appendix A.

2. Useful tools

In this section we collect several of the tools we shall use in proving our results. We shall need
some results for finding useful structures in the dense underlying graph G and others to analyse
the random edges from G(n, p).

2.1. Structures in dense graphs. When working with the dense graph, our main tool will be
the famous Szemerédi Regularity Lemma [43]. We recall some of the key definitions and facts here,
omitting many details that can be found in the survey of Komlós and Simonovits [26]. We start
with that of an ε-regular pair, which is a pair of vertex sets that is very regular in terms of edge
densities between linear-sized subsets, as is characteristic of bipartite random graphs.

Definition 2.1. Given ε > 0, a graph G and two disjoint vertex sets A,B ⊂ V (G), the pair
(A,B) is ε-regular if for every X ⊆ A and Y ⊆ B with |X| > ε |A| and |Y | > ε |B|, we have
|d(X,Y )− d(A,B)| < ε, where d(S, T ) := e(S, T )/(|S| |T |) for any vertex sets S and T .

This strong regularity condition implies many desirable properties, some of which are collected
in the following lemma. The first states that almost all `-sets of vertices from the same side of an
ε-regular pair will have a large common neighbourhood, while the second states that ε-regularity
is essentially inherited by subsets. We omit the proofs of these standard facts.

Lemma 2.2. Let (A,B) be an ε-regular pair in a graph G with d(A,B) = d.

(i) If ` ≥ 1 and (d− ε)`−1 > ε, then∣∣∣{(x1, x2, . . . , x`) ∈ A` : |∩iN(xi) ∩B| ≤ (d− ε)` |B|
}∣∣∣ ≤ `ε |A|` .

(ii) If α > ε, and A′ ⊂ A and B′ ⊂ B satisfy |A′| ≥ α |A| and |B′| ≥ α |B|, then (A′, B′) is an
ε′-regular pair of density d′, where ε′ := max{ε/α, 2ε} and |d′ − d| < ε.

We can now state the Regularity Lemma itself. We present the multicoloured version, as given
in [26].

Theorem 2.3. For any ε > 0 and r, t ∈ N, there are T = T (ε, r, t) and n0 = n0(ε, r, t) such that
if n ≥ n0 and the edges of an n-vertex graph G are r-coloured, with G` representing the `th colour
class, the vertex set V (G) can be partitioned into sets V0, V1, . . . , Vk for some t ≤ k ≤ T , such that
|V0| < εn, |V1| = |V2| = . . . = |Vk|, and all but at most εk2 pairs (Vi, Vj), 1 ≤ i < j ≤ k, are
ε-regular pairs in each of the subgraphs G` simultaneously.

Informally speaking, the lemma says that, apart from a small exceptional set, the vertices of G
can be partitioned into a large but bounded number of parts, such that between almost all pairs
of parts the edges of each colour seem randomly distributed. We shall often apply this in the
form of the following corollary, which follows by combining the Regularity Lemma with Turán’s
Theorem [44] (see [26] for details).

Corollary 2.4. For every r ≥ 1 and ε, δ > 0 with δ ≥ 3ε there is some η = η(ε, δ, r) > 0 and
n0 = n0(ε, δ, r) ∈ N such that the following holds for all n ≥ n0 and k ≥ 2. If G is an r-coloured
n-vertex graph of density at least 1 − 1/(k − 1) + δ, then there are pairwise disjoint vertex sets
V1, V2, . . . , Vk ⊂ V (G) such that |V1| = . . . = |Vk| ≥ ηn, and, for each 1 ≤ i < j ≤ k, there is
some colour ci,j ∈ [r] for which the edges between Vi and Vj of colour ci,j form an ε-regular pair of
density at least δ/(2r).

7



We will use the structure from Corollary 2.4 to build monochromatic cliques. We will be able to
do so because, as given by Lemma 2.2, almost all `-tuples of vertices in Vi will have large common
neighbourhoods in each of the other parts Vj . However, in some of our applications we will require all
`-tuples to have large common neighbourhoods. For that we make use of another powerful tool from
extremal combinatorics, dependent random choice. The following lemma, proven in Appendix A.1,
is a multipartite version of the basic lemma from the survey of Fox and Sudakov [18].

Lemma 2.5. Given s ∈ N and δ > 0, suppose 0 < ε ≤ min{1/(2s), δ/2}. Let V1, V2, . . . , Vs be
disjoint sets of vertices from a graph G, each of size m, such that for all i ∈ [s−1], the pair (Vi, Vs)
is ε-regular of density at least δ. For every β > 0 and ` ∈ N there is some γ = γ(s, δ, β, `) > 0 such
that, if m is sufficiently large, there is a subset Us ⊆ Vs of size at least m1−β such that every set of
` vertices from Us has at least γm common neighbours in each of the sets Vi, i ∈ [s− 1].

When we are instead seeking slightly sparser structures within our ε-regular k-tuples, we shall
use the following well-known result, a special case of the so-called Key Lemma (see [26]).

Lemma 2.6. Let H be a fixed graph, r ≥ 2, 0 < ε� d, and let m ∈ N be sufficiently large. Suppose
R is a graph on [r] and suppose that G is a graph with vertex classes V1, . . . , Vr so that

(i) |Vi| = m for all i ∈ [r], and
(ii) (Vi, Vj) forms an ε-regular pair of density at least d in G for all 1 ≤ i < j ≤ r with
{i, j} ∈ E(R).

If there is a homomorphism from H to R then G contains a copy of H.

2.2. Properties of random graphs. The previous lemma guaranteed the existence of fixed sub-
graphs within deterministic graphs. When we are instead dealing with the random graph G(n, p),
we shall apply the following result, a standard application of the Janson inequality [23, Theorem
2.14], whose proof is given in Appendix A.2.

Theorem 2.7. Let H be a graph with v ≥ 2 vertices and e ≥ 1 edges. Let [n] be the vertex set of
G(n, p), and, for some ξ > 0, let H be a collection of ξnv possible copies of H supported on [n].
The probability that G(n, p) does not contain any copy of H from H is at most exp(−ξµ1/(2

v+1v!)),

where µ1 = µ1(H) := min{nv(F )pe(F ) : F ⊆ H, e(F ) ≥ 1}.
However, for our purposes, the most important properties of random graphs will be their Ramsey

properties. As stated in the introduction, Conjecture 1.2 of Kohayakawa and Kreuter [25] suggests
what the threshold for the random graph G(n, p) being (H1, . . . ,Hr)-Ramsey should be. While the
1-statement is now known to hold in general [34], the corresponding 0-statement is only known for
cycles [25] and cliques [32].

Theorem 2.8 ([25, 32]). Let r ≥ 2, and let H1, H2, . . . ,Hr be graphs such that either every Hi

is a complete graph or every Hi is a cycle, and m2(H1) ≥ m2(H2) ≥ . . . ≥ m2(Hr). There is

some constant c > 0 such that if p ≤ cn−1/m2(H1,H2), then with high probability G(n, p) is not
(H1, H2, . . . ,Hr)-Ramsey.

In our applications, we require slightly stronger variants of the 1-statement, and we define the
properties we shall need below.

Definition 2.9 (Robust and global Ramsey properties). Let H1 and H2 be two fixed graphs, and
let G be an n-vertex graph on the vertex set [n].

Given, for i ∈ [2], families Fi ⊆
( [n]
v(Hi)

)
of forbidden subsets of v(Hi) vertices, we say G is

robustly (H1, H2)-Ramsey with respect to (F1,F2) if every 2-colouring of G contains a red copy of
H1 or a blue copy of H2, such that the vertex set of the monochromatic subgraph is not forbidden.

Given µ > 0, we say that G is µ-globally (H1, H2)-Ramsey if, for every 2-colouring of G and for
every subset U ⊆ [n] of at least µn vertices, G[U ] contains a red copy of H1 or a blue copy of H2.
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It turns out for a wide collection of pairs of graphs H1, H2, above the threshold from Conjec-
ture 1.2, G(n, p) is not only (H1, H2)-Ramsey, but robustly and globally so. While [25] does not
give explicit bounds on the error terms, making it a little harder to verify that this strengthening
is possible, the more recent containers-based proofs given by Gugelmann, Nenadov, Person, Škorić,
Steger and Thomas [20] and Hancock, Staden and Treglown [22] allow for the necessary extensions.
In Appendix A.3 we prove Theorem 2.10, implementing the modifications that must be made to
the existing proofs.

Theorem 2.10 ([20, 22]). Let H1 and H2 be graphs such that m2(H1) ≥ m2(H2) ≥ 1, and

(a) m2(H1) = m2(H2), or
(b) H1 is strictly balanced with respect to m2(·, H2).

The random graph G(n, p) then has the following Ramsey properties:

(i) There are constants γ = γ(H1, H2) > 0 and C1 = C1(H1, H2) such that if p ≥ C1n
−1/m2(H1,H2)

and, for i ∈ [2], Fi ⊆
( [n]
v(Hi)

)
is a collection of at most γnv(Hi) forbidden subsets, then G(n, p)

is with high probability robustly (H1, H2)-Ramsey with respect to (F1,F2).

(ii) For every µ > 0 there is a constant C2 = C2(H1, H2, µ) such that if p ≥ C2n
−1/m2(H1,H2),

then G(n, p) is with high probability µ-globally (H1, H2)-Ramsey.
(iii) If we further have m2(H2) > 1, then there are constants β0 = β0(H1, H2) > 0 and C3 =

C3(H1, H2) such that if 0 ≤ β ≤ β0 and p ≥ C3n
−(1−β)/m2(H1,H2), then with high probability

G(n, p) is n−β-globally (H1, H2)-Ramsey.

Before we proceed, it is worth comparing the exponents in these different thresholds for pairs

of cliques. For t ≥ 4, we have m2(Kt−1,Kt−1) = t
2 <

t(t−1)
2t−3 = m2(Kt,K3) < m2(Kt,K4) < . . . <

m2(Kt,Kt) = t+1
2 . In particular, when G(n, p) is (Kt,K3)-Ramsey, it will also be (Kk,K`)-Ramsey

for k, ` < t.

2.3. Properties of randomly perturbed graphs. While some of the previous results allowed us
to find subgraphs within dense or random graphs, we will sometimes need the existence of certain
graphs in the randomly perturbed model. Krivelevich, Sudakov and Tetali [30] showed that the
threshold probabilities for this problem depend on the sparsest partitions of the desired graph, and
the final result we shall make use of is their 1-statement.

Theorem 2.11 ([30]). Given a graph F , define ρ(F ) := max{e(F ′)/v(F ′) : F ′ ⊆ F, v(F ′) ≥ 1},
and, for k ≥ 2, set

ρk(F ) := min
V (F )=∪iVi

max
i
ρ(F [Vi]),

where the minimum is taken over all partitions into at most k parts. If d > 1 − 1/(k − 1), p =

ω
(
n−1/ρk(F )

)
, and G is an n-vertex graph of density d, then F ⊆ G∪G(n, p) with high probability.

3. Proofs

With these tools at our disposal, we are now ready to prove our main results, establishing
perturbed Ramsey thresholds for various pairs of graphs.

3.1. Proof of Theorem 1.7. Our first result establishes perturbed Ramsey thresholds for pairs
of cliques that are not too small. Specifically, let k ≥ 2 be such that 1− 1/(k − 1) < d ≤ 1− 1/k,
and suppose 2k + 1 ≤ s ≤ t. For convenience, we set ` := ds/ke, and note that ` ≥ 3. We shall

show p(n;Kt,Ks, d) = n−1/m2(Kt,K`) if k = 2 or s ≡ 1 (mod k), and otherwise obtain this same
threshold log-asymptotically. In all cases, the lower bound follows from the same argument, which
we now present.
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Proof of Theorem 1.7 (lower bound). Let G be the k-partite n-vertex Turán graph with vertex

classes V1, V2, . . . , Vk, which has density at least 1−1/k, and let p ≤ cn−1/m2(Kt,K`), where the con-
stant c is as in Theorem 2.8. We need to show that, with high probability, the edges of G∪G(n, p)
can be 2-coloured without creating a red Kt or a blue Ks. We colour the edges of G blue, leaving
only the edges of G(n, p)[Vi], i ∈ [k], uncoloured. By Theorem 2.8, with high probability G(n, p)
can be 2-coloured without creating a red Kt or a blue K`. This then gives the desired colouring —
the connected components of the red subgraph lie within the red subgraphs of G(n, p)[Vi], which are
Kt-free, while, since the largest blue clique in each G(n, p)[Vi] has at most `−1 vertices, the largest

blue clique in G∪G(n, p) has size at most k(`− 1) < s. Hence p(n;Kt,Ks, d) ≥ n−1/m2(Kt,K`). �

We divide the proof of the upper bound into three parts, treating each case in turn.

3.1.1. Proof of Theorem 1.7 (upper bound), Case (i). We start with the case k = 2. Let G be a
graph of density 4d > 0. By applying Corollary 2.4 with r = 1, we can find an ε-regular pair (U,W )
of density at least 2d, where ε = ε(d) > 0 is sufficiently small and |U | = |W | = m := ηn for some
η = η(d) > 0.

Set ξ := d`/(2`), let µ := ξd/2, and recall that m2(Kt,K`) > m2(Kt−1,Kt−1). Thus, if C ≥
max{C2(Kt,K`, µη), C2(Kt−1,Kt−1, µη)}, it follows from Theorem 2.10 that if p ≥ Cn−1/m2(Kt,K`),
then with high probability,

(a) G(n, p) is both µη-globally (Kt,K`)-Ramsey and µη-globally (Kt−1,Kt−1)-Ramsey.

Furthermore, set F1 = ∅, and let F2 ⊆
(
U
`

)
be those `-sets with fewer than d`m common

neighbours in W . By Lemma 2.2(i), it follows that |F2| ≤ `εm`. Since ε was chosen to be sufficiently
small, we can ensure `ε < γ(Kt,K`), where γ is as in Theorem 2.10. Since G(n, p)[U ] ∼ G(m, p),

provided C ≥ C1(Kt,K`)η
−1/m2(Kt,K`) as well, with high probability we also have, by Theorem 2.10,

(b) G(n, p)[U ] is robustly (Kt,K`)-Ramsey with respect to (F1,F2).

We may therefore assume G(n, p) has Properties (a) and (b), and shall show that this implies
G ∪ G(n, p) is (Kt,Ks)-Ramsey. Suppose for a contradiction that G ∪ G(n, p) has a 2-colouring
with neither a red Kt nor a blue Ks. We first need the following claim.

Claim 3.1. We may assume that no vertex in U has more than ξm red edges to W .

Proof. First suppose s ≤ t − 1. If we have a vertex u ∈ U with at least ξm red neighbours in W ,
let Y ⊆ W be the set of those red neighbours. By Property (a), we find a red Kt−1 in G(n, p)[Y ],
in which case we can add u to obtain the desired red Kt, or we find a blue Kt−1, which contains
the desired blue s-clique.

