RAMSEY PROPERTIES OF RANDOMLY PERTURBED GRAPHS:
CLIQUES AND CYCLES

SHAGNIK DAS AND ANDREW TREGLOWN

ABSTRACT. Given graphs Hi, Hs, a graph G is (Hi, H2)-Ramsey if for every colouring of the
edges of G with red and blue, there is a red copy of H; or a blue copy of Hs. In this paper we
investigate Ramsey questions in the setting of randomly perturbed graphs: this is a random graph
model introduced by Bohman, Frieze and Martin [§] in which one starts with a dense graph and
then adds a given number of random edges to it. The study of Ramsey properties of randomly
perturbed graphs was initiated by Krivelevich, Sudakov and Tetali [30] in 2006; they determined
how many random edges must be added to a dense graph to ensure the resulting graph is with high
probability (K3, K:)-Ramsey (for ¢t > 3). They also raised the question of generalising this result to
pairs of graphs other than (K3, K¢). We make significant progress on this question, giving a precise
solution in the case when H; = K and Hes = K; where s,t > 5. Although we again show that
one requires polynomially fewer edges than in the purely random graph, our result shows that the
problem in this case is quite different to the (K3, K;)-Ramsey question. Moreover, we give bounds
for the corresponding (K4, K¢ )-Ramsey question; together with a construction of Powierski [37] this
resolves the (K4, K4)-Ramsey problem.

We also give a precise solution to the analogous question in the case when both Hi = Cs and
Hy; = Cy are cycles. Additionally we consider the corresponding multicolour problem. Our final
result gives another generalisation of the Krivelevich, Sudakov and Tetali [30] result. Specifically,
we determine how many random edges must be added to a dense graph to ensure the resulting
graph is with high probability (Cs, K)-Ramsey (for odd s > 5 and t > 4).

To prove our results we combine a mixture of approaches, employing the container method,
the regularity method as well as dependent random choice, and apply robust extensions of recent
asymmetric random Ramsey results.

MSC2000: 5C55, 5C80, 5D10.

1. INTRODUCTION

Let G and H be graphs and r € N. We say that G is (H,r)-Ramsey if every r-colouring of
G yields a monochromatic copy of H in G. More generally, for graphs Hi,..., H,, a graph G is
(Hy,...,H,)-Ramsey if for any r-colouring of G there is a copy of H; in colour 7 for some i € [r].
In the case r = 2, we shall take the first colour to be red and the second colour to be blue.
Ramsey’s classic theorem tells us that if n € N is sufficiently large then K, is (Hy, ..., H,)-Ramsey.
Whilst in general for given graphs Hi,..., H, it seems out of reach to determine the smallest
n =: R(Hy,...,H,) with this property, much effort has gone into establishing good upper and
lower bounds on R(Hj, ..., H,) (particularly in the case when the H; are cliques; see e.g. [12], [42]).

1.1. Ramsey properties of random graphs. There has also been significant interest in un-
derstanding Ramsey properties of the random graph G(n,p). Recall that G(n,p) has vertex set
[n] := {1,...,n} and each edge is present with probability p, independently of all other choices.
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Seminal work of Rodl and Ruciriski [38] [39, 40] determined the threshold for the (H,r)-Ramsey
property in G(n,p) for all fixed H and r > 2. Before we state their result (in a slightly restricted
form) we require two definitions. Given a graph H, set do(H) := 0 if e(H) = 0; do(H) := 1/2
when H is precisely an edge and define do(H) := (e(H) — 1)/(v(H) — 2) otherwise. Then de-
fine mo(H) = maxgcpy da(H') to be the 2-density of H. We say that H is strictly 2-balanced
if mo(H') < mgo(H) for all H' C H. Rédl and Ruciniski showed that the 2-density of H is the
parameter that governs the threshold for the (H,r)-Ramsey property in G(n,p).

Theorem 1.1 ([38, 39, 40]). Let r > 2 be a positive integer and let H be a graph that is not a
forest consisting of stars and paths of length 3. There are positive constants c,C such that

{O if p < en~Y/m2(H),

lim P[G(n,p) is (H,r)-Ramsey| = 1 ifp > Cn-Vma(H)

n—oo

We remark that a short proof of Theorem was recently given in [35]. There has also been
attention on the more general problem of determining the threshold of the (Hy,..., H,)-Ramsey
property in G(n,p). In particular, the focal question in the area is the following conjecture of
Kohayakawa and Kreuter [25]. To state it, we need to introduce the asymmetric density of Hy, Hy
where mgo(H1) > mo(Hs) via

e(H])
v(HY) — 2+ 1/mo(H>)
We say that Hj is strictly balanced with respect to mo(-, H2) if no H{ C H; with at least one edge

maximises (|1.1)).

Conjecture 1.2 ([25]). For any graphs Hy, ..., H, with mo(Hy) > ... > mo(H,) > 1, there are
positive constants c,C > 0 such that

(1.1) ma(Hy, Hy) = max{ : H C Hy and e(H}) > 1} .

0 ifp< cnfl/mQ(Hl’HQ);
1 if p> COn~t/ma(HHz)

n—o0

lim P[G(n,p) is (Hi,..., H,)-Ramsey] = {

Note that this conjectured threshold only depends on the ‘joint density’ of the densest two
graphs Hp, Hy. Further, notice ma(Hi) > mao(Hi, Hy) > mo(Hs) with equality if and only if
ma(Hy) = ma(Hz). Thus Conjecture would generalise Theorem The initial work on
Conjecture focused on the cases of cycles and cliques. (We take a similar approach in this paper
when considering the analogous question in the perturbed setting.) In particular, Kohayakawa
and Kreuter [25] confirmed Conjecture when the H; are cycles. When each H; is a clique, the
O-statement was resolved by Marciniszyn, Skokan, Spohel and Steger [32], who also observed that
the approach used by Kohayakawa and Kreuter [25] implies the 1-statement of Conjecture holds
when Hj is strictly 2-balanced provided the so-called KLR conjecture holds. This latter conjecture
was proven by Balogh, Morris and Samotij [3], thereby proving the 1-statement of Conjecture
holds for strictly 2-balanced graphs H;. Hancock, Staden and Treglown [22] then proved a general
result which implies (a resilient version of) the 1-statement in the case when mo(H;) = mo(Ha).
Very recently, Mousset, Nenadov and Samotij [34] have shown the 1-statement is true without any
assumptions regarding the balancedness of Hj.

1.2. Ramsey properties of randomly perturbed graphs. Note that the results discussed

above give us precise information about the Ramsey properties of typical graphs of a given density.

Indeed, Theorem implies that a typical graph of density p = w(n~/"2(H)) is (H,r)-Ramsey

whilst a typical graph of density p = o(n~'/"2(H)) is not (H,r)-Ramsey. In this paper we study

the question of how far away a dense graph is from satisfying a given Ramsey property. The

model of randomly perturbed graphs, introduced by Bohman, Frieze and Martin [§], provides a
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framework for studying such questions. In their model one starts with a dense graph and then adds
a fixed number of random edges to it. A natural problem in this setting is to determine how many
random edges are required to ensure that the resulting graph w.h.p. satisfies a given property.
For example Bohman, Frieze and Martin [8] proved that, given any n-vertex graph G of linear
minimum degree, if one adds a linear number of random edges to G then, w.h.p., the resulting
graph is Hamiltonian. In recent years, a whole host of results have been obtained concerning
embedding spanning subgraphs into a randomly perturbed graph, as well as other properties of the
model; see e.g. [4, 16} [7, @, 10} 15l 24, 29] [30, 36]. The model has also been investigated in the setting
of directed graphs and hypergraphs (see e.g. [5 21l 28| [33]). Further, very recently an analogous
model of randomly perturbed sets of integers has been studied [IJ.

The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich,
Sudakov and Tetali [30] in 2006. They considered the question of how many random edges one
needs to add to any dense graph to ensure with high probability the resulting graph is (Hy, Hs)-
Ramsey. Specifically, they resolved this question in the case when H; = K; and Ho = K3 for
any ¢t > 3. In this paper we give several generalisations of their result. Further, we look at the
following more refined question: given any fixed 0 < d < 1, how many random edges does one need
to add to any graph G of density at least d to ensure with high probability the resulting graph is
(Hy, Hs)-Ramsey? In order to present our results we define a threshold function below.

Definition 1.3 (Perturbed Ramsey threshold probability). Given a density 0 < d < 1, a number
of colours r € N and a sequence of graphs (Hy,Has,...,H,), the perturbed Ramsey threshold
probability p(n; Hi, Ha, ..., H,,d) satisfies the following.

(i) If p=p(n) = w(p(n; Hy, He, ..., H.,d)), then for any sequence (Gp)nen of n-vertex graphs
with density at least d, the graph G, U G(n,p) is (H1, Ha, ..., H,)-Ramsey with high prob-
ability.

(ii)) If p = p(n) = o(p(n; Hy, Ha, ..., H,,d)), for some sequence (Gp)nen of n-vertex graphs
with density at least d, the graph G, UG(n,p) is with high probability not (Hy, Ha, ..., H,)-
Ramsey.

If it is the case that every sufficiently large graph of density at least d is (Hy, Ha, ..., H,)-Ramsey
then we define p(n; Hy, Ha, ..., Hy,d) := 0. In the symmetric case, where H; = Hy = ... = H, =
H, we denote the threshold by p(n;r, H,d).

We begin by observing some simple lower and upper bounds on the perturbed Ramsey threshold
probability, which will serve as points of reference for our results.

Observation 1.4. The following bounds on p(n; Hy, Ha,d) hold:

(i) If d < 1 —1/k and Hs is not k-partite, then we may take G to be a complete balanced
k-partite graph and colour all its edges blue. As long as G(n,p) is Hi-free, we may colour
all its uncoloured edges red, and so p(n; Hy, Hy,d) is at least the threshold probability for
the appearance of Hy in G(n,p).

(ii) If G(n,p) alone is already (Hy, Ha)-Ramsey, then G U G(n,p) will be as well. Since the
1-statement of Conjecture[1.9 is known to hold, it follows that for any d and graphs Hy and
Hs with ma(Hy) > mo(Hz) > 1, we have p(n; Hy, Hy,d) < p—1/m2(Hi,Hz)

(iii) Suppose there is a (k + 1)-chromatic graph H that is (H1, Ha)-Ramsey. If d > 1—1/k, the
Erdés—Stone-Simonovits Theorem [17] implies any sufficiently large graph of density d will
contain H, and thus will already be (Hy, Hy)-Ramsey before the addition of any random
edges. Hence p(n; Hy,Hy,d) =0 ford >1—1/k.

In particular, parts (i) and (ii) imply n=2/C=Y < p(n; Ky, K, d) < n=2tst1=28)/t(t=1)(+1) fop
integers t > s > 3 and density d < ‘;i—%
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The aforementioned result of Krivelevich, Sudakov and Tetali [30] shows that the lower bound
given by Observation [1.4{i) is in fact tight for the (K, K3)-Ramsey problem.

Theorem 1.5 ([30]). For 0 < d <1/2 and t > 3, we have p(n; K;, K3,d) = n~2/(t=1),

1.3. Our results. Krivelevich, Sudakov and Tetali [30] raised the question of extending Theo-
rem to other pairs of graphs (H1, Hz). In this paper, we make the first progress on this question
since it was raised in 2006, focusing on the cases where the H; are cliques or cycles. In our first
result we resolve their question in the case of cliques of size at least 5.

Theorem 1.6. For 0 <d<1/2 andt > s > 5, we have p(n; Ky, Ks,d) = n~Y/ma(Ke Ksyzm) |

Recall that in the random graph setting one needs @(n2_1/ m2(Kt’KS)) random edges to ensure
G(n,p) is with high probability (K, Ks)-Ramsey. On the other hand, Theorem 1.6 shows that
adding just w(n2*1/ m2(K"KFS/27)) random edges is already enough to make any dense n-vertex
graph (K3, K)-Ramsey. (In fact, in the proof we see that we only require @(nzfl/mQ(Kt’Kfs/ﬂ))
random edges.)

To see that this is best possible, consider the complete balanced bipartite graph G on n vertices.
Indeed, if G(n, p) is such that there is a 2-colouring without a red K; or blue K,/2, then by further
colouring all the edges in G blue, one obtains a 2-colouring of G U G(n,p) without a red K; or blue
K.

As one might expect, if one starts with an even denser graph G, one needs less randomness
to be (K¢, Ks)-Ramsey, and we prove a stronger version of Theorem that also gives exact (or
log-asymptotically exact) results for larger densities d.

Theorem 1.7. Given an integer k > 2, let d be such that 1 —1/(k —1) <d <1—1/k, and let s
and t be fixed integers with 2k +1 < s <t. If
(i) k=2 (that is, 0 <d < 1/2), or
(ii)) s =1 (mod k),
then p(n; Ky, Ks,d) = n~Vm2(KoKrsw1) - Otherwise, if
(iii) k>3 and s #1 (mod k),
we have p(n; Ky, K, d) = n~(70MW)/m2(KeKram),

Comparing this result to the bounds in Observation[I.4] we note that in these cases, the thresholds
lie strictly between the lower and upper bound, unlike when s = 3. Moreover, perhaps surprisingly,
we see that if s < s’ <t and [s/k] = [s'/k], the perturbed Ramsey threshold probabilities for the
pairs (Ky, Ks) and (Ky, Kg) are essentially the same.

In light of Theorems [1.5] and in the setting of cliques, the Krivelevich-Sudakov—Tetali ques-
tion now remains open only in the (K, Ky) case. As we will see in the next proposition though,
this problem exhibits a different behaviour to the other cases.

Proposition 1.8. For k > 2, let 1 —1/(k—1) <d <1-1/k. If k+2 < s < 2k and t > s,
we have n~2t/tE=1+[t/a]) < p(n; Ky, K, d) < n=2/t where a is the smallest integer for which
R(Ka-&-l,stk) > k.

It is worth noting that the formula in Theorem had it also been valid for k 4+ 2 < s < 2k,
would have implied the lower bound of n=%/ (=1 from Observationis (essentially) correct. While
Theorem [1.5] shows this to be the case for s = 3, the lower bound in Proposition [1.§] is higher,
highlighting that the threshold probability truly does behave differently when k + 2 < s < 2k.

The upper bound in Proposition also represents an improvement over the upper bound from
Observation [1.4] .