Next suppose s = t. By symmetry, we may assume that at least half the edges of G between U
and W are blue. In particular, since the density of (U,W ) is at least 2d, this means we can find a
vertex v ∈ W and a set A ⊂ U of dm blue neighbours of v. Now suppose further that there is a
vertex u ∈ U with a set B ⊂W of ξm red neighbours of u.

By ε-regularity, there are at least d |A| |B| edges between A and B. If at least half of these are
red, then we can find a vertex b ∈ B with a set A′ ⊆ A of at least d |A| /2 red neighbours of b.
Since |A′| ≥ µm, by Property (a), G(n, p)[A′] has a red Kt−1, which together with b gives a red Kt,
or a blue Kt−1, which together with v gives a blue Kt.

Hence at least half the edges between A and B are blue, which gives a vertex a ∈ A with a set
B′ ⊆ B of at least d |B| /2 blue neighbours of a. Again, |B′| ≥ µm, and so by Property (a) we find
in G(n, p)[B′] a red Kt−1, which extends via u to a red Kt, or a blue Kt−1, to which we can add a
to obtain a blue Kt. �

With the claim established, we complete our proof. By Property (b), G(n, p)[U ] contains a red
Kt, in which case we are done, or a blue `-clique whose vertex set S does not lie in F2. In particular,
this implies that S has at least d`m common neighbours in W .
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We discard those common neighbours with a least one red edge to S; by Claim 3.1, we are left
with a set Y of at least (d`m − `ξm) = d`m/2 common blue neighbours of S. By Property (a),
G(n, p)[Y ] has a red Kt, in which case we are done, or a blue K`, which together with S gives the
desired blue s-clique.

Thus, when k = 2, we have p(n;Kt,Ks, d) ≤ n−1/m2(Kt,K`), matching our lower bound. �

3.1.2. Proof of Theorem 1.7 (upper bound), Case (ii). We next consider the case k ≥ 3, where we
provide the exact result if s ≡ 1 (mod k). Specifically, we wish to show that if G is a graph of

density d = 1− 1/(k− 1) + δ, where δ > 0, then if p ≥ Cn−1/m2(Kt,K`) for some appropriately large
constant C, with high probability G ∪G(n, p) will be (Kt,Ks)-Ramsey.

Our strategy bears some resemblance to the previous proof. In Case (i), we built a blue Ks in
two stages, finding half in each part of an ε-regular pair. When k ≥ 3 and s = k(` − 1) + 1, we
instead take k steps to build the blue clique within an ε-regular k-tuple, finding a blue K`−1 in
each of the first k − 1 parts and a blue K` in the last part.

When we find a set of `− 1 vertices from a part to add to the growing blue clique, we will need
to ensure that they have a sufficiently large neighbourhood in each of the remaining parts, so that
the process may continue. We will do this through repeated use of Lemma 2.5.1 However, this
leaves us with a sublinear set in which we will have to find a blue clique, and so we will need strong
global Ramsey properties.

To that end, recall that if a pair (q, r) with q ≥ r precedes (t, `) lexicographically (that is, either
q < t, or q = t and r < `), then m2(Kq,Kr) < m2(Kt,K`). We can therefore fix some β > 0 such
that, for all such pairs (q, r), we have m2(Kq,Kr) ≤ (1− β)m2(Kt,K`) and β ≤ β0(Kq,Kr), where
β0 is as in Theorem 2.10.

We now define a sequence of constants that we shall use in the sequel. To start, let δ0 := δ, and set
δ1 := δ0/4. For i ∈ [k−2], set δi+1 := δi/2. For some soon-to-be-determined ε1, let η := η(δ1, ε1, 2),
where η is as in Corollary 2.4, and set m1 := ηn. For i ∈ [k− 1], let γi := γ(k− i+ 1, δi, β/2, t− 1),
where γ is as in Lemma 2.5, and set mi+1 := dγimie. Note that the mi are linear in n, and set
µ := mk/n.

Further, for i ∈ [k − 2], set εi+1 := max{2εi, εi/γi}. Noting that the δi and γi are independent
of ε1, while the εi are linear in ε1, choose ε1 sufficiently small so that εi ≤ δi/2 for all i ∈ [k − 1].
We shall further assume that n is large enough for all following calculations and applications of the
lemmas to be valid.

With these technicalities out of the way, we can proceed with our proof. We shall show that
G ∪G(n, p) is (Kt,Ks)-Ramsey, provided G(n, p) satisfies the following properties.

(a) G(n, p) is n−β-globally (Kt−1,Ks−1)-Ramsey,
(b) G(n, p) is n−β-globally (Kt,K`−1)-Ramsey,
(c) G(n, p) is µ-globally (Kt,K`)-Ramsey, and
(d) if s < t, then G(n, p) is n−β-globally (Kdt/ke,Ks)-Ramsey.

Theorem 2.10 ensures Properties (a), (c), (d) and, if ` ≥ 4, (b) hold with high probability

whenever p ≥ Cn−1/m2(Kt,K`) for a large enough constant C. When ` = 3, being n−β-globally
(Kt,K2)-Ramsey is equivalent to every induced subgraph on n1−β vertices containing a t-clique.
Hence in this case we instead apply Theorem 2.7, taking a union bound over all such vertex subsets.

Now let G and G(n, p) be as above, and suppose for contradiction there is a 2-colouring of
G∪G(n, p) with neither a red Kt nor a blue Ks. Applying Corollary 2.4 with r = 2 to the coloured

1In Case (i), we identified a forbidden set of vertex sets with small neighbourhoods, and then used the robust
Ramsey properties of G(n, p) to ensure the monochromatic K` had a large neighbourhood. However, in this setting
the ε-regular pairs we have depend on the vertices chosen earlier, and our error bounds do not allow for so many
applications of the robust Ramsey property.
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graph G, we find pairwise disjoint vertex sets V
(1)

1 , V
(1)

2 , . . . , V
(1)
k , each of size at least m1, such that

for each pair {i, j} ∈
(

[k]
2

)
there is some colour ci,j for which (V

(1)
i , V

(1)
j ) is ε1-regular with density

at least δ1 in the colour ci,j .

Claim 3.2. All the colours ci,j, {i, j} ∈
(

[k]
2

)
, are the same.

Proof. Suppose this were not the case. There are then i, j1, j2 such that ci,j1 is red while ci,j2 is

blue. Apply Lemma 2.5 to the triple V
(1)
j1
, V

(1)
j2
, V

(1)
i to find a set Ui ⊂ V (1)

i of size m
1−β/2
1 > n1−β

such that every (t − 1)-set in Ui has at least one common neighbour in both V
(1)
j1

and V
(1)
j2

, using

red and blue edges respectively (note that our conservative definition of γ1 in fact guarantees us

linearly many common neighbours in both V
(1)
j1

and V
(1)
j2

, but here we only require one).

By Property (a), G(n, p)[Ui] must contain a red Kt−1 or a blue Ks−1. Extending this monochro-

matic clique with a common neighbour in V
(1)
j1

or V
(1)
j2

respectively gives a red Kt or a blue Ks in

G ∪G(n, p), a contradiction. �

Let us first assume that ci,j is blue for every pair {i, j} (if s = t, we may assume this without
loss of generality). We shall either find a red Kt or build a blue Ks in k stages.

Suppose we have already run a ≥ 0 stages of this process, thereby building a blue Ka(`−1) on
vertices W = ∪ai=1Wk+1−i, where Wj is a set of `−1 vertices from Vj . Further, for every i ∈ [k−a],

we have sets V
(a+1)
i of size ma+1 contained in the common (blue) neighbourhood of W , such that

each pair (V
(a+1)
i , V

(a+1)
j ), {i, j} ∈

(
[k−a]

2

)
, is εa+1-regular of density at least δa+1 in blue.

If a ≤ k − 2, we apply Lemma 2.5 to the (k − a)-tuple V
(a+1)

1 , V
(a+1)

2 , . . . , V
(a+1)
k−a . This gives us

a set Uk−a ⊂ V
(a+1)
k−a of size m

1−β/2
a+1 > n1−β (since ma+1 is linear in n), such that any (`− 1)-set in

Uk−a has at least ma+2 common (blue) neighbours in each V
(a+1)
i , i ∈ [k − 1− a].

By Property (b), G(n, p)[Uk−a] contains a red Kt or a blue K`−1. In the former case we are done,
so we may assume there is a blue (`−1)-clique on the vertices Wk−a ⊂ Uk−a. For each i ∈ [k−1−a],

let V
(a+2)
i ⊂ V

(a+1)
i be a set of ma+2 common blue neighbours of Wk−a. By Lemma 2.2(ii), each

pair (V
(a+2)
i , V

(a+2)
j ), {i, j} ∈

(
[k−1−a]

2

)
, is εa+2-regular with density at least δa+1 − εa+1 > δa+2.

In the final stage, when a = k − 1, we simply set U1 := V
(k)

1 , which has size mk = µn. By
Property (c), G(n, p)[U1] contains a red Kt or a blue K`. We are again done in the former case, so
we may assume the existence of a blue `-clique on the vertices W1 ⊂ Ua. This then gives a blue Ks

on the vertices ∪ki=1Wi, contradicting our assumption that G ∪G(n, p) has no blue Ks.

On the other hand, if s < t and each colour ci,j is red instead, we follow a very similar process to
that above, except in each Ui we use Property (d) to find either a blue Ks or a red Kdt/ke instead.
In this way, we either have a blue Ks or we build a red Kt in the k stages, obtaining the desired
contradiction.

Hence we indeed have p(n;Kt,Ks, d) = n−1/m2(Kt,K`) in this case as well. �

3.1.3. Proof of Theorem 1.7 (upper bound), Case (iii). The third and final case is when k ≥ 3
and k(` − 1) + 2 ≤ s ≤ k`. In this setting we can only match the lower bound on the perturbed
Ramsey threshold log-asymptotically; that is, for any β > 0, we show that if G is a graph of density
d ≥ 1 − 1/(k − 1) + δ and p ≥ Cn−(1−β)/m2(Kt,K`), then with high probability G ∪G(n, p) will be
(Kt,Ks)-Ramsey.

The proof is essentially the same as in Case (ii), except when building the blue clique, we will
find a blue K` in each part Vi, rather than just a K`−1. Properties (a) and (d) hold as before. We
can replace Properties (b) and (c) above with the following.
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(b’) G(n, p) is n−β-globally (Kt,K`)-Ramsey.

Since we may freely assume that β is small enough to satisfy β ≤ β0(Kt,K`), Theorem 2.10
guarantees G(n, p) satisfies Property (b’) with high probability. We can then run the same process
as before, picking up ` vertices from each Ui to add to the blue clique. Thus, after k stages, we
would have built a blue Kk` ⊇ Ks.

This shows p(n;Kt,Ks, d) ≤ n−(1−β)/m2(Kt,K`) for n sufficiently large. Since β can be taken to

be arbitrarily small, we have p(n;Kt,Ks, d) = n−(1−o(1))/m2(Kt,K`), thereby completing the proof of
Theorem 1.7. �

3.2. Proof of Proposition 1.8. In Theorem 1.7, we required s ≥ 2k + 1 or, equivalently, ` :=
ds/ke ≥ 3. This condition was necessary to apply Theorem 2.10, which asserts that G(n, p) will

be globally (Kt,K`)-Ramsey when p = ω(n−1/m2(Kt,K`)). Unfortunately, this is not true for ` = 2.
Indeed, being (Kt,K2)-Ramsey is equivalent to containing a copy of Kt, and it is well known that
the local property of the appearance of Kt in G(n, p) occurs at a lower threshold probability than
the global property of every large subset containing a t-clique.

This gives hope of improving the lower bound when we are dealing with a smaller clique: rather
than our simplistic approach in Theorem 1.7, where all edges of the dense graph G received the
same colour, we might hope to take advantage of the sparseness of the t-cliques in G(n, p) to find a
cleverer colouring of the edges of G, thus making it easier to avoid monochromatic copies of Kt and
Ks when s ≤ 2k. Proposition 1.8, despite falling short of determining p(n;Kt,Ks, d), shows that
this is indeed the case, and that one can improve upon both the obvious lower and upper bounds
when k + 2 ≤ s ≤ 2k. We start with the former.

Proof of Proposition 1.8 (lower bound). We write ` := dt/ae for simplicity. Let G be the k-partite
Turán graph with vertex classes V1, V2, . . . , Vk. We shall show that there is some constant b > 0
such that if p ≤ bn−2t/(t(t−1)+`), then with high probability G ∪G(n, p) is not (Kt,Ks)-Ramsey.

Using a result of Kreuter [27] concerning asymmetric vertex-Ramsey properties of random graphs,

if p ≤ bn−2t/(t(t−1)+`) for some constant b = b(t, `), then we can with high probability partition the
vertices V (G(n, p)) = A ∪ B such that G(n, p)[A] is Kt-free and G(n, p)[B] is K`-free. For i ∈ [k],
let Ai := A ∩ Vi and Bi := B ∩ Vi.

For each i ∈ [k], colour all edges within Ai and within Bi red. We further colour all edges from
Ai to any other part blue. Now all that remains are the edges between Bi and Bj for 1 ≤ i < j ≤ k.

Recall that we have R(a+ 1, s− k) > k. Hence we can find a colouring ϕ :
(

[k]
2

)
→ {red, blue} of

Kk with no red clique of size a+ 1 and no blue clique of size s− k. Then, for each 1 ≤ i < j ≤ k,
we colour all edges between Bi and Bj with the colour ϕ({i, j}).

We claim that this colouring of G∪G(n, p) has neither a red Kt nor a blue Ks. First consider the
red subgraph. Each part Ai is disconnected from the remainder of the graph, and since the only
edges within Ai come from G(n, p), we know that they are Kt-free. Any red component within B
that corresponds to a clique in ϕ can involve at most a parts Bi. The largest clique within such a
part has size at most `− 1, and so the largest red clique in B has size at most a(`− 1) < t. Hence
there is indeed no red Kt.

Within the blue subgraph, the parts Ai and Bi are independent sets, and hence any blue clique
K can contain at most one vertex from each part. Moreover, by the colouring ϕ, there can be at
most s − k − 1 vertices from B in K. As there are only k parts in A, this shows that the largest
blue clique has size at most s− 1, and hence there is no blue Ks either. This completes the proof
of the lower bound. �

We next establish the upper bound p(n;Kt,Ks, d) ≤ n−2/t.
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Proof of Proposition 1.8 (upper bound). We start by defining sequences of constants that we shall
require in the proof. Let d := 1−1/(k−1)+δ for some δ > 0. We then set δ1 := δ/2 and shall soon
(implicitly) specify a sufficiently small ε1. Let η = η(ε1, δ1, 1) be as given by Corollary 2.4, and set
m1 := ηn. Now, for i ∈ [k− 1], set δi+1 := δi/2, mi+1 := δ2

imi/4, and εi+1 := 4εi/δ
2
i . Observe that

each mi is linear in n, and that the ratios mi/m1 are independent of ε1.
Given these constants, choose α = α(δ) > 0 sufficiently small to ensure 2kαm1

(
mi
t−1

)
≤ 1

4

(
mi
t

)
for

all i, noting that this is independent of our choice of ε1. Finally, we choose ε1 to be small enough
that ε1 < α, δi ≥ 3εi for each i, and 2kεim

2
i

(
mi
t−2

)
≤ 1

4

(
mi
t

)
for all i. With these preliminaries sorted,

we can now begin the proof.