Remark. After making our manuscript available online, we learnt of the simultaneous and inde-
pendent work of Powierski [37]. He proves Theorem in the case s =t > 5 odd, and improves the
lower bound of Proposition [I.8 when k = 2 and s = t = 4. In particular, combined with our upper
bound from Propositionthis shows p(n; Ky, Ky,d) = n~ /2 for 0 < d < 1/2. Thus, the question
from [30] is now resolved for the (K, K;)-Ramsey problem for all ¢ > 3. We suspect though that
resolving the (K3, K4)-Ramsey problem for all ¢ > 5 will be a significant challenge.

We next turn our attention to cycles, completely determining the perturbed Ramsey thresholds
for all pairs of cycles and all densities.

Theorem 1.9. Let k., ¢ > 3 be integers such that either k is odd and £ is even, or they have the
same parity and k < ¢, and let d € (0,1). There exist dy = dyi(k,l),ds = da(k,?) € [0,1] such that

n~l if0<d<d,
p(n; C, Cpyd) =< n~2 ifd; < d<do,
0 ifds<d.

Moreover, the values of d1 and do are as given below.

k even k odd

{ even | ¥ even £ =38 ¢>5 odd
di(k,0)| 0 12 1/2 1/2
do(k, 0) 0 1/2 4/5 3/4

Theorem shows there are at most three phases: an initial phase, where a linear number of
random edges is needed to make a dense graph (Cj, Cy)-Ramsey, an intermediate phase, where it
suffices to add a large constant number of edges, and a supercritical phase, where the underlying
graph is dense enough to already be (Cy,Cy)-Ramsey. The parities and, in some cases, lengths
of the two cycles in question determine at which densities (if at all) the transitions between these
phases occur. In all cases though, our result demonstrates that one needs significantly fewer random
edges for the perturbed (C, Cy)-Ramsey question compared to the analogous result in the random
graph setting [25].

We have thus far focused on the perturbed Ramsey thresholds for pairs of graphs, and our next
observation explains why this is the case of greatest interest. Indeed, for the graph pairs we have
studied, our results show that, when adding random edges to a graph of positive density, one needs
significantly less randomness to make the graph (Hj, H2)-Ramsey than in G(n,p). However, this
is not the case when there are three or more colours; since the probability threshold for G(n,p)
to be (H,r)-Ramsey does not depend on r, one needs a much denser base graph before requiring
less randomness in the perturbed model. For simplicity we consider only the symmetric case, but
similar remarks can be made in a more general setting.

Observation 1.10. For a graph H and r > 3, set k := min{x(F') : F' is (H,r —2)-Ramsey}. Then
ford <1—1/(k—1), we have p(n;r, H,d) = n~1/m2(H),

Indeed, if p > Cn~Y/™2H) for some constant C', Theorem shows that G(n,p) itself will be
(H,r)-Ramsey, and hence this is an upper bound on the perturbed Ramsey threshold.

For the lower bound, take G to be a complete balanced (k — 1)-partite graph. By definition of
k, we can (r — 2)-colour the edges of G without creating a monochromatic copy of H. We use
the remaining two colours on the edges of G(n,p). By Theorem if p < en~Ym2H) for some
constant ¢, then with high probability G(n,p) is not (H,2)-Ramsey. This thus gives an r-colouring
of GU G (n,p) without a monochromatic copy of H.

Despite this, in our next result we consider the symmetric multicoloured perturbed Ramsey
thresholds for long cycles. As predicted by Observation there is a large subcritical regime,
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where the perturbed thresholds are the same as those from G(n,p). However, once the underlying
graph is very dense, we observe some similarities to Theorem [1.9] There remains one range of
densities where we have been unable to determine the perturbed threshold.

Theorem 1.11. For a number of colours r > 3 and odd cycle length ¢ > 2" + 1, we have

— n—l-‘rl/(f—l) 0<d<1- 2—7’-&-2’

c n—lyn—l—i-l/(l—l) 192 < 1— 2—7"—0—17
p(n; Ty Cfvd) [ —2 ] 41 _ —r

—n 1—2+lcd<1—27T,

=0 1-27"<d<1

Finally, we combine these different settings, determining the perturbed Ramsey thresholds for
odd cycles versus cliques. Our last result provides a different extension of Theorem [I.5] showing
that the same perturbed Ramsey threshold remains valid if K3 is replaced with any odd cycle.

Theorem 1.12. For any clique size t > 4, odd cycle length £ > 5, and density 0 < d < 1/2, we
have p(n; K;, Cy,d) = n=2/(t=1)

We note that the missing cases are covered by previous results; when £ = 3, the threshold is
given by Theorem [L.5| while the case t = 3 is covered by Theorem Theorem [1.12]is perhaps of
additional interest as it is the only example of the perturbed Ramsey question where we know the
threshold precisely, but the analogous question in the setting of random graphs remains open.

1.4. Notation and organisation of the paper. Let G be a graph. We define V(G) to be the
vertex set of G and E(G) to be the edge set of G. Define v(G) := |V(G)| and e(G) := |E(G)|. For
each x € V(G), we define the neighbourhood of x in G to be Ng(x) := {y € V(G) : xzy € E(G)} and
define dg(x) := |Ng(x)|. We define A(G) to be the mazimum degree of G; that is, the maximum
value of dg(z) over all x € V(G). Given X C V(G) we write Ng(X) := NyexNg(z) for the
common neighbourhood of X in G.

Let X C V(G). Then G[X] is the graph induced by X on G and has vertex set X and edge set
Eq(X) :={zxy € E(G) : z,y € X}. Similarly, if A, B C V(G) are disjoint, we write G[A, B] for the
bipartite graph with vertex classes A and B and edge set Eg(A, B) := {zy € E(G) : z € A,y € B},
and define eg(A, B) := |Eg(A, B)|. We will often drop the subscript G from our notation if the
graph under consideration is clear from context.

Given two graphs G, H on the same vertex set V we write G U H for the graph with vertex
set V' and edge set E(G) U E(H). We shall assume the vertex set of an n-vertex graph to be
[n] :=={1,2,...,n}, unless otherwise specified.

Given a set A and k € N we denote by AF the set of all ordered k-tupes (ay, ..., a;) of elements
from A, while (ﬁ) denotes the set of all (unordered) k-element subsets {a1,...,a;} of A.

Suppose Hi,...,Hs and Hy,..., H| are graphs. We write R({Hy,...,Hs},{H},..., H[}) for the
smallest n € N such that whenever K, is 2-coloured, there is a red copy of some H; (with 1 <i < s)
or there is a blue copy of some HJ’ (with 1 <j <1).

We write 0 < ¢ € b < ¢ < 1 to mean that we can choose the constants a, b, c from right to
left, with each constant sufficiently small with respect to those preceding it. More precisely, there
exist non-decreasing functions f : (0,1] — (0,1] and g : (0,1] — (0, 1] such that for all b < f(c)
and a < g(b) our calculations and arguments in our proofs are correct. Thus a < b implies that we
may assume e.g. a < b or a < b2, as needed. Hierarchies of different lengths are defined similarly.

We will also use the standard asymptotic notation. Given two positive functions o, 5 : N — R,
we write a = o(f) and = w(a) if lim, o a/B = 0. We emphasise that while in certain texts,
a =o(f) and o < f are used interchangeably, that is not the case here.

The paper is organised as follows. In the next section we introduce useful tools concerning
structures in dense, random, and randomly perturbed graphs. Then in Section [3] we give the proofs
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of all of our main results. Some concluding remarks are given in Section Finally, we include
proofs of the less standard results from Section [2] in Appendix [A]

2. USEFUL TOOLS

In this section we collect several of the tools we shall use in proving our results. We shall need
some results for finding useful structures in the dense underlying graph G and others to analyse
the random edges from G(n,p).

2.1. Structures in dense graphs. When working with the dense graph, our main tool will be
the famous Szemerédi Regularity Lemma [43]. We recall some of the key definitions and facts here,
omitting many details that can be found in the survey of Komlés and Simonovits [26]. We start
with that of an e-regular pair, which is a pair of vertex sets that is very regular in terms of edge
densities between linear-sized subsets, as is characteristic of bipartite random graphs.

Definition 2.1. Given ¢ > 0, a graph G and two disjoint vertex sets A, B C V(G), the pair
(A, B) is e-reqular if for every X C A and Y C B with |X| > ¢|A| and |Y| > ¢|B|, we have
|[d(X,Y) —d(A, B)| < e, where d(S,T) :=e(S,T)/(|S||T|) for any vertex sets S and T.

This strong regularity condition implies many desirable properties, some of which are collected
in the following lemma. The first states that almost all /-sets of vertices from the same side of an
e-regular pair will have a large common neighbourhood, while the second states that e-regularity
is essentially inherited by subsets. We omit the proofs of these standard facts.

Lemma 2.2. Let (A, B) be an e-regular pair in a graph G with d(A, B) = d.
() If ¢ > 1 and (d —¢)'~! > ¢, then

{1220 € A |0uN (@) 0 Bl < (d— o) |BI}| < 214

(ii) If a« > ¢, and A’ C A and B' C B satisfy |A'| > a|A| and |B'| > «|B|, then (A', B’) is an
' -reqular pair of density d’, where ¢ := max{e/a,2e} and |d' —d| < e.

We can now state the Regularity Lemma itself. We present the multicoloured version, as given
in [26].

Theorem 2.3. For any e > 0 and r,t € N, there are T = T(e,r,t) and ng = no(e,r,t) such that
if n > ng and the edges of an n-vertex graph G are r-coloured, with Gy representing the £th colour
class, the vertex set V(G) can be partitioned into sets Vo, Vi,..., Vi for somet < k <T, such that
Vo| < en, [Vi| = |Va| = ... = |Vi|, and all but at most ek? pairs (V;,V;), 1 < i < j < k, are
e-reqular pairs in each of the subgraphs Gy simultaneously.

Informally speaking, the lemma says that, apart from a small exceptional set, the vertices of G
can be partitioned into a large but bounded number of parts, such that between almost all pairs
of parts the edges of each colour seem randomly distributed. We shall often apply this in the
form of the following corollary, which follows by combining the Regularity Lemma with Turdn’s
Theorem [44] (see [26] for details).

Corollary 2.4. For every r > 1 and £,6 > 0 with 6 > 3¢ there is some n = n(e,0,7) > 0 and
no = no(e, d,r) € N such that the following holds for all n > ng and k > 2. If G is an r-coloured
n-vertex graph of density at least 1 — 1/(k — 1) + §, then there are pairwise disjoint vertex sets
Vi,Va, ..., Vi C V(G) such that |Vi| = ... = |Vi| > nn, and, for each 1 < i < j < k, there is
some colour ¢; j € [r] for which the edges between V; and V; of colour ¢; j form an e-reqular pair of
density at least 0/(2r).
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We will use the structure from Corollary [2.4] to build monochromatic cliques. We will be able to
do so because, as given by Lemma almost all £-tuples of vertices in V; will have large common
neighbourhoods in each of the other parts V;. However, in some of our applications we will require all
£-tuples to have large common neighbourhoods. For that we make use of another powerful tool from
extremal combinatorics, dependent random choice. The following lemma, proven in Appendix [A]
is a multipartite version of the basic lemma from the survey of Fox and Sudakov [I§].

Lemma 2.5. Given s € N and 6 > 0, suppose 0 < ¢ < min{1/(2s),6/2}. Let Vi, Va,..., Vs be
disjoint sets of vertices from a graph G, each of size m, such that for all i € [s—1], the pair (V;, V)
is e-reqular of density at least §. For every 5 >0 and ¢ € N there is some v = (s, 9, 5,£) > 0 such
that, if m is sufficiently large, there is a subset Us C Vi of size at least m' =P such that every set of
¢ vertices from Uy has at least ym common neighbours in each of the sets V;, i € [s — 1].

When we are instead seeking slightly sparser structures within our e-regular k-tuples, we shall
use the following well-known result, a special case of the so-called Key Lemma (see [26]).

Lemma 2.6. Let H be a fixed graph, r > 2, 0 < e < d, and let m € N be sufficiently large. Suppose
R is a graph on [r] and suppose that G is a graph with vertex classes Vi,...,V, so that
(i) |Vi| =m for alli € [r], and
(ii) (V3,Vj) forms an e-regular pair of density at least d in G for all 1 < i < j < r with
{i,7} € E(R).
If there is a homomorphism from H to R then G contains a copy of H.

2.2. Properties of random graphs. The previous lemma guaranteed the existence of fixed sub-
graphs within deterministic graphs. When we are instead dealing with the random graph G(n, p),
we shall apply the following result, a standard application of the Janson inequality |23, Theorem
2.14], whose proof is given in Appendix

Theorem 2.7. Let H be a graph with v > 2 vertices and e > 1 edges. Let [n] be the vertex set of
G(n,p), and, for some & > 0, let H be a collection of {n” possible copies of H supported on [n].
The probability that G(n,p) does not contain any copy of H from H is at most exp(—&uq/(2VH0!)),
where iy = p1(H) := min{n*EpeF) . F C H, e(F) > 1}.

However, for our purposes, the most important properties of random graphs will be their Ramsey
properties. As stated in the introduction, Conjecture of Kohayakawa and Kreuter [25] suggests
what the threshold for the random graph G(n, p) being (Hq, ..., H,)-Ramsey should be. While the
1-statement is now known to hold in general [34], the corresponding 0-statement is only known for
cycles [25] and cliques [32].

Theorem 2.8 (|25, 32]). Let r > 2, and let Hy, Ho,...,H, be graphs such that either every H;
is a complete graph or every H; is a cycle, and mao(Hy) > ma(H2) > ... > ma(H,). There is
some constant ¢ > 0 such that if p < en~Ym2(HuH) - ypen with high probability G(n,p) is not
(Hy, Ho, ..., H;)-Ramsey.

In our applications, we require slightly stronger variants of the 1-statement, and we define the
properties we shall need below.

Definition 2.9 (Robust and global Ramsey properties). Let H; and Hy be two fized graphs, and
let G be an n-vertex graph on the vertex set [n].

Given, for i € (2|, families F; C (v([z}z)) of forbidden subsets of v(H;) vertices, we say G is
robustly (Hy, Hs)-Ramsey with respect to (Fi, F2) if every 2-colouring of G contains a red copy of
Hy or a blue copy of Ha, such that the vertex set of the monochromatic subgraph is not forbidden.
Given > 0, we say that G is p-globally (Hy, Hy)-Ramsey if, for every 2-colouring of G and for
every subset U C [n] of at least un vertices, G[U] contains a red copy of Hi or a blue copy of Ha.
8



It turns out for a wide collection of pairs of graphs Hy, Hs, above the threshold from Conjec-
ture G(n,p) is not only (Hp, Hz)-Ramsey, but robustly and globally so. While [25] does not
give explicit bounds on the error terms, making it a little harder to verify that this strengthening
is possible, the more recent containers-based proofs given by Gugelmann, Nenadov, Person, Skori¢,
Steger and Thomas [20] and Hancock, Staden and Treglown [22] allow for the necessary extensions.
In Appendix we prove Theorem implementing the modifications that must be made to
the existing proofs.