We first seek a well-structured part of the deterministic graph G before exposing the random
edges. Since G has density d, we can apply Corollary 2.4 with r = 1 to find sets V1, V2. . . . , Vk, each
of size m1, such that each pair (Vi, Vj) is ε1-regular of density at least δ1.

Note that this is taking place in the uncoloured graph G, and hence the parts Vi are determined
before we expose the random edges of G(n, p). The edges in these regular pairs could later be
coloured either red or blue, but Claim 3.3 will show that we may assume they are almost all blue.
For this, we require the following properties of our random graph G(n, p), where β = β(t, s) is
defined below:

(a) G(n, p) is (δ1αη/4)-globally (Kt−1,Ks−1)-Ramsey, and
(b) if t > s, G(n, p) is n−β-globally (Kdt/2e,Ks)-Ramsey.

For the first property, we have m2(Kt−1,Ks−1) ≤ m2(Kt−1) = t/2. Next, if t > s, let s′ :=
min(s, dt/2e) and t′ := max(s, dt/2e). Observe that m2(Kt′ ,Ks′) < t/2, and so we can find some

β = β(t, s) > 0 such that m2(Kt′ ,Ks′)/(1−β) = t/2. By Theorem 2.10, it follows that if p = Cn−2/t

for some suitably large constant C, then G(n, p) has both properties with high probability.

Claim 3.3. If G(n, p) has Properties (a) and (b) above, then we may assume that in any 2-colouring
of G ∪G(n, p) with neither a red Kt nor a blue Ks, for every pair i 6= j, the maximum red-degree
in (Vi, Vj) is at most αm1.

We shall prove Claim 3.3 in due course, but let us first see how it implies our desired upper bound
on p(n;Kt,Ks, d). Roughly speaking, we shall find t-cliques within each part Vi. Since there are
no red t-cliques, each such t-clique must contain a blue edge. We shall choose the cliques to ensure
that these blue edges combine to form a blue K2k, contradicting our colouring being blue-Ks-free.

More precisely, let p = Cn−2/t where C is a sufficiently large constant, and assume (a) and (b)
above hold. Consider any 2-colouring of G ∪ G(n, p), and recall that we assume the vertex set to
be [n], which we equip with its natural ordering.

Suppose for some a ≥ 0, we have selected a set Sa = {s1, s2, . . . , s2a} of vertices from ∪ai=1Vi,
such that they induce a blue K2a in our colouring of G ∪G(n, p) and have at least ma+1 common
neighbours in each Vi for a + 1 ≤ i ≤ k. When a = 0, the set S0 := ∅ trivially satisfies these
requirements.

For each a + 1 ≤ i ≤ k, let V
(a+1)
i be the first ma+1 common neighbours of Sa in Vi. Our goal

is to find two vertices s2a+1, s2a+2 ∈ V (a+1)
a+1 to add to Sa in order to obtain a valid set Sa+1 with

which to proceed. In particular, the two new vertices should share a blue edge, all edges from them
to Sa should also be blue, and s2a+1 and s2a+2 should have many common neighbours in each of
the remaining parts. We therefore define Ha+1 to be the collection of all copies of Kt whose vertex

sets T ⊆ V (a+1)
a+1 satisfy the following properties:

(A) all edges between Sa and T are blue, and

(B) every pair of vertices in T have at least ma+2 common neighbours in V
(a+1)
j for each

a+ 2 ≤ j ≤ k.
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Let R ⊂ V
(a+1)
a+1 be those vertices that have a red edge to some vertex in Sa. By Claim 3.3, we

have |R| ≤ αm1 |Sa| ≤ 2kαm1. Since every t-clique in V
(a+1)
a+1 violating Condition (A) must contain

a vertex from R, there are at most 2kαm1

(
ma+1

t−1

)
such cliques. By our choice of α, this is at most

1
4

(
ma+1

t

)
cliques.

By Lemma 2.2(ii), it follows that, for each a+2 ≤ j ≤ k, the pair (V
(a+1)
a+1 , V

(a+1)
j ) is εa+1-regular

of density at least δa+1. We may therefore apply Lemma 2.2(i) to deduce that, for each given j,

there are at most 2εa+1m
2
a+1 pairs in V

(a+1)
a+1 with fewer than ma+2 common neighbours in V

(a+1)
j .

There are thus a total of at most 2kεa+1m
2
a+1

(
ma+1

t−2

)
cliques of size t in V

(a+1)
a+1 violating Condition

(B). Our choice of ε1 ensures that this is again at most 1
4

(
ma+1

t

)
cliques.

Thus Ha+1 contains at least 1
2

(
ma+1

t

)
sets. Suppose we find in G(n, p) a t-clique H ∈ Ha+1. If

all edges of H are red, we have our desired red Kt, and hence we may assume there is some blue
edge ea+1 = {s2a+1, s2a+2} in H.

This pair of vertices has all the properties we required: they share the blue edge ea+1, Property
(A) of T ensures that all edges from ea+1 to Sa are blue, and Property (B) gives that, for each

j ≥ a+ 2, s2a+1 and s2a+2 have at least ma+2 common neighbours in V
(a+1)
j .

Hence, provided we can find a t-clique from the collection Ha+1, we may set Sa+1 := Sa ∪
{s2a+1, s2a+2} and proceed to the next iteration. We appeal to Theorem 2.7 to find the desired
clique.

Indeed, we know |Ha+1| ≥ 1
2

(
ma+1

t

)
, which, since ma+1 is linear in n, is at least ξnt for some

constant ξ = ξ(δ) > 0. Moreover, when H := Kt, we have µ1 = µ1(H) = ntp(
t
2). Recall p = Cn−2/t,

so µ1 = C(t2)n. Theorem 2.7 thus gives that the probability G(n, p) does not contain a t-clique

from a given collection Ha+1 is at most exp(−C ′n), where C ′ := ξC(t2)/(2t+1t!).
However, the collection of t-cliques Ha+1 depends on the colouring of the edges of G, which in

turn could depend on the random graph G(n, p) itself. To resolve this issue, we take a union bound

over all collections of t-cliques Ha+1 that could possibly arise. Observe that the sets V
(a+1)
i , for

a + 1 ≤ i ≤ k, are determined by the set Sa. This already specifies which cliques in V
(a+1)
a+1 fail

to satisfy Property (B). To identify those violating Property (A), it suffices to identify the subset

R ⊂ V (a+1)
a+1 of vertices incident to a red edge from Sa.

The collection Ha+1 is thus fully determined by the pair (Sa, R), and there are fewer than
n2a2ma+1 such pairs, which we can (wastefully) bound from above by 4n. Hence, as C has been
chosen sufficiently large (with respect to ξ and t), it follows from the union bound that with high
probability, for each 0 ≤ a ≤ k − 1 and for every possible collection Ha+1 that may arise, G(n, p)
contains a copy of Kt from Ha+1.

We can thus repeat this process until we obtain a set Sk that induces a blue K2k. Since s ≤ 2k,
this shows that with high probability G ∪G(n, p) is indeed (Kt,Ks)-Ramsey, as desired. �

It remains to prove Claim 3.3.

Proof of Claim 3.3. We begin with a straightforward observation: we cannot have a vertex u, a
vertex v, and a set U of δ1αm1/4 common neighbours of u and v, such that all edges from u to U
are red and all edges from v to U are blue. Indeed, by Property (a), there is a red Kt−1 or a blue
Ks−1 in U . Extending this monochromatic clique by u or v respectively gives either a red Kt or a
blue Ks, contradicting our assumption on the colouring of G ∪G(n, p).
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Let us first consider the case t > s. Suppose for contradiction we have some u ∈ Vi with a set R
of αm1 red neighbours in Vj , for some j 6= i. Let S := {v ∈ Vi : |NG(v) ∩ R| ≥ (δ1 − ε1) |R|}. By
the ε1-regularity of (Vi, Vj), it follows that |S| ≥ (1− ε1)m1.

By our earlier observation, each v ∈ S can have at most δ1αm1/4 blue edges to R, and hence
there are at least (1−ε1)(δ1−ε1−δ1/4) |R|m1 ≥ δ1 |R|m1/8 red edges between S and R. It follows
from dependent random choice (see [18]) that we can find a subset U ⊂ S of size n1−β, such that
every subset of dt/2e vertices from U has at least n1−β common red neighbours in R.

By Property (b), we find a red Kdt/2e or a blue Ks in U . In the latter case, we are done, so we
may assume the former. Let A be the set of vertices of this dt/2e-clique, and let W ⊆ R be a set
of n1−β common red neighbours of A. Applying Property (b) to W , we again find a blue Ks, and
are done, or find a set B of dt/2e vertices inducing a red clique. In this latter case, A∪B gives rise
to a red clique on at least t vertices, and hence we have the desired contradiction.

This leaves us with the case t = s, where by symmetry we may assume that the majority of
edges in G ∪G(n, p) are coloured blue. For a contradiction, we suppose without loss of generality
that there is some u ∈ V1 with a set R of αm1 red neighbours in V2. Since we assumed blue was
the more popular colour, we can find some (ordered) pair (Vi, Vj), j 6= 2, where at least one-third
of the edges are blue. By averaging, this gives some vertex v ∈ Vi and a set S ⊆ Vj of αm1 blue
neighbours of v.

Now note that (V2, Vj) is an ε1-regular pair, and so there are at least (δ1−ε1)α2m2
1 edges between

R and S. If at least half of these edges were coloured red, then by averaging, we would find a vertex
u′ ∈ R with a set U of at least δ1αm1/4 red neighbours in S. Then the vertices u′ and v, together
with the set U , violate our initial observation. On the other hand, if half of the edges between R
and S are blue, then we find a vertex v′ ∈ S with a set U ′ of at least δ1αm1/4 blue neighbours in
R. Then u, v′ and U ′ violate our initial observation instead.

Hence, if the colouring of G∪G(n, p) has neither a red Kt nor a blue Ks, we may indeed assume
that the maximum red-degree in each pair (Vi, Vj) is at most αm1. �

3.3. Proof of Theorem 1.9. First we restate Theorem 1.9 in the following equivalent form.

Theorem 3.4. Let `, k ≥ 3 be integers.

(i) If k, ` ∈ 2N then p(n;Ck, C`, d) = 0 for all d > 0.
(ii) If k ∈ 2N + 1 then p(n;Ck, C`, d) = 1/n for all d ∈ (0, 1/2].

(iii) If k ∈ 2N + 1 and ` ∈ 2N then p(n;Ck, C`, d) = 0 for all d > 1/2.
(iv)

p(n;C3, C3, d) =

{
1/n2 if d ∈ (1/2, 4/5]

0 if d > 4/5.

(v) If k ∈ 2N + 1 and ` ∈ 2N + 3 then

p(n;Ck, C`, d) =

{
1/n2 if d ∈ (1/2, 3/4]

0 if d > 3/4.

3.3.1. Proof of Theorem 3.4(i). Let r := Rbip(k, `), the bipartite Ramsey number for Kk,k and K`,`.
Then Kr,r is a bipartite graph that is (Kk,k,K`,`)-Ramsey, and therefore (Ck, C`)-Ramsey as well.
By Observation 1.4(iii), it follows that p(n;Ck, C`, d) = 0 for d > 0; that is, any sufficiently large
dense graph will already be (Ck, C`)-Ramsey before any random edges are added. �

3.3.2. Proof of Theorem 3.4(ii). The lower bound here is the trivial lower bound from Observa-
tion 1.4, since Ck is not bipartite and for p = o(1/n), G(n, p) is with high probability C`-free. Thus
p(n;Ck, C`, d) ≥ 1/n for all d ∈ (0, 1/2].
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Let d > 0 and set 0 < η � ε � γ � δ � d, 1/k, 1/`. Suppose that G is a sufficiently large
n-vertex graph. Consider G∪G(n, p) where p = ω(1/n). By Corollary 2.4 (with r = 1) there exist
disjoint A,B ⊆ V (G) so that |A| = |B| ≥ ηn and (A,B)G is ε-regular with density at least δ. We call
an ordered (k+`)-tuple (x1, . . . , xk, y1, . . . , y`) ∈ Ak+` good if |(∩iNG(xi))∩(∩iNG(yi))∩B| ≥ γ|B|.
Lemma 2.2(i) implies that all but at most γ|A|k+` ordered (k + `)-tuples in Ak+` are good.

Using Theorem 2.7, we deduce that with high probability there is a good (k + `)-tuple such
that in G(n, p), x1x2 . . . xkx1 forms a k-cycle and y1y2 . . . y`y1 gives an `-cycle. Indeed, letting
H be the vertex-disjoint union of Ck and C`, our above argument shows that the collection H
of potential copies of H with good supports has size ξnk+` for some ξ > 0. Moreover, we have
µ1 = (np)min(k,`) = ω(1), and so the probability of having no copy of H supported on a good
(k+ `)-tuple tends to zero as n grows. Therefore w.h.p. in G(n, p)[A] we have a disjoint k-cycle X
and `-cycle Y together with a set N ⊆ B where |N | ≥ γ|B| and N ⊆ NG(X ∪ Y ).

Consider any 2-colouring of G∪G(n, p). Given any b ∈ B there are 2k+` possible ways to colour
those edges incident to b with an endpoint in X ∪ Y . Thus, there is a set N1 ⊆ N of size at least
γ|B|/2k+` where each vertex in N1 has the same ‘colour profile’ (i.e. every vertex in N1 has the
same red neighbourhood in X ∪ Y and therefore the same blue neighbourhood in X ∪ Y ).

Colour each vertex v ∈ X ∪Y with the colour of the edges it receives from N1. So we now have a
red/blue colouring of the vertices and edges of X ∪Y . Suppose there is a red vertex u ∈ X ∪Y and
a blue vertex v ∈ X ∪ Y . Theorem 2.10(ii) implies that w.h.p. G(n, p)[N1] is (Pk−1, P`−1)-Ramsey.
If there is a red copy of Pk−1 in N1, then together with u we obtain our desired red copy of Ck in
G ∪G(n, p); otherwise we obtain a blue copy of P`−1 in N1 and thus together with v we obtain a
blue copy of C`.

Thus, we may assume that every vertex in X ∪Y is coloured the same. Suppose that they are all
red. If the edges of Y are all blue, we obtain the desired blue copy of C`. So we may assume that
there is at least one red edge in Y . As all the edges between X ∪ Y and N1 are red, we can extend
this red edge to a red copy of Ck in G ∪ G(n, p). The case when every vertex in X ∪ Y is blue
is similar (and in fact easier if ` is even), and so in all cases we obtain a desired monochromatic
cycle. �

3.3.3. Proof of Theorem 3.4(iii). Let d > 1/2 and define δ > 0 so that d > 1/2 + δ. Set 0 < ε� δ.
Let η > 0 be obtained by applying Corollary 2.4 with input r = 2. Consider any sufficiently
large n-vertex graph G of density at least d, and consider any 2-colouring of G. By Corollary 2.4
we have that there are disjoint sets V1, V2, V3 in G so that |V1| = |V2| = |V2| ≥ ηn and for each
1 ≤ i < j ≤ 3, there is some colour ci,j for which the edges between Vi and Vj of colour ci,j form an
ε-regular pair of density at least δ/4. Suppose one of these colours ci,j is blue. Then Lemma 2.6
implies G contains a blue copy of C`. Otherwise all the ci,j are red and then since Ck is 3-partite,
Lemma 2.6 implies G contains a red copy of Ck. �

3.3.4. Proof of Theorem 3.4(iv). Let Gn denote the 5-partite Turán graph on n vertices. Since
K5 has a 2-colouring without a monochromatic copy of C3, so does Gn. Let p = o(1/n2). Then
w.h.p. G(n, p) is empty. Thus, w.h.p. Gn ∪ G(n, p) is not (C3, C3)-Ramsey. This shows that
p(n,C3, C3; d) ≥ 1/n2 for all d ≤ 4/5.

Next suppose that d > 1/2, and let p = ω(1/n2). Since K6 is (C3, C3)-Ramsey, to prove that
p(n;C3, C3, d) = 1/n2, it suffices to show that given any n-vertex graph G of density d, w.h.p.
K6 ⊆ G ∪ G(n, p). This follows immediately from Theorem 2.11 with k = 3, since ρ3(K6) = 1/2.
So indeed p(n;C3, C3, d) = 1/n2.

Let d > 4/5 and suppose that G is any sufficiently large graph with density at least d. Then
by Turán’s theorem G contains a copy of K6. Since K6 is (C3, C3)-Ramsey, any 2-colouring of G
yields a monochromatic copy of C3. Thus, p(n;C3, C3, d) = 0. �
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3.3.5. Proof of Theorem 3.4(v). To prove this result we will need two additional lemmas.

Lemma 3.5. R({C3}, {C3, C5}) = 5.

Proof. To see that R({C3}, {C3, C5}) > 4, consider a 2-colouring of K4 whose red edges induce a
copy of P4 and whose blue edges induce a copy of P4.

Next consider any 2-colouring of K5. If there is a vertex incident to at least three red edges then
we must have a red or blue copy of C3. The same conclusion holds if there is a vertex incident to
at least three blue edges. Thus, we may assume that every vertex has red and blue degree two. In
particular, the blue subgraph is 2-regular and so is a copy of C5, as desired. �

Let Hm be the graph formed by taking disjoint vertex sets V1, . . . , V5 each of size m, and with
edge set as follows: Hm contains a perfect matching between V1 and V2; a perfect matching between
V3 and V4; between all other pairs of distinct Vi there are all possible edges. The next result proves
that finding Hm in a graph G (for m sufficiently large) ensures G is (Ck, C`)-Ramsey.

Lemma 3.6. Given k ∈ 2N+1 and ` ∈ 2N+3, there exists an m0 = m0(k, `) such that if m ≥ m0,
then Hm is (Ck, C`)-Ramsey.

Proof. Consider any 2-colouring c of Hm. Given an edge xy ∈ E(Hm), write c(xy) for the colour
of xy in c. We first build an auxiliary complete bipartite graph B with classes B1 and B2. The
vertices of B1 are the edges {v1,iv2,i : i ∈ [m]} of the perfect matching between V1 and V2 in Hm;
the vertices of B2 are the edges {v3,iv4,i : i ∈ [m]} of the perfect matching between V3 and V4 in
Hm.

Next we 16-colour the edges of B as follows: for all i, j ∈ [m], we colour the edge from v1,iv2,i

to v3,jv4,j in B with the 4-tuple (c(v1,iv3,j), c(v1,iv4,j), c(v2,iv3,j), c(v2,iv4,j)). Since m is suffi-
ciently large, the bipartite Ramsey theorem implies the existence of a monochromatic copy K
of K4(k+`),4(k+`) in B. Let (c1,3, c1,4, c2,3, c2,4) be the colour of K. Let V ′i ⊆ Vi denote the set of
vertices in Vi that are ‘present’ in K; for example, v1,j ∈ V ′1 precisely if v1,jv2,j is a vertex in K. It
follows that, for every i ∈ {1, 2}, j ∈ {3, 4}, all edges in the complete bipartite graphs Hm[V ′i , V

′
j ]

have the colour ci,j .

Now consider the vertices in V5. There are 216(k+`) possible ways the edges between a vertex
v ∈ V5 and the vertices in ∪4

i=1V
′
i can be coloured. Hence, we can find a set V ′′5 ⊆ V5 of at least

m2−16(k+`) ≥ k + ` vertices that all have the same colour profile.
Next consider the matching between V ′1 and V ′2 in Hm. For each edge v1v2 in this matching,

there are four possible ways the edges from {v1, v2} to V ′′5 can be coloured. Hence, there are subsets
V ′′1 ⊆ V ′1 and V ′′2 ⊆ V ′2 of size k + ` such that there is a perfect matching in Hm[V ′′1 , V

′′
2 ], and for

each i ∈ [2], all edges between V ′′i and V ′′5 have colour ci,5. Similarly, there are subsets V ′′3 ⊆ V ′3 and
V ′′4 ⊆ V ′4 of size k + ` such that there is a perfect matching in Hm[V ′′3 , V

′′
4 ], and for each i ∈ {3, 4},

all edges between V ′′i and V ′′5 have colour ci,5.
In summary, we have an induced subgraph H ′m of Hm on ∪5

i=1V
′′
i where |V ′′i | ≥ k + `; a perfect

matching in H ′m[V ′′1 , V
′′

2 ] and in H ′m[V ′′3 , V
′′

4 ]; for all other pairs i < j, a monochromatic complete
bipartite graph of colour ci,j between V ′′i and V ′′j in H ′m.

Fix an edge x1x2 in H ′m[V ′′1 , V
′′

2 ] and denote its colour in c by c1,2. Similarly let x3x4 be an edge
in H ′m[V ′′3 , V

′′
4 ] with colour c3,4. Now consider an auxiliary copy of K5 with vertex set [5], colouring

each edge ij with colour ci,j . By Lemma 3.5 we find a red C3, blue C3 or blue C5.
Case 1: There is a monochromatic copy of C3 on {i, j, r} in K5. Suppose this C3 is red;
the blue case is analogous. Choose vertices y1 ∈ V ′′i , y2, y4, . . . , yk−1 ∈ V ′′j and y3, y5, . . . , yk ∈ V ′′r .

These choices can be made arbitrarily unless {1, 2} ⊆ {i, j, r} in which case we set i := 1, j := 2,
y1 := x1 and y2 := x2; or if {3, 4} ⊆ {i, j, r}, in which case we set i := 3, j := 4, y1 := x3 and
y2 := x4.
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Note that y1y2y3 . . . yky1 is a red copy of Ck in H ′m ⊆ Hm, as desired.
Case 2: There is a blue copy π1π2π3π4π5π1 of C5 in K5. We may assume that π5 = 5.
Choose vertices y1 ∈ V ′′π1

, y2 ∈ V ′′π2
, y3 ∈ V ′′π3

, y4, y6, . . . , y`−1 ∈ V ′′π4
and y5, y7, . . . , y` ∈ V ′′5 such

that yi = xπi ∈ V ′′πi for each i ∈ [4], with the other vertices chosen arbitrarily. Then y1y2y3 . . . y`y1

is a blue copy of C` in H ′m ⊆ Hm, as desired. �

With Lemma 3.6 at hand it is now straightforward to prove Theorem 3.4(v).
Proof of Theorem 3.4(v) Let Gn denote the 4-partite Turán graph on n vertices. Colour the edges
of K4 so that the red edges induce a P4, and the blue edges also a P4. Lift this to a 2-colouring
of Gn. Since the red (blue) subgraph of Gn is bipartite we do not have a red (blue) copy of any
odd cycle. Let p = o(1/n2). Then w.h.p. G(n, p) is empty. Thus, w.h.p. Gn ∪ G(n, p) is not
(Ck, C`)-Ramsey. This shows that p(n;Ck, C`, d) ≥ 1/n2 for all d ≤ 3/4.

Next suppose that d > 1/2. Let p = ω(1/n2), and let m ≥ m0 as in Lemma 3.6. Let G be a
sufficiently large n-vertex graph of density at least d. The 3-partition V (Hm) = (V1 ∪ V2) ∪ (V3 ∪
V4) ∪ V5 shows ρ3(Hm) ≤ 1/2, and so by Theorem 2.11, w.h.p. Hm ⊆ G ∪ G(n, p), and therefore
G ∪G(n, p) is (Ck, C`)-Ramsey. So indeed p(n;Ck, C`, d) = 1/n2 for all d ∈ (1/2, 3/4].

Finally, suppose that d > 3/4 and let G be a sufficiently large graph of density d. Since Hm is
5-partite, the Erdős–Stone–Simonovits theorem [17] implies that Hm ⊆ G. Lemma 3.6 implies that
G is (Ck, C`)-Ramsey. So p(n;Ck, C`, d) = 0 for all d > 3/4. �

3.4. Proof of Theorem 1.11. We next turn to our multicolour result, where we seek the threshold
at which any r-colouring of G∪G(n, p) will contain a monochromatic copy of C`, where ` ≥ 2r + 1
is odd. In the proof of the theorem we will repeatedly make use of the following simple property
of 2i-partite graphs.

Fact 3.7. The edge set of any 2i-partite graph H can be partitioned into i bipartite graphs.

The 2i is best possible, as shown by the following Ramsey result, which can be proven by
induction on r.

Fact 3.8. Given any r ≥ 1, and any r-colouring of K2r+1, there is a monochromatic odd cycle in
K2r+1.

3.4.1. The case when 0 ≤ d ≤ 1 − 2−r+2. When the underlying graph G is not very dense, we
can appeal to Observation 1.10. By Fact 3.7, any graph that is (C`, r − 2)-Ramsey must have
chromatic number at least 2r−2 + 1, as otherwise its edges can be partitioned into r − 2 bipartite
(and hence C`-free) subgraphs. Thus, by Observation 1.10, if d ≤ 1−2−r+2, we have p(n; r, C`, d) =

n−1/m2(C`) = n−1+1/(`−1).

3.4.2. The case when 1 − 2−r+2 < d ≤ 1 − 2−r+1. For each n ∈ N, let Gn denote the 2r−1-
partite Turán graph on n-vertices. Let p = o(n−1). By Fact 3.7 we can (r − 1)-colour Gn so that
each colour class is bipartite, thus avoiding monochromatic copies of C`. A simple application of
Markov’s inequality yields that w.h.p. G(n, p) does not contain a copy of C`, and thus its edges
can be coloured with the remaining colour. Together this implies that w.h.p. Gn ∪ G(n, p) is not
(C`, r)-Ramsey. Hence, p(n; r, C`, d) ≥ n−1 for all d ≤ 1 − 2−r+1. As in the previous case, the

upper bound follows from Theorem 1.1, since n−1+1/(`−1) is the threshold for G(n, p) itself to be

(C`, r)-Ramsey. This shows p(n; r, C`, d) ∈ [n−1, n−1+1/(`−1)] for all 1− 2−r+2 < d ≤ 1− 2−r+1.

3.4.3. The case when 1 − 2−r+1 < d ≤ 1 − 2−r. For each n ∈ N, let Gn denote the 2r-partite
Turán graph on n-vertices. Let p = o(n−2). By Fact 3.7 we can r-colour Gn so that there are
no monochromatic copies of C`. Further w.h.p. G(n, p) is empty. So w.h.p. Gn ∪ G(n, p) is not
(C`, r)-Ramsey. Hence, p(n; r, C`, d) ≥ n−2 for all 1− 2−r+1 < d ≤ 1− 2−r.
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To finish this case off, we require the following generalisation of the graph Hm introduced in the
proof of Theorem 1.9. Let Hm,r be the graph formed by taking disjoint vertex sets V1, . . . , V2r+1

each of size m, and with edge set as follows: Hm,r contains a perfect matching between V2i−1 and
V2i for each 1 ≤ i ≤ 2r−1; between all other distinct pairs Vi, Vj there are all possible edges. Note
that Hm = Hm,2.

Lemma 3.9. Given ` ≥ 2r + 1, there exists an m0 = m0(r, `) such that if m ≥ m0, then Hm,r is
(C`, r)-Ramsey.

Proof. Let m be sufficiently large and consider any r-colouring c of Hm,r. By repeatedly arguing
as in the proof of Lemma 3.6 we can obtain subsets V ∗i ⊆ Vi (for each i ≤ 2r) of size r3` so that:

• There is a perfect matching from V ∗2i−1 to V ∗2i for every 1 ≤ i ≤ 2r−1;
• For all other pairs (V ∗i , V

∗
j ) (with i < j ≤ 2r), all edges from V ∗i to V ∗j have the same colour

ci,j .

To construct such sets V ∗i we first construct the auxiliary bipartite graphB precisely as in Lemma 3.6;
this yields sets V ′1 , . . . , V

′
4 (whose sizes will now still be huge). Then we construct an analogous

auxiliary graph for the pair ((V ′1 , V
′

2), (V5, V6)), and so on, until we have considered every pair of
tuples of such vertex classes.

By further restricting to the most popular colour within each of the perfect matchings, we can
now assume that each such set has size r2` and

• There is a monochromatic perfect matching from V ∗2i−1 to V ∗2i for every 1 ≤ i ≤ 2r−1.
Denote this colour by c2i−1,2i.

Now consider the vertices in V2r+1. There are rr
2`2r possible ways the edges between a vertex

v ∈ V2r + 1 and the vertices in ∪2r
i=1V

∗
i can be coloured. Hence, we can find a set V ∗∗2r+1 ⊆ V2r+1 of

size at least mr−r
2`2r ≥ ` vertices that all have the same colour profile.

Next consider the matching between V ∗2i−1 and V ∗2i in Hm,r for all 1 ≤ i ≤ 2r−1. For each

edge v2i−1v2i in this matching, there are r2 possible ways the edges from {v2i−1, v2i} to V ∗∗2r+1 can
be coloured. Hence, for each 1 ≤ j ≤ 2r, there are subsets V ∗∗j ⊆ V ∗j of size ` such that all
edges between V ∗∗j and V ∗∗2r+1 have colour cj,2r+1, and such that there is a perfect matching in

Hm,r[V
∗∗

2i−1, V
∗∗

2i ] for each 1 ≤ i ≤ 2r−1.

In summary, we have an induced subgraph H∗m,r of Hm,r on ∪2r+1
j=1 V

∗∗
j with |V ∗∗j | ≥ `, a monochro-

matic perfect matching of colour c2i−1,2i in H∗m,r[V
∗∗

2i−1, V
∗∗

2i ] for all 1 ≤ i ≤ 2r−1, and, for all other
pairs 1 ≤ i < j ≤ 2r + 1, a monochromatic complete bipartite graph of colour ci,j between V ∗∗i and
V ∗∗j in H∗m,r.