Theorem 2.10 ([20, 22]). Let Hy and Hs be graphs such that mo(Hy) > mo(Hs) > 1, and

(a) ma(Hy) = mo(Hs), or

(b) Hj is strictly balanced with respect to ma(-, Ha).

The random graph G(n,p) then has the following Ramsey properties:

(i) There are constantsy = y(Hy, Ha) > 0 and C; = C1(Hy, Ha) such that if p > Cyn~1/ma(H,Hz)
and, fori € [2], F; C (v([z]l)) is a collection of at most yn”H4) forbidden subsets, then G(n, p)
is with high probability robustly (Hy, Ha)-Ramsey with respect to (Fi,Fa).

(ii) For every p > 0 there is a constant Co = Co(Hy, Ha, p) such that if p > Con~t/ma(H1,Ha)
then G(n,p) is with high probability p-globally (Hi, Hy)-Ramsey.

(iii) If we further have mo(Hsy) > 1, then there are constants Sy = [o(H1, Hz) > 0 and Cs =
C3(Hy, Hy) such that if 0 < 8 < By and p > Can~U=B)/m2(HLH2) - then with high probability
G(n,p) is n~P-globally (Hy, H)-Ramsey.

Before we proceed, it is worth comparing the exponents in these different thresholds for pairs

of cliques. For t > 4, we have ma(K;—1, K;—1) = & < 820 — g (Ky, K3) < ma(Ky, Ka) < ... <
mao(Ky, Ky) = % In particular, when G(n, p) is (K}, K3)-Ramsey, it will also be (K}, K;)-Ramsey

for k, 0 < t.

2.3. Properties of randomly perturbed graphs. While some of the previous results allowed us
to find subgraphs within dense or random graphs, we will sometimes need the existence of certain
graphs in the randomly perturbed model. Krivelevich, Sudakov and Tetali [30] showed that the
threshold probabilities for this problem depend on the sparsest partitions of the desired graph, and
the final result we shall make use of is their 1-statement.

Theorem 2.11 ([30]). Given a graph F, define p(F) := max{e(F')/v(F') : F' C F,v(F’) > 1},
and, for k> 2, set
F):= i rvi),
pr(F)i= | min  maxp(F[V])
where the minimum is taken over all partitions into at most k parts. If d > 1 —1/(k—1), p =
w (nfl/p’“(F)), and G is an n-vertex graph of density d, then F C G UG(n,p) with high probability.

3. PROOFS

With these tools at our disposal, we are now ready to prove our main results, establishing
perturbed Ramsey thresholds for various pairs of graphs.

3.1. Proof of Theorem Our first result establishes perturbed Ramsey thresholds for pairs
of cliques that are not too small. Specifically, let k£ > 2 be such that 1 —1/(k—1) <d <1-1/k,
and suppose 2k + 1 < s < t. For convenience, we set ¢ := [s/k], and note that ¢ > 3. We shall
show p(n; K;, Kg,d) = n~1/m2(EeKe) if | = 2 or s = 1 (mod k), and otherwise obtain this same
threshold log-asymptotically. In all cases, the lower bound follows from the same argument, which
we now present.
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Proof of T heorem (lower bound). Let G be the k-partite n-vertex Turdn graph with vertex
classes V1, Va, ..., Vi, which has density at least 1 —1/k, and let p < en~Y/m2(KeKe) where the con-
stant c is as in Theorem We need to show that, with high probability, the edges of GUG(n,p)
can be 2-coloured without creating a red K; or a blue K;. We colour the edges of G blue, leaving
only the edges of G(n,p)[Vi], i € [k], uncoloured. By Theorem with high probability G(n,p)
can be 2-coloured without creating a red K; or a blue K. This then gives the desired colouring —
the connected components of the red subgraph lie within the red subgraphs of G(n, p)[V;], which are
K;-free, while, since the largest blue clique in each G(n, p)[Vi] has at most ¢ — 1 vertices, the largest
blue clique in G U G(n, p) has size at most k(¢ —1) < s. Hence p(n; Ky, Ky, d) > n~Y/m2(KoKe) ]

We divide the proof of the upper bound into three parts, treating each case in turn.

3.1.1. Proof of Theorem (upper bound), Case (i). We start with the case k = 2. Let G be a
graph of density 4d > 0. By applying Corollary with 7 = 1, we can find an e-regular pair (U, W)
of density at least 2d, where € = ¢(d) > 0 is sufficiently small and |U| = |[W| = m := nn for some
n=mn(d) > 0.

Set € := d’/(20), let pu := £d/2, and recall that ma(Ky, K¢) > mo(K; 1, K;1). Thus, if C >
max{Ca (K, Ky, pn), Co(K—1, Ki—1, un)}, it follows from Theorem that if p > Cn~1/m2(KeKe)
then with high probability,

(a) G(n,p) is both un-globally (K}, K;)-Ramsey and pun-globally (K;_1, K;_1)-Ramsey.

Furthermore, set F; = (), and let Fy C (g) be those f-sets with fewer than d‘m common
neighbours in W. By Lemma (i), it follows that | F2| < fem’. Since £ was chosen to be sufficiently
small, we can ensure le < (K¢, Ky), where v is as in Theorem Since G(n,p)[U] ~ G(m,p),
provided C' > C} (K, Kg)n_l/"”(K"Kf) as well, with high probability we also have, by Theorem [2.10

(b) G(n,p)[U] is robustly (K, K;)-Ramsey with respect to (Fi, F2).

We may therefore assume G(n,p) has Properties (a) and (b), and shall show that this implies
G UG(n,p) is (K, Ks)-Ramsey. Suppose for a contradiction that G U G(n,p) has a 2-colouring
with neither a red K; nor a blue K. We first need the following claim.

Claim 3.1. We may assume that no vertex in U has more than Eém red edges to W.

Proof. First suppose s <t — 1. If we have a vertex u € U with at least {m red neighbours in W,
let Y C W be the set of those red neighbours. By Property (a), we find a red K;_; in G(n,p)[Y],
in which case we can add u to obtain the desired red Ky, or we find a blue K;_;, which contains
the desired blue s-clique.

Next suppose s = t. By symmetry, we may assume that at least half the edges of G between U
and W are blue. In particular, since the density of (U, W) is at least 2d, this means we can find a
vertex v € W and a set A C U of dm blue neighbours of v. Now suppose further that there is a
vertex u € U with a set B C W of {m red neighbours of w.

By e-regularity, there are at least d|A||B| edges between A and B. If at least half of these are
red, then we can find a vertex b € B with a set A’ C A of at least d|A| /2 red neighbours of b.
Since |A’| > um, by Property (a), G(n,p)[A’] has a red K;_1, which together with b gives a red K,
or a blue K;_1, which together with v gives a blue Kj.

Hence at least half the edges between A and B are blue, which gives a vertex a € A with a set
B’ C B of at least d|B] /2 blue neighbours of a. Again, |B’| > um, and so by Property (a) we find
in G(n,p)[B'] ared K;_1, which extends via u to a red Ky, or a blue K;_1, to which we can add a
to obtain a blue K. O

With the claim established, we complete our proof. By Property (b), G(n,p)[U] contains a red
K, in which case we are done, or a blue /-clique whose vertex set S does not lie in F». In particular,
this implies that S has at least d“m common neighbours in W.
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We discard those common neighbours with a least one red edge to S; by Claim [3.1] we are left
with a set Y of at least (d‘m — £&ém) = d'm/2 common blue neighbours of S. By Property (a),
G(n,p)[Y] has a red K, in which case we are done, or a blue K, which together with S gives the
desired blue s-clique.

Thus, when k = 2, we have p(n; Ky, Ks,d) < n~1/m2(Ke.Ke) matching our lower bound. O

3.1.2. Proof of Theorem (upper bound), Case (ii). We next consider the case k > 3, where we
provide the exact result if s = 1 (mod k). Specifically, we wish to show that if G is a graph of
density d =1—1/(k — 1)+, where § > 0, then if p > Cn~'/"2(Kt.K0) for some appropriately large
constant C, with high probability G U G(n,p) will be (K, K;)-Ramsey.

Our strategy bears some resemblance to the previous proof. In Case (i), we built a blue K in
two stages, finding half in each part of an e-regular pair. When k£ > 3 and s = k(¢ — 1) + 1, we
instead take k steps to build the blue clique within an e-regular k-tuple, finding a blue Ky_1 in
each of the first k£ — 1 parts and a blue K, in the last part.

When we find a set of £ — 1 vertices from a part to add to the growing blue clique, we will need
to ensure that they have a sufficiently large neighbourhood in each of the remaining parts, so that
the process may continue. We will do this through repeated use of Lemma However, this
leaves us with a sublinear set in which we will have to find a blue clique, and so we will need strong
global Ramsey properties.

To that end, recall that if a pair (g, r) with ¢ > r precedes (t, ¢) lexicographically (that is, either
g <t,orqg=tandr </), then my(Ky, K,) < ma(Ky, K¢). We can therefore fix some 3 > 0 such
that, for all such pairs (g,7), we have ma(Kg, K;) < (1 — B)ma(K, K¢) and < fo(Ky, K;), where
Bp is as in Theorem [2.10

We now define a sequence of constants that we shall use in the sequel. To start, let §p := ¢, and set
01 :=dp/4. For i € [k—2], set §;1+1 := 9;/2. For some soon-to-be-determined e1, let n := n(d1, 1, 2),
where 7 is as in Corollary [2.4] and set my :=nn. Fori € [k —1], let v; :=~v(k—i+1,8;,3/2,t — 1),
where v is as in Lemma and set m;11 := [y;m;]. Note that the m; are linear in n, and set
W= myg/n.

Further, for i € [k — 2], set g;41 := max{2¢;,&;/v;}. Noting that the §; and v; are independent
of £1, while the ¢; are linear in €1, choose ¢ sufficiently small so that ¢; < §;/2 for all i € [k — 1].
We shall further assume that n is large enough for all following calculations and applications of the
lemmas to be valid.

With these technicalities out of the way, we can proceed with our proof. We shall show that
G UG(n,p) is (K, Ks)-Ramsey, provided G(n,p) satisfies the following properties.

(a) G(n,p) is n P-globally (K; 1, K,_1)-Ramsey,

(b) G(n,p) is n~P-globally (K;, K;_1)-Ramsey,

(¢) G(n,p) is p-globally (K;, K;)-Ramsey, and

(d) if s < t, then G(n,p) is n~P-globally (K[ k), Ks)-Ramsey.

Theorem ensures Properties (a), (c), (d) and, if £ > 4, (b) hold with high probability
whenever p > Cn~1/m2(KuK) for a large enough constant C. When ¢ = 3, being n~?-globally
(K, Ko)-Ramsey is equivalent to every induced subgraph on n'~? vertices containing a t-clique.
Hence in this case we instead apply Theorem taking a union bound over all such vertex subsets.

Now let G and G(n,p) be as above, and suppose for contradiction there is a 2-colouring of
GUG(n,p) with neither a red K; nor a blue K. Applying Corollary with r = 2 to the coloured

n Case (i), we identified a forbidden set of vertex sets with small neighbourhoods, and then used the robust
Ramsey properties of G(n,p) to ensure the monochromatic Ky had a large neighbourhood. However, in this setting
the e-regular pairs we have depend on the vertices chosen earlier, and our error bounds do not allow for so many
applications of the robust Ramsey property.
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graph G, we find pairwise disjoint vertex sets Vl(l), 2(1), cees Vk,(l), each of size at least mq, such that

for each pair {i,j} € ([g]) there is some colour ¢; ; for which (Vi(l), Vj(l)) is e1-regular with density
at least 01 in the colour ¢; ;.

Claim 3.2. All the colours ¢; j, {i,j} € ([l;]), are the same.

Proof. Suppose this were not the case. There are then 4, ji, j2 such that ¢;; is red while ¢; j, is
blue. Apply Lemma to the triple Vj(ll), Vj(gl), Vi(l) to find a set U; C Vi(l) of size m}_ﬁ/z >nl=h

such that every (¢ — 1)-set in U; has at least one common neighbour in both Vj(ll) and Vj(;), using

red and blue edges respectively (note that our conservative definition of 7, in fact guarantees us
linearly many common neighbours in both Vj(ll) and V;-(;), but here we only require one).
By Property (a), G(n,p)[U;] must contain a red K;_1 or a blue Ks_1. Extending this monochro-

matic clique with a common neighbour in Vj(ll) or Vj(;) respectively gives a red Ky or a blue K, in

G U G(n,p), a contradiction. d

Let us first assume that ¢; j is blue for every pair {4, j} (if s = t, we may assume this without
loss of generality). We shall either find a red K; or build a blue Ky in k stages.
Suppose we have already run a > 0 stages of this process, thereby building a blue K,_1) on

vertices W = U W41, where W; is a set of £ —1 vertices from V;. Further, for every i € [k—al,

(a+1)

we have sets V; of size mgy41 contained in the common (blue) neighbourhood of W, such that

each pair (Vi(aﬂ), Vj(a+1)), {i,j} € ([k;a]), is eq441-regular of density at least d441 in blue.
If a < k — 2, we apply Lemma to the (k — a)-tuple Vl(a+1), 2(a+1), . Vk(f:l). This gives us

a set Up_q C Vk(f;l) of size mil’fﬂ > n'=P (since mqy1 is linear in n), such that any (¢ — 1)-set in

Uk—_q has at least mg,42 common (blue) neighbours in each Vi(aﬂ), i€lk—1—a).
By Property (b), G(n,p)[Uk—q] contains a red K; or a blue Ky_;. In the former case we are done,
so we may assume there is a blue (£—1)-clique on the vertices Wy_, C Ug_,. For each i ik— 1—al,

let Vi(a+2) C Vi(aﬂ) be a set of my12 common blue neighbours of Wj_,. By Lemma (ii), each
pair (Vi(aH), Vj(aH)), {i,j} € ([k_;_a]), is gq+o-regular with density at least d,11 — €q+1 > dat2-

In the final stage, when a = k — 1, we simply set U; := Vl(k), which has size my = pyn. By
Property (c), G(n,p)[U;] contains a red K; or a blue Ky. We are again done in the former case, so
we may assume the existence of a blue /-clique on the vertices Wy C U,. This then gives a blue K
on the vertices UleWi, contradicting our assumption that G U G(n,p) has no blue Kj.

On the other hand, if s < ¢ and each colour ¢; ; is red instead, we follow a very similar process to
that above, except in each U; we use Property (d) to find either a blue K or a red Kf, /) instead.
In this way, we either have a blue K, or we build a red K; in the k stages, obtaining the desired
contradiction.

Hence we indeed have p(n; K, Ks,d) = n

3.1.3. Proof of Theorem (upper bound), Case (iii). The third and final case is when k£ > 3
and k(/ — 1) + 2 < s < kf. In this setting we can only match the lower bound on the perturbed
Ramsey threshold log-asymptotically; that is, for any 8 > 0, we show that if GG is a graph of density
d>1—1/(k—1)+ 6 and p > Cn~(=A)/m2(Ke.Ke) “then with high probability G U G(n, p) will be
(K¢, K)-Ramsey.

The proof is essentially the same as in Case (ii), except when building the blue clique, we will
find a blue Ky in each part V;, rather than just a Ky_;. Properties (a) and (d) hold as before. We

can replace Properties (b) and (c) above with the following.
12
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(b’) G(n,p) is n~P-globally (K}, K;)-Ramsey.

Since we may freely assume that § is small enough to satisfy 8 < Bo(Ky, K¢), Theorem m
guarantees G(n, p) satisfies Property (b’) with high probability. We can then run the same process
as before, picking up ¢ vertices from each U; to add to the blue clique. Thus, after k stages, we
would have built a blue K, O K.

This shows p(n; Ky, Ks,d) < n~(1=B)/m2(Ke.Ke) for p sufficiently large. Since 8 can be taken to
be arbitrarily small, we have p(n; Ky, Ks,d) = n~(1=o()/m2(Ke.Ke) thereby completing the proof of
Theorem [L.71 d

3.2. Proof of Proposition In Theorem we required s > 2k + 1 or, equivalently, ¢ :=
[s/k] > 3. This condition was necessary to apply Theorem which asserts that G(n,p) will
be globally (K;, K;)-Ramsey when p = w(n~1/™2(KeKe))  Unfortunately, this is not true for £ = 2.
Indeed, being (K}, K2)-Ramsey is equivalent to containing a copy of Ky, and it is well known that
the local property of the appearance of K; in G(n,p) occurs at a lower threshold probability than
the global property of every large subset containing a t-clique.

This gives hope of improving the lower bound when we are dealing with a smaller clique: rather
than our simplistic approach in Theorem [I.7] where all edges of the dense graph G received the
same colour, we might hope to take advantage of the sparseness of the t-cliques in G(n, p) to find a
cleverer colouring of the edges of (G, thus making it easier to avoid monochromatic copies of K; and
K, when s < 2k. Proposition despite falling short of determining p(n; Ky, K, d), shows that
this is indeed the case, and that one can improve upon both the obvious lower and upper bounds
when k + 2 < s < 2k. We start with the former.

Proof of Proposition (lower bound). We write ¢ := [t/a] for simplicity. Let G be the k-partite
Turan graph with vertex classes Vi, Vs, ..., Vi. We shall show that there is some constant b > 0
such that if p < bn= 2/ (=140 then with high probability G U G(n, p) is not (K, K)-Ramsey.

Using a result of Kreuter [27] concerning asymmetric vertex-Ramsey properties of random graphs,
if p < bn=2/(E=D+0 for some constant b = b(t, ), then we can with high probability partition the
vertices V(G(n,p)) = AU B such that G(n,p)[A] is K;-free and G(n,p)[B] is K,-free. For i € [k],
let A;:=ANV;and B; := BNV,

For each ¢ € [k], colour all edges within A; and within B; red. We further colour all edges from
A; to any other part blue. Now all that remains are the edges between B; and B; for 1 <i < j <k.

Recall that we have R(a + 1,s — k) > k. Hence we can find a colouring ¢ : ([g]) — {red, blue} of
K. with no red clique of size a + 1 and no blue clique of size s — k. Then, for each 1 <i < j <k,
we colour all edges between B; and B; with the colour ¢({i,5}).

We claim that this colouring of GUG(n, p) has neither a red K; nor a blue K. First consider the
red subgraph. Each part A; is disconnected from the remainder of the graph, and since the only
edges within A; come from G(n,p), we know that they are K;-free. Any red component within B
that corresponds to a clique in ¢ can involve at most a parts B;. The largest clique within such a
part has size at most £ — 1, and so the largest red clique in B has size at most a(¢ — 1) < t. Hence
there is indeed no red Kj.

Within the blue subgraph, the parts A; and B; are independent sets, and hence any blue clique
K can contain at most one vertex from each part. Moreover, by the colouring ¢, there can be at
most s — k — 1 vertices from B in K. As there are only k parts in A, this shows that the largest
blue clique has size at most s — 1, and hence there is no blue K either. This completes the proof
of the lower bound. O

We next establish the upper bound p(n; K, K, d) < n=2/*.
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Proof of Proposition (upper bound). We start by defining sequences of constants that we shall
require in the proof. Let d := 1—1/(k—1)+0 for some § > 0. We then set d; := §/2 and shall soon
(implicitly) specify a sufficiently small €1. Let n = n(e1,d1, 1) be as given by Corollary and set
my :=nn. Now, for i € [k — 1], set ;11 := 6;/2, miy1 = 62m;/4, and ;11 := 4¢;/52?. Observe that
each m; is linear in n, and that the ratios m;/m; are independent of &;.

Given these constants, choose a = a(d) > 0 sufficiently small to ensure 2kam; (t"fl) < i(”}z) for
all 4, noting that this is independent of our choice of €. Finally, we choose €1 to be small enough
that 1 < a, §; > 3¢; for each 7, and 2l<:5¢m12 (t"j’Q) < %("}’) for all 7. With these preliminaries sorted,
we can now begin the proof.

We first seek a well-structured part of the deterministic graph G before exposing the random
edges. Since G has density d, we can apply Corollary 2.4 with » = 1 to find sets Vi, Va. ..., Vj, each
of size m1, such that each pair (V;,V;) is e1-regular of density at least ;.

Note that this is taking place in the uncoloured graph G, and hence the parts V; are determined
before we expose the random edges of G(n,p). The edges in these regular pairs could later be
coloured either red or blue, but Claim [3.3] will show that we may assume they are almost all blue.
For this, we require the following properties of our random graph G(n,p), where 5 = S(t,s) is
defined below:

(a) G(n,p) is (01an/4)-globally (K;_1, Ks_1)-Ramsey, and
(b) if t > s, G(n,p) is n~P-globally (K(t/2), Ks)-Ramsey.

For the first property, we have mo(K;—1, Ks—1) < mo(Ki—1) = t/2. Next, if t > s, let s’ :=
min(s, [t/2]) and ¢’ := max(s, [¢/2]). Observe that ma(Ky, Ky¢) < t/2, and so we can find some
B = B(t,s) > 0such that mo(Ky, Ky)/(1—3) = t/2. By Theorem it follows that if p = Cn =2/t
for some suitably large constant C, then G(n,p) has both properties with high probability.

Claim 3.3. If G(n,p) has Properties (a) and (b) above, then we may assume that in any 2-colouring
of GU G(n,p) with neither a red K; nor a blue K, for every pair i # j, the maximum red-degree
in (V;,Vj) is at most am;.

We shall prove Claim [3.3]in due course, but let us first see how it implies our desired upper bound
on p(n; K, Ks,d). Roughly speaking, we shall find ¢-cliques within each part V;. Since there are
no red t-cliques, each such ¢-clique must contain a blue edge. We shall choose the cliques to ensure
that these blue edges combine to form a blue Ky, contradicting our colouring being blue- K s-free.

More precisely, let p = Cn=2/t where C' is a sufficiently large constant, and assume (a) and (b)
above hold. Consider any 2-colouring of G U G(n, p), and recall that we assume the vertex set to
be [n], which we equip with its natural ordering.

Suppose for some a > 0, we have selected a set S, = {s1,52,...,52,} of vertices from U} ,V;,
such that they induce a blue K, in our colouring of G U G(n,p) and have at least m,41 common
neighbours in each V; for a +1 < i < k. When a = 0, the set Sy := ) trivially satisfies these
requirements.

Foreacha+1 <1 <k, let Vi(aﬂ) be the first m,41 common neighbours of S, in V;. Our goal
is to find two vertices soq41, S2442 € Va(_ﬁrl) to add to S, in order to obtain a valid set S,1 with
which to proceed. In particular, the two new vertices should share a blue edge, all edges from them
to S, should also be blue, and s9,41 and ss,42 should have many common neighbours in each of
the remaining parts. We therefore define H, 1 to be the collection of all copies of K; whose vertex

sets T C Va(f{l) satisfy the following properties:
(A) all edges between S, and T' are blue, and
(B) every pair of vertices in T have at least mg42 common neighbours in V;-(GH) for each

a+2<j5<k.
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Let R C V(f{l) be those vertices that have a red edge to some vertex in S,. By Claim we

a
have |R| < amy |S,| < 2kam;. Since every t-clique in Va(ffl)

a vertex from R, there are at most 2kam; (m“+ 1) such cliques. By our choice of «, this is at most

t—1
%(mf;f 1) cliques.

By Lemma ii), it follows that, for each a+2 < j < k, the pair (Va(_‘ffl), Vj(aH)) is 44 1-regular

of density at least d,+1. We may therefore apply Lemma (1) to deduce that, for each given j,
there are at most 25a+1m2 |1 pairs in Va(f{l) with fewer than mg12 common neighbours in Vj(aﬂ).
There are thus a total of at most 2k5a+1mg 11 (“ngl) cliques of size t in Va(i]q)

(B). Our choice of €1 ensures that this is again at most %(

violating Condition (A) must contain

violating Condition

Ma41

t ) cliques.

Thus H,41 contains at least %(m‘f 1) sets. Suppose we find in G(n,p) a t-clique H € Hqqq. If
all edges of H are red, we have our desired red K}, and hence we may assume there is some blue
edge eq+1 = {S24+1, S2q+2} in H.

This pair of vertices has all the properties we required: they share the blue edge ey+1, Property
(A) of T ensures that all edges from e,41 to S, are blue, and Property (B) gives that, for each
J > a+2, saqr1 and sgq42 have at least my9 common neighbours in Vj(aH).

Hence, provided we can find a t-clique from the collection Hy41, we may set Sgy1 = Sg U
{S2a+1, S2a+2} and proceed to the next iteration. We appeal to Theorem to find the desired
clique.

Indeed, we know |Hqy1| > %(m‘f 1), which, since mg1 is linear in n, is at least &ént for some
constant { = £(d) > 0. Moreover, when H := K;, we have u; = pui(H) = ntp(é). Recall p = Cn~2/t,

SO (1 = C(;)n Theorem thus gives that the probability G(n,p) does not contain a t-clique

from a given collection H,41 is at most exp(—C’'n), where C’ := §C(;)/(2t+lt!).

However, the collection of t-cliques Hq11 depends on the colouring of the edges of GG, which in
turn could depend on the random graph G(n,p) itself. To resolve this issue, we take a union bound
over all collections of t-cliques H,+1 that could possibly arise. Observe that the sets Vi(aﬂ), for
a+1 < i <k, are determined by the set S,. This already specifies which cliques in Va(ﬁrl) fail
to satisfy Property (B). To identify those violating Property (A), it suffices to identify the subset

R C Va(ffl) of vertices incident to a red edge from S,.

The collection Hg4q is thus fully determined by the pair (S,, R), and there are fewer than
n242Ma+1 guch pairs, which we can (wastefully) bound from above by 4”. Hence, as C has been
chosen sufficiently large (with respect to £ and t), it follows from the union bound that with high
probability, for each 0 < a < k — 1 and for every possible collection H,+1 that may arise, G(n,p)
contains a copy of Ky from Hq41.

We can thus repeat this process until we obtain a set S; that induces a blue Ksj. Since s < 2k,
this shows that with high probability G U G(n, p) is indeed (K}, Ks)-Ramsey, as desired. O

It remains to prove Claim [3.3]

Proof of Claim[3.3. We begin with a straightforward observation: we cannot have a vertex u, a
vertex v, and a set U of §;amq/4 common neighbours of w and v, such that all edges from u to U
are red and all edges from v to U are blue. Indeed, by Property (a), there is a red K;_; or a blue
K1 in U. Extending this monochromatic clique by u or v respectively gives either a red K; or a
blue K, contradicting our assumption on the colouring of G U G(n,p).
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Let us first consider the case t > s. Suppose for contradiction we have some u € V; with a set R
of amy red neighbours in Vj, for some j # i. Let S := {v € V; : [Ng(v) N R| > (61 — e1) |R|}. By
the eq-regularity of (V;, V), it follows that |S| > (1 —e1)m;.

By our earlier observation, each v € S can have at most d;am;/4 blue edges to R, and hence
there are at least (1 —¢e1)(0; —e1 —01/4) |R|m1 > 61 |R| m1/8 red edges between S and R. It follows
from dependent random choice (see [I8]) that we can find a subset U C S of size n!=?, such that
every subset of [¢/2] vertices from U has at least n'~# common red neighbours in R.

By Property (b), we find a red Ki/9) or a blue K in U. In the latter case, we are done, so we
may assume the former. Let A be the set of vertices of this [¢/2]-clique, and let W C R be a set
of n'=# common red neighbours of A. Applying Property (b) to W, we again find a blue K, and
are done, or find a set B of [t/2] vertices inducing a red clique. In this latter case, AU B gives rise
to a red clique on at least t vertices, and hence we have the desired contradiction.

This leaves us with the case t = s, where by symmetry we may assume that the majority of
edges in G U G(n,p) are coloured blue. For a contradiction, we suppose without loss of generality
that there is some u € Vi with a set R of amq red neighbours in V5. Since we assumed blue was
the more popular colour, we can find some (ordered) pair (V;,V}), j # 2, where at least one-third
of the edges are blue. By averaging, this gives some vertex v € V; and a set S C V; of am; blue
neighbours of v.

Now note that (Va, Vj) is an e1-regular pair, and so there are at least (61 —e1)a m% edges between
R and S. If at least half of these edges were coloured red, then by averaging, we would find a vertex
u' € R with a set U of at least 0y /4 red neighbours in S. Then the vertices «’ and v, together
with the set U, violate our initial observation. On the other hand, if half of the edges between R
and S are blue, then we find a vertex v’ € S with a set U’ of at least d;amy /4 blue neighbours in
R. Then u,v" and U’ violate our initial observation instead.