Now consider an auxiliary copy of K2r+1 with vertex set [2r + 1], colouring each edge ij with
colour ci,j . By Fact 3.8 we find a monochromatic odd cycle C`′ = x1 . . . x`′x1 in K2r+1 where
2 ≤ `′ ≤ 2r + 1 ≤ `. It is easy to see that there is a homomorphism φ from C` to C`′ so that for all
but one of the edges xixi+1, precisely one edge is mapped onto xixi+1 by φ. We can thus ensure
that all edges corresponding to parts with a perfect matching between them are mapped to exactly
once, and it is then easy to lift the C`′ to a monochromatic copy of C` in H∗m,r, as desired. �

Returning to Theorem 1.11, suppose that d > 1 − 2−r+1. Let p = ω(1/n2), and let m ≥ m0

as in Lemma 3.9. Let G be a sufficiently large n-vertex graph of density at least d. Pairing up
the parts of Hm,r joined by a perfect matching gives a (2r−1 + 1)-partition of V (Hm,r) that shows
ρ2r−1+1(Hm,r) ≤ 1/2. Theorem 2.11 then implies that w.h.p. Gn∪G(n, p) contains a copy of Hm,r.
Thus, by Lemma 3.9, w.h.p. Gn ∪G(n, p) is (C`, r)-Ramsey. So indeed p(n; r, C`, d) = n−2 for all
1− 2−r+1 < d ≤ 1− 2−r.
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3.4.4. The case when 1 − 2−r < d ≤ 1. Suppose d > 1 − 2−r, and G is a sufficiently large graph
of density d. Since the graph Hm,r from Lemma 3.9 is (2r + 1)-partite, it follows from the Erdős–
Stone–Simonovits theorem [17] that Hm,r ⊆ G. Hence, by Lemma 3.9, G is (C`, r)-Ramsey, and
thus p(n; r, C`, d) = 0 for d > 1− 2−r, completing the proof of the theorem.

3.5. Proof of Theorem 1.12. In our final result, we establish the perturbed Ramsey thresholds
for cliques versus odd cycles by showing p(n;Kt, C`, d) = n−2/(t−1) for t ≥ 4, odd ` ≥ 5 and
d ∈ (0, 1/2].

Proof of Theorem 1.12. First note that the lower bound follows from Observation 1.4(i). Indeed,
we can take G to be the balanced complete bipartite n-vertex graph, which is C`-free and of density
at least 1/2, and colour all its edges blue. If p = o(n−2/(t−1)), then with high probability G(n, p)
is Kt-free, and so we can colour the remaining edges of G(n, p) red, obtaining an edge-colouring of
G ∪G(n, p) without any red Kt or blue C`.

For the upper bound, let p = ω(n−2/(t−1)). Apply Corollary 2.4 with δ := d, k := 2, r = 1 and
ε := (d/4)t+` to the uncoloured graph G of density d, obtaining an ε-regular pair (V1, V2) of density
at least d/2, with |V1| = |V2| = ηn for some η > 0. We shall show that G ∪ G(n, p) is (Kt, C`)-
Ramsey provided G(n, p) has the three properties given below, where H is the vertex-disjoint union
of Kt and C`, and α := (d/8)t+`:

(a) G(n, p)[V1] contains a copy of H with at least α2t+` |V2| common neighbours in V2,
(b) G(n, p) is αη-globally (Kt−1, P`−1)-Ramsey, and
(c) G(n, p) is αη-globally (Kt−2, C`)-Ramsey.

We first show that (a) holds with high probability. By Lemma 2.2(i), we know that at least
half of all (t + `)-sets of vertices in V1 have at least (d/2 − ε)t+` |V2| common neighbours in V2,
and (d/2 − ε)t+` ≥ α2t+`. Let H be the collection of all possible copies of H supported on such
(t+ `)-sets of V1; it follows that |H| ≥ ξnt+` for some constant ξ = ξ(t, `, d) > 0. Furthermore, as

p = ω(n−2/(t−1)), we have µ1(H) = ntp(
t
2) = ω(1) (attained by taking F = Kt in the definition of

µ1). Thus, by Theorem 2.7, the probability that G(n, p)[V1] does not contain a suitable copy of H
is at most exp(−ξω(1)/(2t+`+1(t+ `)!)) = o(1).

For (b), we appeal to Theorem 2.10. Observe that m2(Kt−1) ≥ m2(P`−1) = 1, Kt−1 is strictly
balanced with respect to m2(·, P`−1), and that m2(Kt−1, P`−1) = (t − 1)/2. Thus there is some

constant C ′ = C ′(αη,Kt−1, P`−1) such that for p′ ≥ C ′n−2/(t−1), G(n, p′) satisfies (b) with high
probability (so certainly our choice of p satisfies (b) with high probability).

For (c), the case t ≥ 5 can be handled with Theorem 2.10 just as above. If t = 4, though, being
(Kt−2, C`)-Ramsey is equivalent to containing C`. For this, we can apply Theorem 2.7 instead. For
every set U ⊂ V (G(n, p)) of size ανn, let HU be the possible copies of C` within U , observing that

|HU | = (` − 1)!
(|U |
`

)
/2 = ξ′n` for some appropriate constant ξ′ > 0. Moreover, as p = ω(n−2/3),

we have µ1(C`) = n`p` = ω(n`/3) ≥ n5/3. By Theorem 2.7, the probability that G(n, p) does not

contain a copy of C` from HU is at most exp(−ξ′n5/3/(2`+1`!)). Taking a union bound over all
possible choices of U , we see that with high probability, G(n, p) will contain an `-cycle in each
subset U , thus satisfying (c).

To finish, let us see how these properties imply that G ∪ G(n, p) is (Kt, C`)-Ramsey. Consider
any 2-colouring of G ∪ G(n, p). By (a), we can find a copy H0 of H within G(n, p)[V1] with a set
W ⊂ V2 of at least α2t+` |V2| common neighbours of V (H0). For each w ∈ W , there are 2t+` ways
the edges between w and V (H0) can be coloured, and so we can find a subset U ⊂ W of α |V2|
common neighbours such that each vertex in U has the same colour profile to V (H0) (i.e. the red
neighbourhood in V (H0) of each u ∈ U is the same; as is the blue neighbourhood).
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First suppose there are x, y ∈ V (H0) such that the edges from x to U are all red while those
from y to U are all blue. By (b), we find a red Kt−1 or a blue P`−1 in G(n, p)[U ]. Extending by
either x or y respectively, we find either a red Kt or a blue C` in G ∪G(n, p), and are done.

Next, suppose all edges between V (H0) and U are red. Recall that H0 contains C` as a subgraph.
If all edges of this `-cycle are blue, we are done, and hence there must be a red edge {x, y}. By
(c), U must contain either a red Kt−2 or a blue C`. In the latter case, we are done, while in the
former, extending the clique by x and y gives the desired red Kt.

Thus all edges between V (H0) and U must be blue. In this case, recall that H0 contains Kt as a
subgraph. If all its edges are red, then we are done, and hence there is a blue edge {u0, u1}. Writing
` = 2k+1, let {u2, u3, . . . , uk} be a set of k−1 other vertices from V (H0), and let {v1, v2, . . . , vk} be
an arbitrary set of k vertices from U . We then have a blue `-cycle (u0, u1, v1, u2, v2, . . . , uk, vk, u0)
in G ∪G(n, p), as required. �

4. Concluding remarks and open problems

In this paper we have determined how many random edges one must add to a dense graph
to ensure w.h.p. the resulting graph is (Kt,Ks)-Ramsey for all t ≥ s ≥ 5; more precisely

p(n;Kt,Ks, d) = n−1/m2(Kt,Kds/2e) for all 0 < d ≤ 1/2 (see Theorem 1.7). This complements work
of Krivelevich, Sudakov and Tetali [30] who determined the corresponding threshold when s = 3.
This leaves only one open case for this range of densities; when s = 4. This is perhaps the most
interesting open question resulting from our work. As mentioned previously, our work combined
with Powierski’s [37] settles this problem when t = 4. The construction from [37] can be extended
to the (Kt,K4)-Ramsey question as well, and improves the lower bound from Proposition 1.8 for
t ∈ {5, 6}. It would be of great interest to determine the correct threshold for t ≥ 5.

Note Theorem 1.7 does not consider all possible densities d; indeed, it is still an open problem
to determine how many random edges one must add to a graph G of density d to ensure it is
w.h.p. (Kt,Ks)-Ramsey if d > 1 − 2/(s − 1) and s ≤ t. Notice though that if d > 1 − 1

r−1 where

r := R(Kt,Ks), then by Turán’s theorem G contains a copy of Kr and thus is (Kt,Ks)-Ramsey.
Further, setting r′ := dR(Kt,Ks)/2e, Theorem 2.11 implies that if d > 1 − 1

r′−1 then one only

requires p = ω(n−2) to ensure G ∪G(n, p) w.h.p. contains Kr and thus is (Kt,Ks)-Ramsey.
We have completely resolved the question of how many random edges one must add to a graph

of fixed density to ensure w.h.p. the resulting graph is (Ck, C`)-Ramsey for all k, ` ≥ 3 (see
Theorem 1.9). Additionally we made some progress towards the analogous question for more
colours via Theorem 1.11; it would be interesting to close the one remaining gap in this statement
(i.e. fully resolve the case when 1 − 2−r+1 < d ≤ 1 − 2−r+1). Our work here is also related to a
conjecture of Erdős and Graham [16] from 1973. Indeed, recall that Theorem 1.11 only considers
cycles C` that are sufficiently large compared to the number of colours r (i.e. ` ≥ 2r + 1). This
is because we apply Fact 3.8: any r-colouring of K2r+1 yields a monochromatic odd cycle. In
particular, this monochromatic cycle could have length 2r + 1. Erdős and Graham [16] asked how
large can the smallest monochromatic odd cycle in an r-colouring of K2r+1 be. Thus, getting non-
trivial upper bounds on this question would yield a strengthening of Theorem 1.11. We are not
aware of such progress on this problem, though Day and Johnson [14] did prove the smallest such
monochromatic cycle is unbounded as r grows, thereby answering a question of Chung [11].

Note that when the density d of the graph G is large, our upper bounds on p(n;H1, H2, d) often
come from the existence of a fixed-size subgraph that is (H1, H2)-Ramsey. However, for small den-
sities, the upper bounds use more global arguments, either using results on the Ramsey properties
of the random graph, or finding large common neighbourhoods and then finding subgraphs there.
It would be interesting to see to what extent this dichotomy extends to other cases of the Ramsey
problem in randomly perturbed graphs.
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Finally, there has been significant interest in Ramsey properties of random hypergraphs (see, for
example, [13, 19, 20]). It would be interesting to obtain analogues of our results in the setting of
randomly perturbed hypergraphs.
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[23] S. Janson, T.  Luczak and A. Ruciński, Random Graphs (Wiley, New York, 2000).
[24] F. Joos and J. Kim, Spanning trees in randomly perturbed graphs, Random Struct. Algor. 56 (2020), 169–219.
[25] Y. Kohayakawa and B. Kreuter, Threshold functions for asymmetric Ramsey properties involving cycles, Random

Struct. Algor. 11 (1997), 245–276.
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Appendix A. Proofs of useful tools

In this appendix we prove some of the results from Section 2 namely; Lemma 2.5, a multipartite
version of the dependent random choice lemma; Theorem 2.7, which guarantees the existence of
subgraphs within G(n, p); Theorem 2.10, which shows that when random graphs have certain
Ramsey properties, they have them robustly and globally. These follow from either fairly standard
arguments or minor modifications of existing proofs, but we include these results here for the sake
of completeness.

A.1. Proof of Lemma 2.5. In Lemma 2.5, copied below, we extend the basic lemma of dependent
random choice from [18], showing that if a set of vertices Vs is in ε-regular pairs with other sets
V1, V2, . . . , Vs−1, then we can find a relatively large subset U ⊆ Vs such that all small subsets of U
have many common neighbours in each of the other parts Vi.

Lemma 2.5. Given s ∈ N and δ > 0, suppose 0 < ε ≤ min{1/(2s), δ/2}. Let V1, V2, . . . , Vs be
disjoint sets of vertices from a graph G, each of size m, such that for all i ∈ [s−1], the pair (Vi, Vs)
is ε-regular of density at least δ. For every β > 0 and ` ∈ N there is some γ = γ(s, δ, β, `) > 0 such
that, if m is sufficiently large, there is a subset Us ⊆ Vs of size at least m1−β such that every set of
` vertices from Us has at least γm common neighbours in each of the sets Vi, i ∈ [s− 1].

Proof. For i ∈ [s − 1], let Ti ⊂ Vi be the subset of vertices obtained when selecting t vertices
uniformly and independently (with repetition), where t is to be determined. Let Ws := {v ∈ Vs :
∪iTi ⊆ N(v)} be those vertices in Vs adjacent to all chosen vertices. For fixed v ∈ Vs, we have

P(v ∈Ws) =

s−1∏
i=1

(
|N(v) ∩ Vi|

m

)t
.
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By Lemma 2.2(i), with ` = 1, the number of vertices in Vs with at most (δ − ε)m neighbours in
Vi for some i ∈ [s − 1] is at most (s − 1)εm. Hence for at least (1 − (s − 1)ε)m vertices in Vs we

have |N(v) ∩ Vi| > (δ − ε)m for all i ∈ [s − 1]. Thus E[|Ws|] ≥ (1 − (s − 1)ε)m(δ − ε)(s−1)t ≥
(m/2)(δ/2)(s−1)t.

We now set γ := (δ/2)2(s−1)`/β. For every `-set S ⊆Ws with fewer than γm common neighbours
in some Vi, remove one vertex of S from Ws, and let Us be the set of remaining vertices. Clearly
every `-subset of Us has the requisite number of common neighbours, and so we need only show
that Us is sufficiently large.

Observe that if S ⊆ Ws, then we must have Ti ⊆ N(S) ∩ Vi for each i ∈ [s− 1]. Thus, if S has
fewer than γm common neighbours in some part Vi, we can bound P(S ⊆Ws) ≤ γt. In expectation,
the number of vertices that needs to be removed from Ws is thus at most

(
m
`

)
γt. This leaves us

with

E[|Us|] ≥
m

2

(
δ

2

)(s−1)t

−
(
m

`

)
γt ≥ m

2

(
δ

2

)(s−1)t

−m`γt.

Thus, if we set t := blog(4m−β)/((s− 1) log(δ/2))c, the first term will be at least 2m1−β, while
our choice of γ ensures m`γt = o(1). Hence we can find some set Us ⊂ Vs of size at least m1−β with
the desired property. �

A.2. Proof of Theorem 2.7. The next result is a standard, straightforward, and very useful
application of the Janson inequality [23].

Theorem 2.7. Let H be a graph with v ≥ 2 vertices and e ≥ 1 edges. Let [n] be the vertex set of
G(n, p), and, for some ξ > 0, let H be a collection of ξnv possible copies of H supported on [n].
The probability that G(n, p) does not contain any copy of H from H is at most exp(−ξµ1/(2

v+1v!)),

where µ1 = µ1(H) := min{nv(F )pe(F ) : F ⊆ H, e(F ) ≥ 1}.