Hence, if the colouring of GUG(n, p) has neither a red K; nor a blue K, we may indeed assume
that the maximum red-degree in each pair (V;, V) is at most am;. ]

2

3.3. Proof of Theorem [1.9] First we restate Theorem in the following equivalent form.

Theorem 3.4. Let £,k > 3 be integers.

(i) If k, ¢ € 2N then p(n; Ck, Cy,d) =0 for all d > 0.

(ii) If k € 2N+ 1 then p(n; Ck,Cy,d) = 1/n for all d € (0,1/2].

(iii) If k € 2N+ 1 and ¢ € 2N then p(n; Cy, Cp,d) =0 for all d > 1/2.
)

(iv
' J1/m? ifde (1/2,4/5]
pU“C%‘k’w‘_{o if d> 4/5.

(v) If k € 2N+ 1 and ¢ € 2N + 3 then

9 .
p(n: Ch Cp. d) = {1/n ifd e (1/2,3/4]

0 if d > 3/4.

3.3.1. Proof of Theorem (z) Let r := Ryip(k, £), the bipartite Ramsey number for Ky, ;, and Ky .
Then K, , is a bipartite graph that is (K x, K¢ ¢)-Ramsey, and therefore (Cy, Cy)-Ramsey as well.
By Observation (iii), it follows that p(n;Cy,Cy,d) = 0 for d > 0; that is, any sufficiently large
dense graph will already be (Cj, Cy)-Ramsey before any random edges are added. O

3.3.2. Proof of Theorem [3.4(ii). The lower bound here is the trivial lower bound from Observa-
tion since C}, is not bipartite and for p = o(1/n), G(n, p) is with high probability Cy-free. Thus
p(n; C, Cp,d) > 1/n for all d € (0,1/2].
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Let d >0 andset 0 < n K e < v < d < d,1/k,1/¢. Suppose that G is a sufficiently large
n-vertex graph. Consider G U G(n,p) where p = w(1/n). By Corollary (with 7 = 1) there exist
disjoint A, B C V(G) so that |A| = |B| > nn and (A, B)¢ is e-regular with density at least §. We call
an ordered (k-+¢)-tuple (z1,..., Tk, Y1, --,ye) € A¥T good if |(N; N (2:)) N (N: N (y:)) N B| > ~|B.
Lemma (1) implies that all but at most y|A|**¢ ordered (k + ¢£)-tuples in A*** are good.

Using Theorem we deduce that with high probability there is a good (k + ¢)-tuple such
that in G(n,p), z1x2...xpz1 forms a k-cycle and y1ya...yey1 gives an f-cycle. Indeed, letting
H be the vertex-disjoint union of C} and Cp, our above argument shows that the collection H
of potential copies of H with good supports has size &én**¢ for some & > 0. Moreover, we have
p1 = (np)™n0 = (1), and so the probability of having no copy of H supported on a good
(k + £)-tuple tends to zero as n grows. Therefore w.h.p. in G(n,p)[A] we have a disjoint k-cycle X
and (-cycle Y together with a set N C B where |[N| > v|B| and N C Ng(X UY).

Consider any 2-colouring of G UG(n, p). Given any b € B there are 2¥*¢ possible ways to colour
those edges incident to b with an endpoint in X UY. Thus, there is a set N; C N of size at least
v|B|/2F** where each vertex in Nj has the same ‘colour profile’ (i.e. every vertex in Ny has the
same red neighbourhood in X UY and therefore the same blue neighbourhood in X UY).

Colour each vertex v € X UY with the colour of the edges it receives from N;. So we now have a
red /blue colouring of the vertices and edges of X UY. Suppose there is a red vertex u € X UY and
a blue vertex v € X UY. Theorem [2.10{ii) implies that w.h.p. G(n,p)[N1] is (Py_1, Pr—1)-Ramsey.
If there is a red copy of P;_1 in Ny, then together with u we obtain our desired red copy of Cj in
G U G(n,p); otherwise we obtain a blue copy of P,_1 in Nj and thus together with v we obtain a
blue copy of Cy.

Thus, we may assume that every vertex in X UY is coloured the same. Suppose that they are all
red. If the edges of Y are all blue, we obtain the desired blue copy of Cy. So we may assume that
there is at least one red edge in Y. As all the edges between X UY and N; are red, we can extend
this red edge to a red copy of Cy in G U G(n,p). The case when every vertex in X UY is blue
is similar (and in fact easier if ¢ is even), and so in all cases we obtain a desired monochromatic
cycle. O

3.3.3. Proof of Theorem|[3.4|(iii). Let d > 1/2 and define § > 0 so that d > 1/2+4. Set 0 < ¢ < 4.
Let n > 0 be obtained by applying Corollary with input » = 2. Consider any sufficiently
large n-vertex graph G of density at least d, and consider any 2-colouring of G. By Corollary
we have that there are disjoint sets Vi, Va2, V3 in G so that |Vi| = |Va| = |Va] > nn and for each
1 <4 < j < 3, there is some colour ¢; j for which the edges between V; and V; of colour ¢; j form an
e-regular pair of density at least 6/4. Suppose one of these colours ¢; ; is blue. Then Lemma
implies G contains a blue copy of Cy. Otherwise all the ¢; ; are red and then since Cj}, is 3-partite,
Lemma [2.6] implies G contains a red copy of Cl. O

3.3.4. Proof of Theorem (iv). Let G,, denote the 5-partite Turdn graph on n vertices. Since
K5 has a 2-colouring without a monochromatic copy of Cs, so does G,,. Let p = o(1/n?). Then
w.h.p. G(n,p) is empty. Thus, w.h.p. G, U G(n,p) is not (Cs3,Cs)-Ramsey. This shows that
p(n,Cs,Cs;d) > 1/n? for all d < 4/5.

Next suppose that d > 1/2, and let p = w(1/n?). Since Kg is (C3,C3)-Ramsey, to prove that
p(n;Cs,Cs,d) = 1/n?, it suffices to show that given any n-vertex graph G of density d, w.h.p.
Ks C GUG(n,p). This follows immediately from Theorem with k = 3, since p3(Ks) = 1/2.
So indeed p(n; Cs, Cs,d) = 1/n?.

Let d > 4/5 and suppose that G is any sufficiently large graph with density at least d. Then
by Turdn’s theorem G contains a copy of Kg. Since Kg is (Cs,Cs)-Ramsey, any 2-colouring of G
yields a monochromatic copy of Cs. Thus, p(n;Cs,Cs,d) = 0. O
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3.3.5. Proof of Theorem[3.4|(v). To prove this result we will need two additional lemmas.
Lemma 3.5. R({C3},{C3,Cs}) = 5.

Proof. To see that R({C3},{C5,Cs}) > 4, consider a 2-colouring of Ky whose red edges induce a
copy of P4 and whose blue edges induce a copy of Pj.

Next consider any 2-colouring of K. If there is a vertex incident to at least three red edges then
we must have a red or blue copy of C'5. The same conclusion holds if there is a vertex incident to
at least three blue edges. Thus, we may assume that every vertex has red and blue degree two. In
particular, the blue subgraph is 2-regular and so is a copy of Cj5, as desired. ]

Let H,, be the graph formed by taking disjoint vertex sets Vi,..., Vs each of size m, and with
edge set as follows: H,, contains a perfect matching between Vi and Va; a perfect matching between
V3 and Vy; between all other pairs of distinct V; there are all possible edges. The next result proves
that finding H,, in a graph G (for m sufficiently large) ensures G is (Cy, Cy)-Ramsey.

Lemma 3.6. Given k € 2N+ 1 and ¢ € 2N+ 3, there exists an mo = mg(k,£) such that if m > my,
then Hp, is (Ck, Cy)-Ramsey.

Proof. Consider any 2-colouring ¢ of H,,. Given an edge zy € E(H,,), write c¢(zy) for the colour
of xy in ¢. We first build an auxiliary complete bipartite graph B with classes B; and By. The
vertices of By are the edges {v1 vz, : i € [m]} of the perfect matching between V; and V5 in Hpy;
the vertices of By are the edges {vsvs; : @ € [m]} of the perfect matching between V3 and Vj in
H,,.

Next we 16-colour the edges of B as follows: for all 4,j € [m], we colour the edge from v; ;vg;
to v jva; in B with the 4-tuple (c(vi,v3,;),c(v1,iva;), c(v2,iv35), c(v2va,)). Since m is suffi-
ciently large, the bipartite Ramsey theorem implies the existence of a monochromatic copy K
of Ky(kts)a(k+e) in B. Let (c13,c14,c23,c24) be the colour of K. Let V/ C V; denote the set of
vertices in V; that are ‘present’ in K; for example, v j € VY precisely if vy jvg ; is a vertex in K. It
follows that, for every i € {1,2}, j € {3,4}, all edges in the complete bipartite graphs H,,[V/, V]
have the colour ¢; ;.

Now consider the vertices in Vs. There are 26+t possible ways the edges between a vertex
v € Vi and the vertices in U{_,V/ can be coloured. Hence, we can find a set V' C V; of at least
m2-16(+0) > | 4 ¢ vertices that all have the same colour profile.

Next consider the matching between V{ and Vj in H,,. For each edge vjvz in this matching,
there are four possible ways the edges from {vi,v2} to V' can be coloured. Hence, there are subsets
V" C V] and V5’ C VJ of size k + ¢ such that there is a perfect matching in H,,[V{’, V'], and for
each i € [2], all edges between V" and V7' have colour ¢; 5. Similarly, there are subsets V3’ C V4 and
V) C V, of size k + £ such that there is a perfect matching in H,,[V4', V)], and for each i € {3,4},
all edges between V/” and V¢’ have colour ¢; 5.

In summary, we have an induced subgraph H}, of H,, on U?_, V" where |V/| > k + ¢; a perfect
matching in H) [V{,VJ'] and in H],[VY', V]']; for all other pairs i < j, a monochromatic complete
bipartite graph of colour ¢; j between V" and V}" in Hj,.

Fix an edge z1x2 in H,,[V/, VJ'] and denote its colour in ¢ by ¢ 2. Similarly let x3z4 be an edge
in H] [V, V'] with colour ¢3 4. Now consider an auxiliary copy of K5 with vertex set [5], colouring
each edge ij with colour ¢; ;. By Lemma we find a red C3, blue C3 or blue Cs.

Case 1: There is a monochromatic copy of C3 on {i,j,r} in Kj5. Suppose this C5 is red;
the blue case is analogous. Choose vertices y1 € V", y2,94,...,yk—1 € V" and y3,5,...,yr € V,".
These choices can be made arbitrarily unless {1,2} C {4, 4,7} in which case we set i := 1, j := 2,
y1 := x1 and yo := x9; or if {3,4} C {i,j,7}, in which case we set i := 3, j := 4, y; := x3 and
Y2 ‘= T4.
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Note that y192y3 ... yry1 is a red copy of Cj in H! C H,,, as desired.
Case 2: There is a blue copy mmmsmymsmy of C5 in K5. We may assume that m5 = 5.
Choose vertices y1 € V', y2 € V', y3 € V., ya, 96, ..., Ye—1 € Vi, and ys,y7,...,9¢ € V5’ such

that y; = x, € V! for each i € [4], with the other vertices chosen arbitrarily. Then y1y2y3 ... yey1
is a blue copy of Cy in H/ C H,,, as desired. O

With Lemma at hand it is now straightforward to prove Theorem [3.4|v).

Proof of Theorem ( v) Let G,, denote the 4-partite Turdn graph on n vertices. Colour the edges
of K4 so that the red edges induce a P4, and the blue edges also a Py. Lift this to a 2-colouring
of G,,. Since the red (blue) subgraph of G, is bipartite we do not have a red (blue) copy of any
odd cycle. Let p = o(1/n?). Then w.h.p. G(n,p) is empty. Thus, wh.p. G, UG(n,p) is not
(Cy, Cy)-Ramsey. This shows that p(n; Ck, Cy,d) > 1/n? for all d < 3/4.

Next suppose that d > 1/2. Let p = w(1/n?), and let m > mg as in Lemma Let G be a
sufficiently large n-vertex graph of density at least d. The 3-partition V(H,,) = (V1 U Vo) U (V3 U
Vi) U Vs shows p3(H,,) < 1/2, and so by Theorem w.h.p. H, € GUG(n,p), and therefore
G UG(n,p) is (Ck, Cp)-Ramsey. So indeed p(n; Cy, Cy,d) = 1/n? for all d € (1/2,3/4].

Finally, suppose that d > 3/4 and let G be a sufficiently large graph of density d. Since H,, is
5-partite, the Erdés—Stone—Simonovits theorem [17] implies that H,, C G. Lemma implies that
G is (C, Cp)-Ramsey. So p(n; Cy, Cy,d) = 0 for all d > 3/4. O

3.4. Proof of Theorem We next turn to our multicolour result, where we seek the threshold
at which any r-colouring of G U G(n, p) will contain a monochromatic copy of Cp, where £ > 2" + 1
is odd. In the proof of the theorem we will repeatedly make use of the following simple property
of 2i-partite graphs.

Fact 3.7. The edge set of any 2'-partite graph H can be partitioned into i bipartite graphs.

The 2¢ is best possible, as shown by the following Ramsey result, which can be proven by
induction on 7.

Fact 3.8. Given any r > 1, and any r-colouring of Kor1, there is a monochromatic odd cycle in
K2r+1.

3.4.1. The case when 0 < d < 1 — 2772, When the underlying graph G is not very dense, we
can appeal to Observation m By Fact any graph that is (Cy,r — 2)-Ramsey must have
chromatic number at least 2"7° + 1, as otherwise its edges can be partitioned into r» — 2 bipartite

(and hence Cy-free) subgraphs. Thus, by Observation if d < 1—27"%2 we have p(n;r, Cy,d) =
n—1/ma(Ce) — —141/(6-1)

3.4.2. The case when 1 — 2772 < d < 1 — 27"t For each n € N, let G,, denote the 2" ~1-
partite Turdn graph on n-vertices. Let p = o(n~!). By Fact we can (r — 1)-colour G,, so that
each colour class is bipartite, thus avoiding monochromatic copies of Cy. A simple application of
Markov’s inequality yields that w.h.p. G(n,p) does not contain a copy of Cp, and thus its edges
can be coloured with the remaining colour. Together this implies that w.h.p. G, U G(n,p) is not
(Cy,r)-Ramsey. Hence, p(n;r,Cp,d) > n~! for all d < 1 — 27" As in the previous case, the
upper bound follows from Theorem since n~111/(=1) ig the threshold for G(n,p) itself to be
(Cy,7)-Ramsey. This shows p(n;r, Cy,d) € [n~ 1, n 1/ ED] forall 1 — 27712 <d <1 — 277+,

3.4.3. The case when 1 —27"T1 < d < 1 —27". For each n € N, let G,, denote the 2"-partite
Turdn graph on n-vertices. Let p = o(n~2). By Fact we can r-colour G, so that there are
no monochromatic copies of Cy. Further w.h.p. G(n,p) is empty. So w.h.p. G, UG(n,p) is not
(Cy,r)-Ramsey. Hence, p(n;r,Cp,d) >n2forall 1 -2 <d<1-27",
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To finish this case off, we require the following generalisation of the graph H,, introduced in the
proof of Theorem Let H,,, be the graph formed by taking disjoint vertex sets Vi,...,Varyq
each of size m, and with edge set as follows: H,,, contains a perfect matching between V3;_1 and
Vi, for each 1 < i < 2"~ 1: between all other distinct pairs V;, V; there are all possible edges. Note
that H,, = m,2-

Lemma 3.9. Given £ > 2" + 1, there exists an mo = mo(r,£) such that if m > mg, then Hy,, is
(Cy,r)-Ramsey.

Proof. Let m be sufficiently large and consider any r-colouring ¢ of H,,,. By repeatedly arguing
as in the proof of Lemma we can obtain subsets V;* C V; (for each i < 2") of size 73/ so that:

e There is a perfect matching from V;_; to Vg for every 1 <4 < 271
e For all other pairs (V;*, V") (with i < j <27), all edges from V;* to V* have the same colour
Cij-
To construct such sets V;* we first construct the auxiliary bipartite graph B precisely as in Lemma
this yields sets V{,..., V] (whose sizes will now still be huge). Then we construct an analogous
auxiliary graph for the pair ((V{,V3), (Vs,Vs)), and so on, until we have considered every pair of
tuples of such vertex classes.
By further restricting to the most popular colour within each of the perfect matchings, we can

now assume that each such set has size r2¢ and

e There is a monochromatic perfect matching from V5 | to V5 for every 1 < i < 271
Denote this colour by c2;—1,2;.

. . . 2 por .
Now consider the vertices in Var, 1. There are 77 2" possible ways the edges between a vertex

v € Var + 1 and the vertices in UZ_; V;* can be coloured. Hence, we can find a set V3* ; C Variq of

size at least mr—7 02" > { vertices that all have the same colour profile.

Next consider the matching between V5 | and V5 in H,,, for all 1 < ¢ < 27=1 For each
edge vy;_1v2; in this matching, there are r? possible ways the edges from {va2i—1,v2;} to Vot 1 can
be coloured. Hence, for each 1 < j < 2", there are subsets VJ** C V;* of size £ such that all
edges between V** and V3" | have colour ¢jori1, and such that there is a perfect matching in
Hyp o [Voit 1, Voi¥] for each 1 <4 < or—1,

In summary, we have an induced subgraph Hy, . of H, » on U?Z{lVJ** with [V;**| > £, a monochro-
matic perfect matching of colour cg;—1,2; in Hy, . [Voi* 1, Voi'] for all 1 < < 2r=1 and, for all other
pairs 1 <14 < j < 2"+ 1, a monochromatic complete bipartite graph of colour ¢; ; between V;** and
Vi in Hy, ...

Now consider an auxiliary copy of Kory; with vertex set [2" + 1], colouring each edge ij with
colour ¢; ;. By Fact we find a monochromatic odd cycle Cy = x1...xpx1 in Kory where
2 <0 <2"+1 < /. It is easy to see that there is a homomorphism ¢ from C; to Cy so that for all
but one of the edges x;x;11, precisely one edge is mapped onto z;x;+1 by ¢. We can thus ensure
that all edges corresponding to parts with a perfect matching between them are mapped to exactly
once, and it is then easy to lift the Cy to a monochromatic copy of Cy in Hy, ., as desired. O

Returning to Theorem suppose that d > 1 — 2771 Let p = w(1/n?), and let m > my
as in Lemma [3.9] Let G be a sufficiently large n-vertex graph of density at least d. Pairing up
the parts of H,,, joined by a perfect matching gives a (2"~! + 1)-partition of V(H,,,) that shows
par—141(Hm,y) < 1/2. Theorem then implies that w.h.p. G,,UG(n,p) contains a copy of Hy, ;.
Thus, by Lemma w.h.p. G, UG(n,p) is (Cy,7)-Ramsey. So indeed p(n;r, Cy,d) = n~=2 for all
-2l <g<1 -2

20



3.4.4. The case when 1 — 27" < d < 1. Suppose d > 1 — 27" and G is a sufficiently large graph
of density d. Since the graph H,, , from Lemma is (2" 4 1)-partite, it follows from the Erdés—
Stone-Simonovits theorem [17] that H,,, C G. Hence, by Lemma , G is (Cy,r)-Ramsey, and
thus p(n;r,Cp,d) = 0 for d > 1 — 27", completing the proof of the theorem.

3.5. Proof of Theorem In our final result, we establish the perturbed Ramsey thresholds
for cliques versus odd cycles by showing p(n; K¢, Cyp,d) = n=2/t=1 for t > 4, odd ¢ > 5 and
de (0,1/2].

Proof of Theorem[1.12 First note that the lower bound follows from Observation [L.4[i). Indeed,
we can take GG to be the balanced complete bipartite n-vertex graph, which is Cy-free and of density
at least 1/2, and colour all its edges blue. If p = o(n=2/(*-1)) then with high probability G(n, p)
is Ky-free, and so we can colour the remaining edges of G(n,p) red, obtaining an edge-colouring of
G U G(n, p) without any red Ky or blue Cy.

For the upper bound, let p = w(n_2/(t_1)). Apply Corollary with § := d,k :=2,r =1 and
¢ := (d/4)"* to the uncoloured graph G of density d, obtaining an e-regular pair (V1, V) of density
at least d/2, with |Vi| = |Va| = nn for some n > 0. We shall show that G U G(n,p) is (K¢, Cy)-
Ramsey provided G(n, p) has the three properties given below, where H is the vertex-disjoint union
of Ky and Cy, and « := (d/8)"*+:

(a) G(n,p)[Vi] contains a copy of H with at least a2!**|V3| common neighbours in V5,
(b) G(n,p) is an-globally (K;_1, P;—1)-Ramsey, and
(c) G(n,p) is an-globally (K;_2, Cy)-Ramsey.

We first show that (a) holds with high probability. By Lemma [2.2{i), we know that at least
half of all (t + £)-sets of vertices in Vi have at least (d/2 — )**¢|Va| common neighbours in V5,
and (d/2 — &)** > a2/, Let H be the collection of all possible copies of H supported on such
(t + £)-sets of Vy; it follows that |H| > &n'tt for some constant & = £(¢, £, d) > 0. Furthermore, as
p=w(n D) we have py(H) = ntp(g) = w(1l) (attained by taking F' = K in the definition of
w1). Thus, by Theorem the probability that G(n,p)[Vi] does not contain a suitable copy of H
is at most exp(—&w(1)/ (21 (t + 0)!)) = o(1).

For (b), we appeal to Theorem Observe that mo(Ki—1) > mo(P—1) = 1, K;_1 is strictly
balanced with respect to ma(-, Py—1), and that mo(K;_1, Pp—1) = (t — 1)/2. Thus there is some
constant C" = C'(am, K;_1, P;_1) such that for p’ > C'n=2/(=1 G(n,p') satisfies (b) with high
probability (so certainly our choice of p satisfies (b) with high probability).

For (c), the case t > 5 can be handled with Theorem just as above. If t = 4, though, being
(K2, Cp)-Ramsey is equivalent to containing Cy. For this, we can apply Theorem instead. For
every set U C V(G(n,p)) of size avn, let Hy be the possible copies of Cp within U, observing that
[Hu| = (¢ — 1)!(‘[1{‘)/2 = ¢'n’ for some appropriate constant & > 0. Moreover, as p = w(n=2/3),
we have p1(Cy) = n‘p’ = w(n®/?) > n®?3. By Theorem the probability that G(n,p) does not
contain a copy of Cy from Hy is at most exp(—¢&'n®/3/(20+14!)). Taking a union bound over all
possible choices of U, we see that with high probability, G(n,p) will contain an ¢-cycle in each
subset U, thus satisfying (c).

To finish, let us see how these properties imply that G U G(n,p) is (K¢, Cy)-Ramsey. Consider
any 2-colouring of G U G(n,p). By (a), we can find a copy Hy of H within G(n,p)[Vi] with a set
W C Vi of at least a2+ |Va| common neighbours of V(Hy). For each w € W, there are 21+¢ ways
the edges between w and V(Hj) can be coloured, and so we can find a subset U C W of «|V3]
common neighbours such that each vertex in U has the same colour profile to V(Hp) (i.e. the red
neighbourhood in V(Hp) of each u € U is the same; as is the blue neighbourhood).
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First suppose there are x,y € V(Hp) such that the edges from = to U are all red while those
from y to U are all blue. By (b), we find a red K;_1 or a blue Py_; in G(n,p)[U]. Extending by
either = or y respectively, we find either a red K; or a blue Cy in G U G(n,p), and are done.

Next, suppose all edges between V (Hy) and U are red. Recall that Hy contains Cy as a subgraph.
If all edges of this ¢-cycle are blue, we are done, and hence there must be a red edge {z,y}. By
(¢), U must contain either a red K;_s or a blue Cy. In the latter case, we are done, while in the
former, extending the clique by = and y gives the desired red K;.

Thus all edges between V(Hy) and U must be blue. In this case, recall that Hy contains K; as a
subgraph. If all its edges are red, then we are done, and hence there is a blue edge {ug, u1 }. Writing
0 =2k+1, let {ug,us,...,u;} be aset of k—1 other vertices from V(Hp), and let {vy,va,...,v;} be
an arbitrary set of k vertices from U. We then have a blue ¢-cycle (ug, u1, vy, ug, va, ..., Uk, Vg, Ug)
in GUG(n,p), as required. O

4. CONCLUDING REMARKS AND OPEN PROBLEMS

In this paper we have determined how many random edges one must add to a dense graph
to ensure w.h.p. the resulting graph is (K}, K)-Ramsey for all ¢ > s > 5; more precisely
p(n; Ky, K, d) = n~ 1 /m2EeKr21) for all 0 < d < 1/2 (see Theorem . This complements work
of Krivelevich, Sudakov and Tetali [30] who determined the corresponding threshold when s = 3.
This leaves only one open case for this range of densities; when s = 4. This is perhaps the most
interesting open question resulting from our work. As mentioned previously, our work combined
with Powierski’s [37] settles this problem when ¢t = 4. The construction from [37] can be extended
to the (K3, K4)-Ramsey question as well, and improves the lower bound from Proposition for
t € {5,6}. It would be of great interest to determine the correct threshold for ¢ > 5.

Note Theorem does not consider all possible densities d; indeed, it is still an open problem
to determine how many random edges one must add to a graph G of density d to ensure it is
w.h.p. (K, K,)-Ramsey if d > 1—2/(s — 1) and s < t. Notice though that if d > 1 — —L- where
r = R(K, Kg), then by Turdn’s theorem G contains a copy of K, and thus is (K, K)-Ramsey.
Further, setting ' := [R(Ky, Ks)/2], Theorem implies that if d > 1 — —2~ then one only
requires p = w(n~2) to ensure G U G(n, p) w.h.p. contains K, and thus is (K;, K;)-Ramsey.

We have completely resolved the question of how many random edges one must add to a graph
of fixed density to ensure w.h.p. the resulting graph is (Cf,Cy)-Ramsey for all k,¢ > 3 (see
Theorem . Additionally we made some progress towards the analogous question for more
colours via Theorem it would be interesting to close the one remaining gap in this statement
(i.e. fully resolve the case when 1 —27"t1 < d <1 —27""1). Our work here is also related to a
conjecture of Erdds and Graham [16] from 1973. Indeed, recall that Theorem only considers
cycles Cy that are sufficiently large compared to the number of colours r (i.e. ¢ > 2" 4 1). This
is because we apply Fact any r-colouring of Kyriq yields a monochromatic odd cycle. In
particular, this monochromatic cycle could have length 2" + 1. Erdés and Graham [16] asked how
large can the smallest monochromatic odd cycle in an r-colouring of Kor,1 be. Thus, getting non-
trivial upper bounds on this question would yield a strengthening of Theorem We are not
aware of such progress on this problem, though Day and Johnson [14] did prove the smallest such
monochromatic cycle is unbounded as r grows, thereby answering a question of Chung [11].

Note that when the density d of the graph G is large, our upper bounds on p(n; Hy, Ha, d) often
come from the existence of a fixed-size subgraph that is (Hy, H2)-Ramsey. However, for small den-
sities, the upper bounds use more global arguments, either using results on the Ramsey properties
of the random graph, or finding large common neighbourhoods and then finding subgraphs there.
It would be interesting to see to what extent this dichotomy extends to other cases of the Ramsey
problem in randomly perturbed graphs.
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Finally, there has been significant interest in Ramsey properties of random hypergraphs (see, for
example, [I3], 19, 20]). It would be interesting to obtain analogues of our results in the setting of
randomly perturbed hypergraphs.
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APPENDIX A. PROOFS OF USEFUL TOOLS

In this appendix we prove some of the results from Section [2] namely; Lemma a multipartite
version of the dependent random choice lemma; Theorem which guarantees the existence of
subgraphs within G(n,p); Theorem which shows that when random graphs have certain
Ramsey properties, they have them robustly and globally. These follow from either fairly standard
arguments or minor modifications of existing proofs, but we include these results here for the sake
of completeness.

A.1. Proof of Lemma In Lemma[2.5] copied below, we extend the basic lemma of dependent
random choice from [I8], showing that if a set of vertices Vj is in e-regular pairs with other sets
Vi,Va,...,Vs_1, then we can find a relatively large subset U C V; such that all small subsets of U
have many common neighbours in each of the other parts V;.

Lemma Given s € N and § > 0, suppose 0 < ¢ < min{1/(2s),0/2}. Let Vy,Va,..., Vs be
disjoint sets of vertices from a graph G, each of size m, such that for all i € [s—1], the pair (V;, V)
is e-reqular of density at least §. For every 5 >0 and ¢ € N there is some v = (s, 9, 5,£) > 0 such
that, if m is sufficiently large, there is a subset Us C Vi of size at least m' =P such that every set of
¢ vertices from Uy has at least ym common neighbours in each of the sets Vi, i € [s — 1].