We separate a calculation that will be needed in later proofs as well. The quantity ∆ bounds
the expected number of pairs of distinct edge-intersecting copies of H, with the first copy from H,
that appear in G(n, p), a quantity closely linked to the variance of the number of copies of H from
H in G(n, p).

Lemma A.1. Let H be a graph with v vertices and e edges, let Kn(H) be the collection of all copies
of H in the complete graph Kn, and let H ⊆ Kn(H) be a subcollection thereof. We then have

∆ :=
∑

H′∈H,H′′∈Kn(H):
H′ 6=H′′,e(H′∩H′′)6=0

P
(
H ′ ∪H ′′ ⊆ G(n, p)

)
≤ 2vv! |H|nvp2e/µ0,

where µ0 = µ0(H) := min{nv(F )pe(F ) : F ( H, e(F ) ≥ 1}.

Proof. We write H ′ ∼ H ′′ if H ′, H ′′ are distinct copies of H that share at least an edge, with
H ′ ∈ H and H ′′ ∈ Kn(H). Thus ∆ denotes the expected number of (ordered) pairs H ′ ∼ H ′′ with
both H ′ and H ′′ appearing in G(n, p), which we want to bound from above.

Given H ′ ∈ H, let us estimate its contribution to ∆. There are fewer than 2v ways to choose a
subset S ⊆ V (H ′) of the vertices of H ′ that are shared with H ′′, and at most v! assignments ϕ of
these vertices to the vertices of H ′′. This then determines the subgraph F = F (S, ϕ) ⊂ H in which
H ′ and H ′′ intersect. Let F := {(S, ϕ) : e(F (S, ϕ)) ≥ 1} denote the set of viable pairs (S, ϕ). For

each such pair, letting F = F (S, ϕ), there are at most nv−v(F ) choices for the remaining vertices of
H ′′, and each such copy H ′′ introduces a further e− e(F ) edges. Hence the probability that both

H ′ and H ′′ appear in G(n, p) is p2e−e(F ). This gives

∆ ≤
∑
H′∈H

∑
(S,ϕ)∈F

nv−v(F )p2e−e(F ) = nvp2e
∑
H′∈H

∑
(S,ϕ)∈F

n−v(F )p−e(F ).
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The summand is, by definition of µ0, at most µ−1
0 . Since there are at most 2vv! choices of (S, ϕ)

in the inner sum, and |H| choices of H ′ in the outer sum, we get the desired bound of

∆ ≤ 2vv! |H|nvp2e/µ0. �

Theorem 2.7 follows almost immediately from the lemma.

Proof of Theorem 2.7. Let XH be the random variable counting the number of copies of H from
H that appear in G(n, p), so that we seek to bound P(XH = 0) from above. We clearly have µ :=
E[XH] = |H| pe = ξnvpe. Thus, letting ∆ and µ0 be as in Lemma A.1, we have ∆ ≤ 2vv!µ2/(ξµ0).
Furthermore, we have µ1 = min{µ/ξ, µ0}.

By the Janson inequality (see [2, Theorem 8.1.1]), if ∆ ≤ µ, then

P(XH = 0) ≤ exp(−µ/2) ≤ exp(−ξµ1/(2
v+1v!)).

Otherwise, when ∆ > µ, we can instead apply the extended Janson inequality [2, Theorem 8.1.2]:

P(XH = 0) ≤ exp(−µ2/(2∆)) ≤ exp(−ξµ0/(2
v+1v!)) ≤ exp(−ξµ1/(2

v+1v!)). �

A.3. Proof of Theorem 2.10. We finally justify our strengthening of the 1-statement of the
asymmetric random Ramsey problem, showing that above the threshold, G(n, p) is both robustly
and globally (H1, H2)-Ramsey. We recall the precise statement below.

Theorem 2.10 ([20, 22]). Let H1 and H2 be graphs such that m2(H1) ≥ m2(H2) ≥ 1, and

(a) m2(H1) = m2(H2), or
(b) H1 is strictly balanced with respect to m2(·, H2).

The random graph G(n, p) then has the following Ramsey properties:

(i) There are constants γ = γ(H1, H2) > 0 and C1 = C1(H1, H2) such that if p ≥ C1n
−1/m2(H1,H2)

and, for i ∈ [2], Fi ⊆
( [n]
v(Hi)

)
is a collection of at most γnv(Hi) forbidden subsets, then G(n, p)

is with high probability robustly (H1, H2)-Ramsey with respect to (F1,F2).

(ii) For every µ > 0 there is a constant C2 = C2(H1, H2, µ) such that if p ≥ C2n
−1/m2(H1,H2),

then G(n, p) is with high probability µ-globally (H1, H2)-Ramsey.
(iii) If we further have m2(H2) > 1, then there are constants β0 = β0(H1, H2) > 0 and C3 =

C3(H1, H2) such that if 0 ≤ β ≤ β0 and p ≥ C3n
−(1−β)/m2(H1,H2), then with high probability

G(n, p) is n−β-globally (H1, H2)-Ramsey.

A.3.1. Containers for nearly-H-free graphs and Ramsey supersaturation. As stated earlier, we shall
prove this result by retracing the proofs of Hancock, Staden and Treglown [22] and of Gugelmann,
Nenadov, Person, Škorić, Steger and Thomas [20], making minor modifications along the way. One
commonality between the two proofs is the use of the hypergraph containers theorems of Balogh,
Morris and Samotij [3] and of Saxton and Thomason [41].

Indeed, if G(n, p) is not (H1, H2)-Ramsey, then its edges can be partition into a red H1-free
subgraph and a blue H2-free subgraph. The aforementioned containers theorems show there are
only a small number of “containers” that these Hi-free subgraphs must belong to, and one may use
the properties of these containers to show it is very unlikely that G(n, p) admits such a partition.

However, in the robust Ramsey setting, it is no longer true that the red subgraph must be
H1-free or that the blue subgraph must be H2-free, as they may contain some forbidden copies of
these subgraphs. Fortunately, the containers do not only capture Hi-free graphs, but also graphs
with relatively few copies of Hi. To make this precise, we use the formulation of Saxton and
Thomason [41], for which we require the following definition concerning r-uniform hypergraphs (or
r-graphs).
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Definition A.2 (Co-degree function). Let Γ be a vertex-transitive d-regular r-graph, and let τ > 0.
Given a set S of at most r vertices, define d(S) to be the number of edges of Γ containing S. For
each 2 ≤ j ≤ r, we define δj by the equation

δjτ
j−1d = max

S∈(V (Γ)
j )

d(S).

The co-degree function δ(Γ, τ) is then defined by

δ(Γ, τ) := 2(r2)−1
r∑
j=2

2−(j−1
2 )δj .

Note that the notion of co-degree can be defined more generally (i.e. not just for vertex-transitive
r-graphs); we only state the definition in this form to simplify things a little. In the case of vertex-
transitive graphs, Corollary 3.6 in [41] reads as below.

Corollary A.3 (Saxton–Thomason [41]). Let Γ be a vertex-transitive r-graph on vertex set [N ].
Let 0 < ε, τ < 1/2. Suppose that τ satisfies δ(Γ, τ) ≤ ε/12r!. Then there exists a constant c = c(r)
and a function ψ : P([N ])q → P([N ]), where q ≤ c log(1/ε), with the following properties. Let

T := {(T (1), . . . , T (q)) ∈ P([N ])q :
∣∣T (j)

∣∣ ≤ cτN, j ∈ [q]}, and let C := {ψ(T ) : T ∈ T }. Then

(a) for every set I ⊂ [N ] for which e(Γ[I]) ≤ 24εr!rτ re(Γ), there exists T = (T (1), . . . , T (q)) ∈
T ∩ P(I)q with I ⊂ ψ(T ) ∈ C,

(b) e(Γ[χ]) ≤ εe(Γ) for all χ ∈ C, and
(c) log |C| ≤ c log(1/ε)Nτ log(1/τ).

Given a graph H, we wish to apply Corollary A.3 to build containers for n-vertex graphs that
are nearly H-free. To that end, we set N :=

(
n
2

)
and r := e(H), and take Γ to be the r-graph whose

vertices correspond to the edges of Kn and whose hyperedges are the edge-sets of all copies of H
in Kn. It is clear that Γ is vertex-transitive, and, writing v := v(H) and e := e(H), each vertex in
Γ has degree

d :=

(
n

v

)
v!

|Aut(H)|
e(
n
2

) = Θ
(
nv−2

)
.

We next must bound d(S) for sets S ∈
(
V (Γ)
j

)
, where 2 ≤ j ≤ r. Clearly, if the set S of edges

spans a vertices of H, then d(S) = Θ (nv−a). Consequently,

max
S∈(V (Γ)

j )
d(S) = Θ

(
nv−aj

)
,

where aj is the minimum number of vertices that a set of j edges of H can span. Hence

δj := max
S∈(V (Γ)

j )
d(S)/

(
τ j−1d

)
= Θ

(
τ1−jn2−aj

)
,

and so δ(Γ, τ) = Θ
(
maxj τ

1−jn2−aj
)
. In order to apply Corollary A.3, we need the co-degree

function to satisfy δ(Γ, τ) ≤ ε/12r!, where ε will be a small constant, and therefore we cannot let

τ be too small. Indeed, we need τ = Ω
(
n−(aj−2)/(j−1)

)
for all j, which is equivalent to saying

that for every subgraph F ⊆ H, we need τ = Ω
(
n−(v(F )−2)/(e(F )−1)

)
. Recalling the definition of

the 2-density m2(H), this implies that for every 0 < ε < 1/2, we may apply Corollary A.3 with

τ = Oε
(
n−1/m2(H)

)
. Substituting this choice of τ into Corollary A.3 gives the following.

Corollary A.4. Given a graph H and a constant 0 < ε < 1/2, there are positive constants
q = q(ε,H), β = β(ε,H) and κ = κ(ε,H) such that for every n ∈ N, there is a function ψ :

P(E(Kn))q → P(E(Kn)) with the following properties. Let T := {(T (1), . . . , T (q)) ∈ P(E(Kn))q :
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∣∣T (j)
∣∣ ≤ βn2−1/m2(H), j ∈ [q]}, and let C := {ψ(T ) : T ∈ T } be the family of corresponding subgraphs

of Kn. Then

(i) for every subgraph F ⊆ Kn with at most κnv(H)−e(H)/m2(H) copies of H, there is some
T ∈ T ∩ P(E(F ))q with F ⊆ ψ(T ) ∈ C, and

(ii) each subgraph ψ ∈ C contains at most ε
(

n
v(H)

)
copies of H.

Another result we shall need is a supersaturated version of Ramsey’s Theorem — when colouring
the edges of a large enough clique, we do not just see a monochromatic copy of a given graph, but
we see many such copies. This follows from the classic Ramsey’s Theorem by a standard averaging
argument, the details of which can be found in [20].

Proposition A.5 (Folklore). Given r ≥ 2 and graphs F1, F2, . . . , Fr, there are positive constants
n0 = n0(F1, . . . , Fr) and π = π(F1, . . . , Fr) such that if n ≥ n0, then every r-colouring of Kn has
some i ∈ [r] for which there are at least π

(
n

v(Fi)

)
monochromatic copies of Fi in colour i.

A.3.2. Random graphs are robustly Ramsey: Case (a). We now prove the robust Ramsey result
under the assumption (a); that is, m2(H1) = m2(H2) ≥ 1. Recall that we then have m2(H1, H2) =

m2(H1) as well. We wish to show that there are constants C, γ > 0 such that if p ≥ Cn−1/m2(H1)

and, for i ∈ [2], Fi is a collection of at most γnv(Hi) forbidden copies of Hi, then G(n, p) is with high
probability robustly (H1, H2)-Ramsey with respect to (F1,F2). By monotonicity, we may assume

p = Cn−1/m2(H1) and, for each i, |Fi| = γnv(Hi).
Recall that the only copies of Hi that may be monochromatic in their respective colours are the

forbidden ones from Fi. We first claim that there are few forbidden copies of each Hi in G(n, p).

Claim A.6. If p = Cn−1/m2(Hi) for some constant C ≥ 1, then for each i ∈ [2], with high probability

G(n, p) contains at most 2γCe(Hi)nv(Hi)−e(Hi)/m2(Hi) copies of Hi from Fi.

Proof. We begin with a preliminary calculation. Since p = Cn−1/m2(Hi) ≥ n−1, for any subgraph
F ⊆ Hi with at least one edge we have

(A.1) nv(F )pe(F ) = n2p · nv(F )−2pe(F )−1 ≥ Ce(F )−1n2p = Ω(n).

Now let Xi denote the number of forbidden copies of Hi from Fi that appear in G(n, p). We

clearly have µ(Hi) := E[Xi] = |Fi| pe(Hi) = γnv(Hi)pe(Hi) = γCe(Hi)nv(Hi)−e(Hi)/m2(Hi). Moreover,
taking F = Hi in (A.1), we have µ(Hi) = Ω(n).

We next wish to estimate the variance of Xi. Since edge-disjoint copies of Hi appear indepen-
dently of each other, we can bound

Var(Xi) ≤
∑

F1,F2∈Fi:
e(F1∩F2)≥1

P (F1 ∪ F2 ⊆ G(n, p)) .

The diagonal terms, when F1 = F2, contribute a total of µ(Hi), which, since µ(Hi) = Ω(n),
is O(µ(Hi)

2/n). On the other hand, the sum over ordered pairs (F1, F2) with F1 6= F2 can be
bounded by ∆ from Lemma A.1, applied with H := Hi and H := Fi. The lemma gives ∆ ≤
2v(Hi)v(Hi)! |Fi|nv(Hi)p2e(Hi)/µ0(Hi) = Θ(µ(Hi)

2/µ0(Hi)). By (A.1) we have µ0(Hi) = Ω(n), from
which we can deduce ∆ = O(µ(Hi)

2/n).
Thus Var(Xi) = O(µ(Hi)

2/n). Chebyshev’s inequality now gives the desired result, since

P
(
Xi ≥ 2γCe(Hi)nv(Hi)−e(Hi)/m2(Hi)

)
= P (Xi ≥ 2µ(Hi)) ≤

Var(Xi)

µ(Hi)2
= O

(
1

n

)
. �

Define E0 to be the event that G(n, p) contains more than 2γCe(Hi)nv(Hi)−e(Hi)/m2(Hi) copies of
Hi from Fi, for some i ∈ [2]. Claim A.6 shows that E0 almost surely does not occur, and we shall
henceforth assume it does not.
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Now suppose G(n, p) is not robustly (H1, H2)-Ramsey with respect to (F1,F2). This means the
edges of G(n, p) may be 2-coloured so that the red copies of H1 and the blue copies of H2 all belong
to F1 and F2 respectively. In light of Claim A.6, the red subgraph has few copies of H1, and hence
by Corollary A.4 must lie within one of the containers for nearly-H1-free graphs. Similarly, the
blue subgraph must lie within one of the containers for nearly-H2-free graphs. Since there are very
few containers, and the containers are relatively small, this is very unlikely.