Proof. For i € [s — 1], let T; C V; be the subset of vertices obtained when selecting t vertices
uniformly and independently (with repetition), where ¢ is to be determined. Let Wy := {v € Vj :
U;T; € N(v)} be those vertices in Vy adjacent to all chosen vertices. For fixed v € Vs, we have

Plve W) = jHi (W)t
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By Lemma [2.2(i), with £ = 1, the number of vertices in V, with at most (§ — £)m neighbours in
V; for some i € [s — 1] is at most (s — 1)em. Hence for at least (1 — (s — 1)e)m vertices in V; we
have [N(v)NV;| > (8§ —e)m for all i € [s — 1]. Thus E[|W,]] > (1 — (s — 1)e)m( — &)= Dt >
(m/2)(8/2)~ 1"

We now set v := (§/2)2(5=D¢8_ For every f-set S C W, with fewer than ym common neighbours
in some V;, remove one vertex of S from W, and let Us be the set of remaining vertices. Clearly
every f-subset of U, has the requisite number of common neighbours, and so we need only show
that Uy is sufficiently large.

Observe that if S C W, then we must have T; C N(S) NV, for each i € [s — 1]. Thus, if S has
fewer than ym common neighbours in some part V;, we can bound P(S C W) < 4. In expectation,

the number of vertices that needs to be removed from Wj is thus at most (”Z)'yt. This leaves us

with (s—1)t (s—1)t
m ()~ m m 6\
E[U.Il > — | = _ ts (2 oot t
H SH_ 2 <2> <£)7 - 2 (2) ma

Thus, if we set ¢ := [log(4m™5)/((s — 1)1og(§/2))], the first term will be at least 2m'~#, while
our choice of v ensures m‘y? = o(1). Hence we can find some set U, C V; of size at least m'~# with
the desired property. O

A.2. Proof of Theorem The next result is a standard, straightforward, and very useful
application of the Janson inequality [23].

Theorem Let H be a graph with v > 2 vertices and e > 1 edges. Let [n] be the vertex set of
G(n,p), and, for some & > 0, let H be a collection of {n® possible copies of H supported on [n].
The probability that G(n,p) does not contain any copy of H from H is at most exp(—&puy /(20T o)),
where py = p1(H) := min{n*EpeF) . F C H, e(F) > 1}.

We separate a calculation that will be needed in later proofs as well. The quantity A bounds
the expected number of pairs of distinct edge-intersecting copies of H, with the first copy from #,
that appear in G(n,p), a quantity closely linked to the variance of the number of copies of H from
H in G(n,p).

Lemma A.1. Let H be a graph with v vertices and e edges, let IC,,(H) be the collection of all copies
of H in the complete graph K,, and let H C K,,(H) be a subcollection thereof. We then have

A= Z P (H'UH" C G(n,p)) < 2°v! [H|n"p*/ o,
H'eH,H"ekn(H):
H'#H" e(H'NH")#0
where poy = po(H) = min{n”(F)pe(F) :F C He(F) > 1}.

Proof. We write H' ~ H" if H') H" are distinct copies of H that share at least an edge, with
H' € H and H" € K,,(H). Thus A denotes the expected number of (ordered) pairs H' ~ H” with
both H' and H” appearing in G(n, p), which we want to bound from above.

Given H' € H, let us estimate its contribution to A. There are fewer than 2¥ ways to choose a
subset S C V(H') of the vertices of H' that are shared with H”, and at most v! assignments ¢ of
these vertices to the vertices of H”. This then determines the subgraph F = F(S, ) C H in which
H' and H” intersect. Let F := {(S,¢) : e(F(S,¢)) > 1} denote the set of viable pairs (S, ¢). For
each such pair, letting F' = F(S, ), there are at most n?=v@) choices for the remaining vertices of
H", and each such copy H” introduces a further e — e(F') edges. Hence the probability that both
H' and H" appear in G(n, p) is p*¢~¢F). This gives

A<Z va 2ee(F UQeZ Z )

H'eH (S,p)eF H'eH (S,p)eF
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The summand is, by definition of yg, at most j ! Since there are at most 2°v! choices of (S, ¢)
in the inner sum, and |H| choices of H' in the outer sum, we get the desired bound of

A < 20! | H| n"p* / uo. O
Theorem follows almost immediately from the lemma.

Proof of Theorem [2.7. Let X3 be the random variable counting the number of copies of H from
‘H that appear in G(n,p), so that we seek to bound P(X3 = 0) from above. We clearly have p :=
E[Xy] = |H|p® = &En’p°. Thus, letting A and o be as in Lemma we have A < 2v!u?/(£ug).
Furthermore, we have p; = min{u/&, uo}-

By the Janson inequality (see [2, Theorem 8.1.1]), if A < pu, then

P(X3 = 0) < exp(—4/2) < exp(—Ep1/(27F10))).

Otherwise, when A > p, we can instead apply the extended Janson inequality [2] Theorem 8.1.2]:
P(X3 = 0) < exp(—p°/(24)) < exp(—Epo/ (27T 0!)) < exp(—Epur/(2°T01)). O

A.3. Proof of Theorem We finally justify our strengthening of the 1-statement of the
asymmetric random Ramsey problem, showing that above the threshold, G(n, p) is both robustly
and globally (H;, Hz)-Ramsey. We recall the precise statement below.

Theorem ([20, 22]). Let Hy and Hs be graphs such that mao(Hy) > mo(H2) > 1, and

(a) ma(H1) = ma(Hz), or

(b) H;y is strictly balanced with respect to ma(-, Ha).

The random graph G(n,p) then has the following Ramsey properties:

(i) There are constantsy = v(Hy, Ha) > 0 and C; = C1(Hy, Ha) such that if p > Cyn~1/ma(H,Hz)
and, fori € [2], F; C (v([z]l)) is a collection of at most yn”H4) forbidden subsets, then G(n, p)
is with high probability robustly (Hy, Ha)-Ramsey with respect to (Fi,Fa).

(ii) For every p > 0 there is a constant Cy = Co(Hy, Ha, p) such that if p > Con~t/ma(H1,Ha)
then G(n,p) is with high probability u-globally (Hi, Hy)-Ramsey.

(iii) If we further have ma(H2) > 1, then there are constants By = Po(Hi, H2) > 0 and C3 =
C3(Hy, Hy) such that if 0 < 8 < By and p > Can~U=B)/m2(HLH2) - then with high probability
G(n,p) is n~P-globally (Hy, H)-Ramsey.

A.3.1. Containers for nearly-H -free graphs and Ramsey supersaturation. As stated earlier, we shall
prove this result by retracing the proofs of Hancock, Staden and Treglown [22] and of Gugelmann,
Nenadov, Person, Skori¢, Steger and Thomas [20], making minor modifications along the way. One
commonality between the two proofs is the use of the hypergraph containers theorems of Balogh,
Morris and Samotij [3] and of Saxton and Thomason [41].

Indeed, if G(n,p) is not (Hi, Hz)-Ramsey, then its edges can be partition into a red Hi-free
subgraph and a blue Hs-free subgraph. The aforementioned containers theorems show there are
only a small number of “containers” that these H;-free subgraphs must belong to, and one may use
the properties of these containers to show it is very unlikely that G(n,p) admits such a partition.

However, in the robust Ramsey setting, it is no longer true that the red subgraph must be
Hi-free or that the blue subgraph must be Hs-free, as they may contain some forbidden copies of
these subgraphs. Fortunately, the containers do not only capture H;-free graphs, but also graphs
with relatively few copies of H;. To make this precise, we use the formulation of Saxton and
Thomason [41], for which we require the following definition concerning r-uniform hypergraphs (or
r-graphs).
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Definition A.2 (Co-degree function). Let I be a vertex-transitive d-regular r-graph, and let T > 0.
Given a set S of at most r vertices, define d(S) to be the number of edges of I' containing S. For
each 2 < j <r, we define ; by the equation

6;7'd = max d(S).
se(V)

The co-degree function 6(T', 7) is then defined by
5(T,7) =215 27 (% g,

Jj=2

Note that the notion of co-degree can be defined more generally (i.e. not just for vertex-transitive
r-graphs); we only state the definition in this form to simplify things a little. In the case of vertex-
transitive graphs, Corollary 3.6 in [41] reads as below.

Corollary A.3 (Saxton-Thomason [41]). Let I' be a vertex-transitive r-graph on vertex set [N].
Let 0 < e, 7 < 1/2. Suppose that T satisfies §(I',7) < e/12r!. Then there exists a constant ¢ = c(r)
and a function ¢ : P([N])? — P([N]), where g < clog(1l/e), with the following properties. Let
T :={(TW,..., T9D) c P(IN])? : |T(j)‘ <c¢rN,j€ql}, and let C:={Y(T): T € T}. Then

(a) for every set I C [N] for which e(L'[I]) < 24erlrr"e(T), there exists T = (TM, ... T@) ¢
T AP with I  »(T) e C,

(b) e(T[x]) < ee(T) for all x € C, and

(c) log|C| < clog(1/e)NTlog(1/T).

Given a graph H, we wish to apply Corollary [A-3] to build containers for n-vertex graphs that
are nearly H-free. To that end, we set N := (Z) and r := e(H), and take I" to be the r-graph whose
vertices correspond to the edges of K,, and whose hyperedges are the edge-sets of all copies of H
in K,. It is clear that I' is vertex-transitive, and, writing v := v(H) and e := e(H), each vertex in
I" has degree

= () i gy = )

We next must bound d(S) for sets S € (Vg,r)), where 2 < j < r. Clearly, if the set S of edges
spans a vertices of H, then d(S) = © (nV~%). Consequently,
max d(S) =06 (n"" %),

Se(VgF))

where a; is the minimum number of vertices that a set of j edges of H can span. Hence

e j—1 — 1-j,.2—a;
dj ¢ Serr(l‘f;tg)%))d(S)/(T d) =0 (' 7n*"%),

and so 0(I',7) = © (maxj Tl_jn2_aj). In order to apply Corollary we need the co-degree
function to satisfy d(I', 7) < ¢/12r!, where € will be a small constant, and therefore we cannot let
7 be too small. Indeed, we need 7 = € (n_(“i_Q)/(j_U) for all 7, which is equivalent to saying
that for every subgraph F' C H, we need 7 = 2 (n*(“(F)*z)/(e(F)*l)). Recalling the definition of
the 2-density mo(H), this implies that for every 0 < ¢ < 1/2, we may apply Corollary with
7 =0, (nfl/ ma(H )). Substituting this choice of 7 into Corollary gives the following.

Corollary A.4. Given a graph H and a constant 0 < e < 1/2, there are positive constants

q =q(e,H),p = B(e,H) and k = k(e,H) such that for every n € N, there is a function 1) :

P(E(K,))? — P(E(K,)) with the following properties. Let T := {(TW, ... T@) e P(E(K,))! :
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!T(j)‘ < Bn?=Ym2(H) 5 e (g}, and let C := {¢(T) : T € T} be the family of corresponding subgraphs
of K. Then
(i) for every subgraph F C K, with at most kn
T eTNP(EF))? with F Cy(T) €C, and
(ii) each subgraph v € C contains at most 6( (H)) copies of H.

v(H)—e(H)/m2(H) copies of H, there is some

Another result we shall need is a supersaturated version of Ramsey’s Theorem — when colouring
the edges of a large enough clique, we do not just see a monochromatic copy of a given graph, but
we see many such copies. This follows from the classic Ramsey’s Theorem by a standard averaging
argument, the details of which can be found in [20].

Proposition A.5 (Folklore). Given r > 2 and graphs Fi, Fs, ..., F,, there are positive constants
ng = no(Fi,..., F) and m = n(Fy, ..., F.) such that if n > ng, then every r-colouring of K, has
some i € [r] for which there are at least ﬂ(v(%)) monochromatic copies of F; in colour i.

A.3.2. Random graphs are robustly Ramsey: Case (a). We now prove the robust Ramsey result
under the assumption (a); that is, ma(H;1) = ma(H2) > 1. Recall that we then have mo(H;, Ha) =
mao(H1) as well. We wish to show that there are constants C,~ > 0 such that if p > Cn~1/m2(H1)
and, for i € [2], F; is a collection of at most An? i) forbidden copies of H;, then G (n,p) is with high
probability robustly (Hi, Hz)-Ramsey with respect to (Fi,F2). By monotonicity, we may assume
p = Cn~1/m2(H1) and, for each i, | F;| = ynv(H),

Recall that the only copies of H; that may be monochromatic in their respective colours are the
forbidden ones from F;. We first claim that there are few forbidden copies of each H; in G(n,p).

Claim A.6. Ifp = Cn~Y™2Hi) for some constant C > 1, then for eachi € [2], with high probability
G(n,p) contains at most 2yCeH)pvHi)—e(Hi)/m2(Hi) copies of H; from Fj.

Proof. We begin with a preliminary calculation. Since p = Cn~Ym2(Hi) > n=1 for any subgraph
F C H; with at least one edge we have

(Al) n'u(F)pe(F) — n2p . nv(F)fQPe(F)fl > Ce(F) 1 2p Q( )
Now let X; denote the number of forbidden copies of H; from F; that appear in G(n,p). We
clearly have ,u(HZ) = IE[ i = |Fs| petH) = ynvHa) pelH) — yce(Hi) pu(Hi)—e(Hi)/ma(Hi) - Noreover,

taking F = H; in (A.1]), we have ,u(H) = Q(n).
We next wish to estimate the variance of X;. Since edge-disjoint copies of H; appear indepen-
dently of each other, we can bound

Var(X;) < > P(FiUF, CG(n,p)).
F1,FheF;:
e(FiNF)>1
The diagonal terms, when F; = Fy, contribute a total of u(H;), which, since u(H;) = Q(n),
is O(u(H;)?/n). On the other hand, the sum over ordered pairs (Fi, Fy) with F; # F, can be
bounded by A from Lemma apphed with H := H; and H := F;,. The lemma gives A <
2V i)y (H,)V | F3 | no(Ha) p2e(H /MO( = O(u(H;)?/uo(H;)). By we have po(H;) = Q(n), from
which we can deduce A O(u(H; / n).
Thus Var(X;) = O(u(H;)?/n). Chebyshev’s inequality now gives the desired result, since

p(H;) n
Define & to be the event that G(n,p) contains more than 2y CelHi) po(Hi)—e(Hi)/ma(Hi) copies of
H; from F;, for some i € [2]. Claim shows that & almost surely does not occur, and we shall

henceforth assume it does not.
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Now suppose G(n, p) is not robustly (H;, Hy)-Ramsey with respect to (Fi, F2). This means the
edges of G(n, p) may be 2-coloured so that the red copies of H; and the blue copies of Hs all belong
to F1 and Fs respectively. In light of Claim the red subgraph has few copies of Hy, and hence
by Corollary must lie within one of the containers for nearly-Hi-free graphs. Similarly, the
blue subgraph must lie within one of the containers for nearly- Ho-free graphs. Since there are very
few containers, and the containers are relatively small, this is very unlikely.