To be more precise, let π = π(H1, H2,K2) be the constant from Proposition A.5. For i ∈ [2], we
then apply Corollary A.4 with ε := π/2 and Hi to get constants qi, βi and κi, and a map ψi from

a collection of sequences Ti := {(T (1)
i , . . . , T

(qi)
i ) ∈ P(E(Kn))qi :

∣∣∣T (j)
i

∣∣∣ ≤ βin
2−1/m2(Hi), j ∈ [qi]} to

the set of containers Ci := {ψi(Ti) : Ti ∈ Ti}. Given a choice of the constant C, which we shall

implicitly specify at the end, we set γ := min{κi/(2Ce(Hi)) : i ∈ [2]}.
Now fix a 2-colouring of G(n, p) where all the red copies of H1 and blue copies of H2 belong to F1

and F2 respectively. By Claim A.6, the red subgraph G1 has at most 2γCe(H1)nv(H1)−e(H1)/m2(H1)

copies of H1, which, by our choice of γ, is at most κ1n
v(H1)−e(H1)/m2(H1). By Corollary A.4, there

is some T1 ∈ T1 ∩ P(E(G1))q1 such that G1 ⊆ C1 := ψ1(T1) ∈ C1. A similar argument for the blue
subgraph G2 gives T2 ∈ T2 ∩ P(E(G2))q2 with G2 ⊆ C2 := ψ2(T2) ∈ C2. Since G(n, p) = G1 ∪G2,
we have G(n, p) ⊆ C1 ∪ C2.

Corollary A.4 also asserts that, for i ∈ [2], Ci contains at most π
(

n
v(Hi)

)
/2 copies of Hi. By

Proposition A.5, it follows that there are at least π
(
n
2

)
edges in R(T1, T2) := E(Kn) \ (C1 ∪C2), all

of which must be missing from G(n, p).

Given T1 ∈ T1 and T2 ∈ T2, we define the shorthand T1 ∪ T2 := ∪i∈[2]

{
∪j∈[qi]T

(j)
i

}
. Now let

E(T1, T2) be the event that all edges in T1∪T2 are in G(n, p) while all edges in R(T1, T2) are missing.
Since |R(T1, T2)| ≥ π

(
n
2

)
, we have

P(E(T1, T2)) = p|T1∪T2|(1− p)|R(T1,T2)| ≤ p|T1∪T2| exp

(
−π
(
n

2

)
p

)
.

Our above discussion shows that if G(n, p) does not have the desired robust Ramsey property,
then either E0 or one of the events E(T1, T2) must occur. By the union bound, the probability of
G(n, p) not being robustly (H1, H2)-Ramsey with respect to (F1,F2) is at most∑

T1∈T1,T2∈T2

E(T1, T2) + P(E0) ≤ exp

(
−π
(
n

2

)
p

) ∑
T1∈T1,T2∈T2

p|T1∪T2| + o(1)

= exp

(
−π
(
n

2

)
p

) ∑
S⊆E(Kn)

∑
T1∈T1,T2∈T2:
T1∪T2=S

p|S| + o(1).

Now recall that Ti = (T
(1)
i , . . . , T

(qi)
i ), where

∣∣∣T (j)
i

∣∣∣ ≤ βin
2−1/m2(Hi), and so |T1 ∪ T2| ≤ Mn :=

(β1q1 +β2q2)n2−1/m2(H1). Moreover, given a set S of at most this size, for each edge e ∈ S, we must

choose which of the sets T
(j)
i it belongs to, and hence there are at most 2(q1+q2)|S| pairs (T1, T2)

corresponding to S. Therefore∑
S⊆E(Kn)

∑
T1∈T1,T2∈T2:
T1∪T2=S

p|S| ≤
∑

S⊆E(Kn):
|S|≤Mn

(
2q1+q2p

)|S| ≤ Mn∑
s=0

(
n2

s

)(
2q1+q2p

)s ≤ Mn∑
s=0

(
2q1+q2en2p

s

)s
.

Substituting p = Cn−1/m2(H1), we find that the summand is (2q1+q2Cen2−1/m2(H1)/s)s. Since
the function f(x) = (A/x)x increases to a maximum at x = A/e, it follows that, if C is sufficiently
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large, the largest summand corresponds to s = Mn. We thus have∑
T1∈T1,T2∈T2

p|T1∪T2| ≤ (Mn + 1)

(
2q1+q2Cen2−1/m2(H1)

Mn

)Mn

= (Mn + 1) exp(LCn
2−1/m2(H1)),

where LC := (β1q1 + β2q2) ln (2q1+q2Ce/(β1q1 + β2q2)). This gives

P (G(n, p) is not robustly Ramsey ) ≤ (Mn + 1) exp

(
LCn

2−1/m2(H1) − π
(
n

2

)
p

)
+ o(1)

≤ (Mn + 1) exp
(

(LC − Cπ/4)n2−1/m2(H1)
)

+ o(1)

≤ exp
(
−Cπn2−1/m2(H1)/8

)
+ o(1),(A.2)

where the final inequality holds when we choose C to be sufficiently large, since LC is logarithmic
in C, and if n is large enough, since Mn is only polynomial in n. This shows G(n, p) is with high
probability robustly (H1, H2)-Ramsey with respect to (F1,F2). �

A.3.3. Random graphs are robustly Ramsey: Case (b). We next prove the robust Ramsey result
under the assumption (b), when H1 is strictly balanced with respect to m2(·, H2). When m2(H1) >

m2(H2) and p = Cn−1/m2(H1,H2), there are too many nearly-H1-free containers for the union bound
calculation of Case (a) to work.

We will instead exploit the fact that nearly all copies of H1 in G(n, p) are edge-disjoint. To that
end, call a copy of H1 in G(n, p) isolated if it is edge-disjoint from all other copies of H1, and call
it non-isolated otherwise. Our first claim shows that there are few non-isolated copies of H1.

Claim A.7. Let H1 be strictly balanced with respect to m2(·, H2), and let p = Cn−1/m2(H1,H2) for
some constant C ≥ 1. There is a constant δ = δ(H1, H2) such that the number of non-isolated

copies of H1 in G(n, p) is with high probability at most n2−1/m2(H2)−δ.

Proof. If a copy H ′ of H1 is non-isolated, then there is some other copy H ′′ 6= H ′ of H1 such that
e(H ′∩H ′′) ≥ 1. The number of non-isolated copies of H1 in G(n, p) is thus bounded from above by
the expected number of such pairs {H ′, H ′′}, which is precisely the quantity ∆ from Lemma A.1,
when H := H1 and H := Kn(H1). The lemma gives

∆ ≤ 2v(H1)v(H1)! |Kn(H1)|nv(H1)p2e(H1)

µ0(H1)
≤ 2v(H1)v(H1)!(nv(H1)pe(H1))2

µ0(H1)
,

where µ0(H1) = min{nv(F )pe(F ) : F ( H1, e(F ) ≥ 1}.
For each F ⊆ H1 with e(F ) ≥ 1, define δF such that

m2(H1, H2) =
e(H1)

v(H1)− 2 + 1/m2(H2)
=:

e(F )

v(F )− 2 + 1/m2(H2)− 2δF
.

It then follows that for every F ⊆ H1 we have

(A.3) nv(F )pe(F ) = Ce(F )nv(F )−e(F )(v(H1)−2+1/m2(H2))/e(H1) = Ce(F )n2−1/m2(H2)+2δF .

We clearly have δH1 = 0. On the other hand, since H1 is strictly balanced with respect to
m2(·, H2), we have δF > 0 in all other cases. Letting δ = δ(H1, H2) := min{δF : F ( H1, e(F ) ≥ 1},
it follows that µ0(H1) ≥ n2−1/m2(H2)+2δ.

By using these values for δH1 and µ0(H1), we can bound the expected number of pairs of inter-
secting copies of H1 by

∆ = O

(
(nv(H1)pe(H1))2

µ0(H1)

)
= O

(
(n2−1/m2(H2))2

n2−1/m2(H2)+2δ

)
= O

(
n2−1/m2(H2)−2δ

)
.
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Using Markov’s inequality, the probability that the number of pairs of intersecting copies of H1,
and thus the number of non-isolated copies of H1, in G(n, p) is more than n2−1/m2(H2)−δ is O(n−δ),
establishing the claim. �

Let E1 be the event that G(n, p) has more than n2−1/m2(H2)−δ non-isolated copies of H1, which
Claim A.7 shows we may assume does not occur. We denote by L the set of edges in non-isolated
copies of H1. Note that any edge e ∈ E(G(n, p)) \ L is contained in at most one copy of H1.

Now suppose that G(n, p) is not robustly (H1, H2)-Ramsey with respect to (F1,F2), and fix
a 2-colouring of its edges where the only red copies of H1 and blue copies of H2 in G(n, p) are
forbidden (i.e. in F1 or F2 respectively). We may safely assume that any edge of G(n, p) that is
not contained in a copy of H1 is red, since if not, recolouring it red does not create a red copy of
H1. Furthermore, we may assume that every isolated non-forbidden copy of H1 has exactly one
blue edge — since it is not in F1, it cannot be monochromatic red, and if it has more than one
blue edge, then since it is an isolated copy of H1, recolouring all but one of them red cannot create
a red copy of H1.

Let B be the subgraph of G(n, p) consisting of all edges not in L that are coloured blue. Note
that each edge of B must be contained in a copy of H1, and moreover these copies are pairwise
edge-disjoint. We thus call a set E of edges in G(n, p) viable if each e ∈ E is contained in some
copy We of H1 such that the copies {We : e ∈ E} are pairwise edge-disjoint. We further call such
a set of copies a witness for the viability of E.

Note that a set of edges E can only be contained in B if E is viable. The next claim bounds the
likelihood of viability.

Claim A.8. If p = Cn−1/m2(H1,H2) for some positive constant C, then a set E of s edges is viable
with probability at most ρs, where ρ := Ce(H1)v(H1)2n−1/m2(H2).

Proof. We take a union bound over all possible witnesses for E. Since the copies We of H1 in
a witness are edge-disjoint, each witness requires exactly e(H1)s edges to appear in G(n, p), and

hence appears with probability pe(H1)s.
To estimate the number of possible witnesses, note that for each edge e ∈ E, we have fewer

than v(H1)2 ways to assign vertices of H1 to the vertices of e in the copy We. There are then at

most a further nv(H1)−2 choices for the remaining vertices in We. This shows there are at most
(v(H1)2nv(H1)−2)s possible witnesses for E.

The expected number of witnesses for E, which bounds from above the probability of E being
viable, is therefore at most(

v(H1)2nv(H1)−2
)s
pe(H1)s =

(
v(H1)2nv(H1)−2pe(H1)

)s
= ρs,

where in the last equality we use the fact that pe(H1) = Ce(H1)n2−v(H1)−1/m2(H2). �

Only forbidden copies of H2 can be monochromatically blue. Furthermore, a copy of H2 in B
must also be viable. Claim A.9 asserts there cannot be many viable forbidden copies of H2. We
will defer its proof for the moment, first seeing how it implies the robust Ramsey result.

Claim A.9. The number of viable forbidden copies of H2 from F2 is with high probability at most
γKnv(H2)−e(H2)/m2(H2) for some constant K = K(C,H1, H2).

We now lay some groundwork for the rest of the proof, including specifying our choice of the
constant γ. Let π = π(H1, H2,K2) be the constant from Proposition A.5. We now apply Corol-
lary A.4 with H := H2 and ε := π/2. This gives us constants q, β and κ, together with a collection

T := {(T (1), . . . , T (q)) ∈ P(E(Kn))q :
∣∣T (j)

∣∣ ≤ βn2−1/m2(H2), j ∈ [q]} and a set of containers
C := {ψ(T ) : T ∈ T } for nearly-H2-free graphs. Finally, for whatever sufficiently large constant we

31



will later choose C to be, we set γ := min{κ/K, π/(2v(H1)v(H1))}, where K = K(C,H1, H2) is the
constant from Claim A.9.

Now let E0 be the event that there are more than κnv(H2)−e(H2)/m2(H2) viable forbidden copies
of H2, which, by Claim A.9 and the fact that κ ≥ γK, we may assume does not occur. Since all
copies of H2 in B must be viable and forbidden, it follows that B has at most κnv(H2)−e(H2)/m2(H2)

copies of H2. By Corollary A.4, there is then some T ∈ T ∩ P(E(B))q with B ⊆ ψ(T ). Let E2(T )

be the event that the set of edges E(T ) = ∪qj=1T
(j) is viable, which must hold for them to be in B.

By Claim A.8, we have

(A.4) P(E2(T )) ≤ ρ|E(T )|.

Next define R = R(T, L) := E(Kn) \ (ψ(T ) ∪ L), and consider the 3-colouring of E(Kn) where
all edges in R receive colour 1, edges in ψ(T ) have colour 2 and those in L \ ψ(T ) are coloured
3. Corollary A.4 guarantees that there are at most π

(
n

v(H2)

)
/2 copies of H2 coloured 2, while

Claim A.7 guarantees that there are fewer than π
(
n
2

)
copies of K2 in colour 3. By Proposition A.5,

we must therefore have at least π
(

n
v(H1)

)
copies of H1 in R. Let H be those copies of H1 in R that

are not forbidden, and note that since |F1| ≤ γnv(H1), we have |H| ≥ π
(

n
v(H1)

)
/2 ≥ ξnv(H1) for

ξ := π/(2v(H1)v(H1)).
Let E3(T, L) be the event that none of the copies of H1 in H appear in G(n, p), and note that

this must hold. Otherwise, the copy of H1 ∈ H, which is not forbidden, must be monochromatic
red, since all blue edges of G(n, p) lie either in L or in B ⊆ ψ(T ), contradicting our assumption
that the only red copies of H1 are forbidden.

By Theorem 2.7, we have P(E3(T, L)) ≤ exp(−ξµ1(H1)/(2v(H1)+1v(H1)!)). As we saw in (A.3),

since H1 is strictly balanced with respect to m2(·, H2), it follows that µ1(H1) = nv(H1)pe(H1) =

Ce(H1)n2−1/m2(H2). Thus, setting ξ′ := ξ/(2v(H1)+1v(H1)!), we have

(A.5) P(E3(T, L)) ≤ exp(−ξCe(H1)n2−1/m2(H2)/(2v(H1)+1v(H1)!)) = exp(−ξ′Ce(H1)n2−1/m2(H2)).

To summarise, in order for G(n, p) to have a 2-colouring where all the red copies of H1 and blue
copies of H2 are forbidden, we either need E0 or E1 to hold, or, if they do not, for E2(T ) ∧ E3(T, L)
to hold for some choice of T ∈ T and some specified set L of edges in non-isolated copies of H1.
We can thus estimate the probability that G(n, p) is not robustly Ramsey by taking a union bound
over these results:

(A.6) P(G(n, p) is not robustly (H1, H2)-Ramsey) ≤ P(E0) + P(E1) +
∑
T,L

P(E2(T ) ∧ E3(T, L)).

Since E2(T ) — that all of the edges from E(T ) appear in B — is a monotone increasing graph
property, while E3(T, L) — that none of the copies of H1 from R(T, L) appear in G(n, p) — is a
monotone decreasing graph property, it follows from the FKG Inequality (see [2, Theorem 6.3.3])
that P(E2(T )∧E3(T, L)) ≤ P(E2(T ))P(E3(T, L)). Using the upper bounds from (A.4) and (A.5), we
can bound the sum by∑

T,L

P (E2(T ) ∧ E3(T, L)) ≤ exp
(
−ξ′Ce(H1)n2−1/m2(H2)

)∑
L

∑
T

ρ|E(T )|.

There are at most n2−1/m2(H2)−δ non-isolated copies of H1 (as otherwise we are covered by E1),

and hence the sum L only runs over sets of at most e(H1)n2−1/m2(H2)−δ edges. Thus

∑
T,L

P (E2(T ) ∧ E3(T, L)) ≤ exp
(
−ξ′Ce(H1)n2−1/m2(H2)

)e(H1)n2−1/m2(H2)−δ∑
`=0

((n
2

)
`

)∑
T

ρ|E(T )|
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≤ exp
(
−ξ′Ce(H1)n2−1/m2(H2) + o

(
n2−1/m2(H2)

))∑
T

ρ|E(T )|.(A.7)

We now bound the sum over T as we did in Case (a). From Corollary A.4, we know s = |E(T )| ≤
Mn := qβn2−1/m2(H2). We group the q-tuples T by the size of E(T ), observing that each set of edges

E(T ) corresponds to at most 2q|E(T )| q-tuples in T . Recalling the definition of ρ from Claim A.8,
we have∑

T

ρ|E(T )| ≤
Mn∑
s=0

∑
T∈T :
|E(T )|=s

ρs ≤
Mn∑
s=0

(
n2

s

)
(2qρ)s ≤

Mn∑
s=0

(
v(H1)2e2qCe(H1)n2−1/m2(H2)

s

)s
.

As before, this summand is maximised when s = Mn, yielding, for λ := v(H1)2e2q/(qβ),∑
T

ρ|E(T )| ≤
(
qβn2−1/m2(H2) + 1

)(
λCe(H1)

)qβn2−1/m2(H2)

.

Making the substitution in (A.7), we find

(A.8)
∑
T,L

P (E2(T ) ∧ E3(T, L)) ≤ exp
((
−ξ′Ce(H1) + qβ ln

(
λCe(H1)

)
+ o(1)

)
n2−1/m2(H2)

)
.

Thus, if we choose C to be a sufficiently large constant (with respect to ξ′, q, β and λ), this sum
is o(1). By Claims A.9 and A.7 respectively, so are P(E0) and P(E1). Hence, by (A.6), it follows
that G(n, p) is with high probability robustly (H1, H2)-Ramsey with respect to (F1,F2). �

To complete the proof, we prove Claim A.9.

Proof of Claim A.9. In order for a forbidden copy H ∈ F2 of H2 to be viable, it must have a witness
— that is, a collection of pairwise edge-disjoint copies We of H1 containing each edge e ∈ E(H).
We shall bound the number of witnesses for forbidden copies of H2, thereby obtaining an upper
bound on the number of viable forbidden copies of H2.

Note that there are various non-isomorphic types of witnesses, depending on how the copies
We of H1 are attached to the edges of the forbidden copy of H2, and whether or not they share
vertices. Let Γ1, . . . ,Γm represent the different isomorphism classes, where m := m(H1, H2) is some
constant. Although these witnesses can have different numbers of vertices, up to a maximum of
v(H2)+e(H2)(v(H1)−2), the edge-disjointness of the We ensures they each have exactly e(H1)e(H2)
edges.

We will show that for p = Cn−1/m2(H1,H2), if we set K ′ := 2γCe(H1)e(H2), then for each i ∈ [m]

the probability that there are at most γK ′nv(H2)−e(H2)/m2(H2) copies of Γi with the central copy of
H2 coming from F2 is O(1/n). Then, taking K := mK ′, a union bound over the different types

of witnesses Γi shows that the probability of there being more than γKnv(H2)−e(H2)/m2(H2) viable
forbidden copies of H2 is also O(1/n).

Let us fix some witness Γi, where i ∈ [m], and let Xi denote the number of copies of Γi in G(n, p)
with the central copy of H2 coming from F2. If we first select this central copy, and then the
remaining vertices of Γi, we see there are at most |F2|nv(Γi)−v(H2) = γnv(Γi) possible witnesses of

this form, each appearing with probability pe(H1)e(H2). Thus E[Xi] ≤ γnv(Γi)pe(H1)e(H2).
We now differentiate between two cases.

Case I: v(Γi) ≤ v(H2) + e(H2)(v(H1)− 2)− 1. In this case we have

E[Xi] ≤ γnv(H2)+e(H2)(v(H1)−2)−1pe(H1)e(H2) = γnv(H2)−1
(
nv(H1)−2pe(H1)

)e(H2)
.

Since nv(H1)−2pe(H1) = Ce(H1)n−1/m2(H2), we have E[Xi] ≤ γCe(H1)e(H2)nv(H2)−e(H2)/m2(H2)−1. By

Markov’s inequality, P(Xi > γK ′nv(H2)−e(H2)/m2(H2)) = O(1/n), as desired.
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Case II: v(Γi) = v(H2) + e(H2)(v(H1) − 2). In this case the copies {We : e ∈ E(H2)} of H1 in Γi
are all vertex-disjoint except for where a pair intersect in precisely one vertex in the central copy
of H2.

The calculation above shows E[Xi] ≤ γCe(H1)e(H2)nv(H2)−e(H2)/m2(H2). We can again use Lemma A.1
to bound Var(Xi), applying the lemma with H := Γi and H the collection of all possible witnesses
of this type for forbidden copies of H2. As in the proof of Claim A.6, this gives

Var(Xi) ≤ ∆ + E[Xi] ≤
γ2v(Γi)v(Γi)!(n

v(Γi)pe(Γi))2

µ0(Γi)
+ γnv(Γi)pe(Γi)

= O

((
nv(Γi)pe(Γi)

)2
µ1(Γi)

)
= O

((
nv(H2)−e(H2)/m2(H2)

)2
µ1(Γi)

)
,

where µ1(Γi) is as defined in Theorem 2.7. The penultimate equality above then follows from the fact

that µ1(Γi) = min{µ0(Γi), n
v(Γi)pe(Γi)}. We shall shortly show that µ1(Γi) = Ω(n). Chebyshev’s

inequality then gives the desired bound:

P
(
Xi > K ′nv(H2)−e(H2)/m2(H2)

)
≤ P

(
Xi − E[Xi] > γCe(H1)e(H2)nv(H2)−e(H2)/m2(H2)

)
≤ Var(Xi)(

γCe(H1)e(H2)nv(H2)−e(H2)/m2(H2)
)2 = O

(
1

n

)
.

To finish, we establish a lower bound for µ1(Γi) = min{nv(F )pe(F ) : F ⊆ Γi, e(F ) ≥ 1}, and let
F0 be the subgraph of Γi that minimises this expression. Recall that for each edge h in the central
forbidden copy H ∈ F2 of H2, we have a copy Wh of H1 containing h. Let F0(h) be the subgraph
of H1 induced by F0 on Wh, and let wh := e(F0(h)) be the number of edges it contains. We then
have e(F0) =

∑
h∈H2

wh.
When we count the vertices of F0, we observe that the vertices from the central H2 will belong

to several of the F0(h). Thus, for each h ∈ E(H2), we let vh := v(F0(h)), and let rh ∈ {0, 1, 2}
denote the number of the vertices from h that are in F0. Let F ∗0 denote the subgraph of the
central H2 contained within F0; in particular, we have rh = 2 if and only if h ∈ E(F ∗0 ). Moreover,
v(F0) = v(F ∗0 ) +

∑
h∈E(H2)(vh − rh).

Thus we have

µ1(Γi) = nv(F0)pe(F0) = nv(F ∗0 )
∏

h∈E(H2)

nvh−rhpwh ≥ Ce(F0)nv(F ∗0 )
∏

h∈E(H2):
wh≥1

nvh−rh−wh/m2(H1,H2).

For each h in the final product, since F0(h) ⊆ H1, the definition of m2(H1, H2) implies wh ≤
(vh − 2 + 1/m2(H2))m2(H1, H2). Therefore

µ1(Γi) ≥ Ce(F0)nv(F ∗0 )
∏

h∈E(H2):
wh≥1

n2−rh−1/m2(H2) ≥ Ce(F0)nv(F ∗0 )+|{h∈E(H2):wh≥1,rh=0}|−e(F ∗0 )/m2(H2),

where the last inequality is due to the fact that, since m2(H2) ≥ 1, the exponent 2−rh−1/m2(H2)
is at least 1 if rh = 0, is non-negative when rh = 1, and is −1/m2(H2) when rh = 2 or, equivalently,
h ∈ E(F ∗0 ).

If e(F ∗0 ) ≥ 1 (and therefore v(F ∗0 ) ≥ 2), then by definition of m2(H2) we have e(F ∗0 ) ≤ (v(F ∗0 )−
2)m2(H2) + 1. Substituting this into the exponent, we find nv(F ∗0 )−e(F ∗0 )/m2(H2) ≥ n2−1/m2(H2) ≥ n,
and hence µ1(Γi) = Ω(n).

Therefore we may assume e(F ∗0 ) = 0, in which case µ1(Γi) = Ω(nv(F ∗0 )+|{h∈E(H2):wh≥1,rh=0}|).
This exponent is always at least 1, since either v(F ∗0 ) ≥ 1, or rh = 0 for all h ∈ E(H2) and,
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since e(F0) ≥ 1, we must have wh ≥ 1 for some h as well. Thus we indeed have µ1(Γi) = Ω(n),
completing the proof of this claim. �

A.3.4. Random graphs are globally Ramsey. Having proven part (i) of Theorem 2.10, we finally
deduce the global Ramsey properties of G(n, p) from the above proofs, thereby establishing the
remaining parts (ii) and (iii). Here we wish to show that, for appropriate probabilities, G(n, p) is
µ-globally (H1, H2)-Ramsey, for µ > 0 constant and µ = n−β respectively.

We begin with the assumption (a), that m2(H1) = m2(H2). For (ii), let µ > 0 be a fixed

constant, and set C2 := C1µ
−1/m2(H1,H2), where C1 is the constant from part (i). To show that

G(n, p) is µ-globally (H1, H2)-Ramsey when p ≥ C2n
−1/m2(H1,H2), it will suffice to apply the union

bound over all subsets U ⊆ [n] of n0 := µn vertices.

Indeed, for any such set U , we have G(n, p)[U ] ∼ G(n0, p), where p = C2n
−1/m2(H1,H2) =

C1n
−1/m2(H1,H2)
0 . By (A.2), the probability that G(n, p)[U ] is not (H1, H2)-Ramsey is at most

exp
(
−C1πn

2−1/m2(H1)
0 /8

)
+ o(1), where π = π(H1, H2,K2) from Proposition A.5.

However, the o(1) error term came from the event E0, where many forbidden copies ofHi appeared
in G(n0, p). Since we do not have forbidden copies in our current setting, we do not incur this error.
Thus, recalling that m2(H1) ≥ 1, and assuming, as we may freely do, C1 ≥ 8πµ−1, we see that the
probability that G(n, p)[U ] is not (H1, H2)-Ramsey is at most exp(−n). We may therefore take a
union bound over all such sets U , of which there are fewer than 2n, which shows that G(n, p) is
µ-globally (H1, H2)-Ramsey with high probability.

For part (iii), we instead set n0 := n1−β, and set C3 := C1. Letting U ⊆ [n] be a set of n0

vertices, we have G(n, p)[U ] ∼ G(n0, p), where p ≥ C1n
−1/m2(H1,H2)
0 . As above, the probability

that G(n, p)[U ] is not (H1, H2)-Ramsey is at most exp(−C1πn
2−1/m2(H1)
0 /8).

We can now take a union bound over all such sets U , of which there are
(
n
n0

)
≤ exp (n0 ln (ne/n0)) =

exp(n
1+o(1)
0 ). Hence the probability that there is a non-Ramsey subgraph induced on some U is at

most exp(n
1+o(1)
0 − C1πn

2−1/m2(H1)
0 /8). Since m2(H1) > 1, it follows that G(n, p) is n−β-globally

(H1, H2)-Ramsey with high probability.

The argument under the assumption (b), that H1 is strictly balanced with respect to m2(·, H2),
is very similar. We will again run a union bound over all sets U of size n0 := µn (for constant
µ > 0 and µ = n−β), using the fact that G(n, p)[U ] ∼ G(n0, p) and choosing the constants C2 and

C3 such that p ≥ C1n
−1/m2(H1,H2)
0 .

In (A.6) we bounded from above the probability of G(n, p) not being robustly (H1, H2)-Ramsey.
Since we do not have collections of forbidden copies of H1 and H2, we can again omit the error
term from the event E0 of there being too many viable forbidden copies of H2. We then have

P(G(n, p)[U ] is not (H1, H2)-Ramsey) ≤ P(E1) +
∑
T,L

P(E2(T ) ∧ E3(T, L)).

Recall that E1 is the event that we have more than n2−1/m2(H2)−δ non-isolated copies of H1. In
Claim A.7 we only obtained polynomially small bounds on its probability, and so we cannot afford
to take a union bound over this event holding for each induced subgraph G(n, p)[U ]. Instead, we

replace the event by E ′1, the event that G(n, p) has more than n
2−1/m2(H2)−δ
0 non-isolated copies

of H1. Since a non-isolated copy of H1 in G(n, p)[U ] must be non-isolated in G(n, p) as well, this
modified event would suffice for our purposes, and we can avoid the union bound for E1.

To see that E ′1 holds with vanishingly small probability, observe that in Claim A.7, the expected

number of pairs of intersecting copies of H1, which we bounded by O
(
n2−1/m2(H1,H2)−2δ

)
, was

polynomial in n and p. Hence when we increase p to either C2n
−1/m2(H1,H2) or C3n

−(1−β)/m2(H1,H2),
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provided β < β0(H1, H2), this expected number will grow to at most O
(
n2−1/m2(H1,H2)−5δ/3

)
.

Similarly, since n0 ≥ n1−β0 , we have n
2−1/m2(H2)−δ
0 = Ω

(
n2−1/m2(H2)−4δ/3

)
. Thus we can still

apply Markov’s inequality to deduce P(E ′1) = o(1).

This leaves us with the sum
∑

T,L P (E2(T ) ∧ E3(T, L)), which we saw in (A.8) can be bounded

by exp(−Ω
(
n2−1/m2(H2)

)
. As under the assumption (a), we can afford to take a union bound over

all
(
n
n0

)
choices for the set U , and still have the probability that there is some induced subgraph

G(n, p)[U ] where E2(T )∧E3(T, L) holds be o(1). Hence it follows thatG(n, p) is with high probability
µ-globally (H1, H2)-Ramsey in this case as well, completing the proof of Theorem 2.10. �
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