To be more precise, let 7 = w(H1, Ha, K2) be the constant from Proposition For i € [2], we
then apply Corollary H A4 with e := 7r / 2 and H; to get constants ¢;, 8; and k;, and a map v; from

a collection of sequences 7; := {( ( )) € P(E(Ky))% : )Ti(j)‘ < Bn2Ym2(h) 5 e g} to
the set of containers C; := {¢z( T;) : E € 7;}. Given a choice of the constant C, which we shall
implicitly specify at the end, we set v := min{x;/(2C¢)) : 4 € [2]}.

Now fix a 2-colouring of G(n, p) where all the red copies of Hy and blue copies of Hy belong to Fi
and F» respectively. By Claim |A.6] the red subgraph G has at most 2yCeH1) pv(H1)—e(H1)/ma(Hi)
copies of Hy, which, by our ch01ce of v, is at most rn?H)~ (Hl)/m2(H1) By Corollary -, there
is some 11 € T1 NP(E(G1))? such that G1 C C := 91 (T1) € C1. A similar argument for the blue
subgraph Gy gives Ty € To N P(E(G2))% with Go C Cy := 1¢9(T») € Ca. Since G(n,p) = G1 U G,
we have G(n,p) C Cy U Cs.

Corollary also asserts that, for i € [2], C; contains at most m(, Z ) /2 copies of H;. By
Proposition it follows that there are at least 7(5) edges in R(T3,T3) := E(K,) \ (C1 UCy), all

of which must be missing from G(n,p).

Given T7 € 71 and Ty € 75, we define the shorthand 77 U Ty := Uie2] {Uje[qi]Ti(j)}. Now let

E(T1,T») be the event that all edges in 71 UT» are in G(n, p) while all edges in R(T},T%) are missing.
Since |R(T1,T2)| > 7(3), we have

P(g(Tl, Tg)) = p|T1UT2|(1 _ p)|R(T1,T2)| < p|T1UT2| exp (—7T (;L)p) ‘

Our above discussion shows that if G(n,p) does not have the desired robust Ramsey property,
then either & or one of the events £(T1,T») must occur. By the union bound, the probability of
G(n,p) not being robustly (H;, Hy)-Ramsey with respect to (Fi, F2) is at most

S ST D) +B(&) < exp <—7r <Z)p> S PRI o)

Ti€T1,1T2€T2 Ti€T1,T2€T2

= exp (—ﬂ(Z)p) 3 S o).

SCE(Ky) T1€T1,T2€T2:
T1UT2 S

Now recall that T; = (T.(l)7 e ,T.(q")), where ‘Ti(j)’ < Bin21/m2(Hi) - and so Ty UTs| < M, =

(] (3
(Braa +52Qg)n2*1/m2(H1). Moreover, given a set .S of at most this size, for each edge e € S, we must

choose which of the sets Ti(j ) it belongs to, and hence there are at most 2@+®IS| pairs (T, T)
corresponding to S. Therefore

>y e 3 ey (7) ey ()

SCE(Kn) T\ET1, To€T: SCE(Kn):
T1UTx=S |S|< My,
Substituting p = Cn~1/"2(H1) we find that the summand is (201192 Cen?~1/m2(H1) /5)s. Since
the function f(x) = (A/xz)" increases to a maximum at x = A/e, it follows that, if C' is sufficiently
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large, the largest summand corresponds to s = M,,. We thus have

901+a2 (Jep2—1/ma(H1) \ "
S PR < (M, 4 1) ( — = (M + 1) exp(Len? Y/ ma00)
T €T, T2€T2 "

where Lo = (81q1 + f2q2) In (2472 Ce/(B1q1 + B2go)). This gives

P (G(n,p) is not robustly Ramsey ) < (M, + 1) exp (Lcng_l/mQ(Hl) - w(Z)p) +o(1)

< (M, +1) exp ((LC - Cw/4)n2*1/m2<Hl>) +o(1)
(A.2) < exp (fC’ﬂ'nZ_l/mQ(Hl)/S) +o(1),

where the final inequality holds when we choose C' to be sufficiently large, since L¢ is logarithmic
in C, and if n is large enough, since M, is only polynomial in n. This shows G(n,p) is with high
probability robustly (Hy, Ha)-Ramsey with respect to (Fi, F2). O

A.3.3. Random graphs are robustly Ramsey: Case (b). We next prove the robust Ramsey result
under the assumption (b), when H is strictly balanced with respect to ma(-, H2). When mo(H;) >
mao(Hsz) and p = C’nil/mQ(Hl’HQ), there are too many nearly- Hi-free containers for the union bound
calculation of Case (a) to work.

We will instead exploit the fact that nearly all copies of H; in G(n, p) are edge-disjoint. To that
end, call a copy of H; in G(n,p) isolated if it is edge-disjoint from all other copies of Hj, and call
it non-isolated otherwise. Our first claim shows that there are few non-isolated copies of Hj.

Claim A.7. Let Hy be strictly balanced with respect to ma(-, H2), and let p = Cn~V/m2(HHz) fo
some constant C > 1. There is a constant 6 = 6(Hy, Ha) such that the number of non-isolated
copies of Hy in G(n,p) is with high probability at most n?=1/m2(H2)=3

Proof. If a copy H' of H; is non-isolated, then there is some other copy H” # H' of Hy such that
e(H'NH") > 1. The number of non-isolated copies of Hy in G(n,p) is thus bounded from above by
the expected number of such pairs {H', H"”}, which is precisely the quantity A from Lemma
when H := Hy and H := K,(H1). The lemma gives
< 27U () Gp2em) i) 1)) 2

- po(H1) - po(H) 7
where pio(H;) = min{n*FpeF) . F C Hy, e(F) > 1}.

For each F' C H; with e(F') > 1, define dp such that

e(Hy) e(F)
Hy, Hy) = — :
malH Ha) = S =5 ()~ o(F) — 24 1/ma () — 207
It then follows that for every F' C H; we have

(A.3) nv(F)pe(F) — eF) po(F)—e(F)(v(H1)=2+1/ma(Hz2))/e(H1) _ re(F),,2—1/m2(H2)+20F

We clearly have dp, = 0. On the other hand, since H; is strictly balanced with respect to
ma (-, Ha), we have dp > 0 in all other cases. Letting 0 = 0(H1, H2) := min{dp : F C Hy,e(F) > 1},
it follows that pg(Hy) > n2~1/m2(H2)+25

By using these values for dp, and uo(H1), we can bound the expected number of pairs of inter-
secting copies of Hy by

(et ey 2 me )2\
A_O<AMHD_O it | = 0 (n )
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Using Markov’s inequality, the probability that the number of pairs of intersecting copies of Hi,
and thus the number of non-isolated copies of Hy, in G(n,p) is more than n?~1/m2(H2)=0 5 O(n=9),
establishing the claim. O

Let & be the event that G(n,p) has more than n2-1/m2(H2)=8 non_isolated copies of Hy, which
Claim [A.7] shows we may assume does not occur. We denote by L the set of edges in non-isolated
copies of Hi. Note that any edge e € E(G(n,p)) \ L is contained in at most one copy of Hj.

Now suppose that G(n,p) is not robustly (H;, Hs)-Ramsey with respect to (Fi,F2), and fix
a 2-colouring of its edges where the only red copies of H; and blue copies of Hy in G(n,p) are
forbidden (i.e. in Fj or JF» respectively). We may safely assume that any edge of G(n,p) that is
not contained in a copy of Hj is red, since if not, recolouring it red does not create a red copy of
H;. Furthermore, we may assume that every isolated non-forbidden copy of H; has exactly one
blue edge — since it is not in JFi, it cannot be monochromatic red, and if it has more than one
blue edge, then since it is an isolated copy of Hj, recolouring all but one of them red cannot create
a red copy of Hj.

Let B be the subgraph of G(n,p) consisting of all edges not in L that are coloured blue. Note
that each edge of B must be contained in a copy of Hy, and moreover these copies are pairwise
edge-disjoint. We thus call a set E of edges in G(n,p) viable if each e € E is contained in some
copy W, of Hj such that the copies {W, : e € E'} are pairwise edge-disjoint. We further call such
a set of copies a witness for the viability of FE.

Note that a set of edges E can only be contained in B if F is viable. The next claim bounds the
likelihood of viability.

Claim A.8. Ifp = Cn~Y/m2(HuH2) for some positive constant C, then a set E of s edges is viable
with probability at most p*, where p := C*H)y(Hy)2n~1/m2(Hz2),

Proof. We take a union bound over all possible witnesses for F. Since the copies W, of H; in
a witness are edge-disjoint, each witness requires exactly e(H;)s edges to appear in G(n,p), and
hence appears with probability peH)s,

To estimate the number of possible witnesses, note that for each edge e € E, we have fewer
than v(H7)? ways to assign vertices of Hj to the vertices of e in the copy We. There are then at
most a further n?#1)=2 choices for the remaining vertices in W,. This shows there are at most
(v(Hyp)?*nH1)=2)s possible witnesses for E.

The expected number of witnesses for E, which bounds from above the probability of E being
viable, is therefore at most

(U(Hl)an(Hl)ﬂ)Spe(Hl)s _ (U(Hl)an(Hl)fZPe(H1)>s —
where in the last equality we use the fact that pc(H1) = Ce(H1)p2—v(H1)=1/ma(Hz) O

Only forbidden copies of Hs can be monochromatically blue. Furthermore, a copy of Hy in B
must also be viable. Claim asserts there cannot be many viable forbidden copies of Ha. We
will defer its proof for the moment, first seeing how it implies the robust Ramsey result.

Claim A.9. The number of viable forbidden copies of Ho from Fa is with high probability at most
yKnvH2)=e(H2)/m2(H2) for some constant K = K (C, Hy, Hy).

We now lay some groundwork for the rest of the proof, including specifying our choice of the
constant 7. Let m = w(Hj, H2, K2) be the constant from Proposition We now apply Corol-
lary with H := Hy and ¢ := 7/2. This gives us constants ¢, 8 and &, together with a collection
T = {(TW, ..., TW) € P(E(K,))? : |T(j)‘ < pn2-1/m2(H2) 5 ¢ [¢g]} and a set of containers
C:={y(T): T € T} for nearly- Ho-free graphs. Finally, for whatever sufficiently large constant we
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will later choose C to be, we set v := min{x/K, 7 /(2v(H;)*#1))}, where K = K(C, Hy, Hy) is the
constant from Claim [A.9

Now let & be the event that there are more than xn?(H2)—e(H2)/m2(H2) yiable forbidden copies
of Hy, which, by Claim [A.9] and the fact that £ > vK, we may assume does not occur. Since all
copies of Hy in B must be viable and forbidden, it follows that B has at most rn?(H2)—e(Hz2)/m2(Hz)
copies of Ha. By Corollary there is then some T' € T N P(E(B))? with B C ¢(T). Let &(T)
be the event that the set of edges E(T") = U?ZlT(j) is viable, which must hold for them to be in B.
By Claim [A-§] we have

(A.4) P(&x(T)) < pP T,

Next define R = R(T, L) := E(K,) \ (¢(T) U L), and consider the 3-colouring of E(K,) where
all edges in R receive colour 1, edges in 9 (T") have colour 2 and those in L \ ¢(T") are coloured
3. Corollary guarantees that there are at most TF(U(ZQ)) /2 copies of Hy coloured 2, while

Claim m guarantees that there are fewer than W(g) copies of K3 in colour 3. By Proposition
we must therefore have at least W(v(;‘h)) copies of Hy in R. Let H be those copies of Hy in R that
are not forbidden, and note that since |Fj| < yn*) we have |H| > w(v(?h))/Q > env(H) for
€ = 7/(2u(Hy ) H),

Let £3(T, L) be the event that none of the copies of H; in H appear in G(n,p), and note that
this must hold. Otherwise, the copy of Hy € H, which is not forbidden, must be monochromatic
red, since all blue edges of G(n,p) lie either in L or in B C ¢(T), contradicting our assumption
that the only red copies of Hy are forbidden.

By Theorem we have P(£3(T, L)) < exp(—&uy(Hy)/(2UHDHy(H)Y)). As we saw in ,
since H; is strictly balanced with respect to ma(-, Ha), it follows that pi(H;) = noHD) pe(t) —
CetH)p2=1/m2(H2)  Thus, setting & = ¢/(2°H)+1y(H})!), we have

(A5) P(E(T, L)) < exp(—£CUHp2=1/maH2) vy (Hy 1)) = exp(—¢/CeUH) p? 1 /ma(H2),

To summarise, in order for G(n,p) to have a 2-colouring where all the red copies of H; and blue
copies of Hy are forbidden, we either need & or &; to hold, or, if they do not, for £(T') A E3(T, L)
to hold for some choice of T' € T and some specified set L of edges in non-isolated copies of Hj.
We can thus estimate the probability that G(n, p) is not robustly Ramsey by taking a union bound
over these results:

(A.6) P(G(n,p) is not robustly (Hi, Hy)-Ramsey) < P(&) + P(&1) + ZIP’(EQ(T) NEs(T,L)).
T,L
Since &(T) — that all of the edges from E(T) appear in B — is a monotone increasing graph
property, while £(T, L) — that none of the copies of Hy from R(T,L) appear in G(n,p) — is a
monotone decreasing graph property, it follows from the FKG Inequality (see [2, Theorem 6.3.3])
that P(EA(T) AN E(T, L)) < P(E(T))P(E3(T, L)). Using the upper bounds from and (A.F)), we
can bound the sum by

> P (&(T) A E(T, L)) < exp (_gcdHl)n?fl/mz(Hz)) SO plE@,
T,L L T

There are at most n?~1/"2(H2)=0 non_jsolated copies of H; (as otherwise we are covered by &),

and hence the sum L only runs over sets of at most e(H;)n?~1/m2(H2)=9 edges. Thus

e(Hl)n271/'m2(H2)75

ZP(gQ(T) AEs(T, L)) < exp (_§/CE(H1)n2—1/m2(H2)> Z ((%)) ZPIE(T)l
T,L T

=0
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(A7) < exp (oIl malle) y g (2o/maltia)) ) Zp'E

We now bound the sum over T as we did in Case (a). From Corollary [A.4] we know s = |[E(T)| <
M, := gBn?>~1/m2(H2) We group the g-tuples T by the size of E(T'), observing that each set of edges
E(T) corresponds to at most 29T g-tuples in 7. Recalling the definition of p from Claim
we have

- M 90 Ce(H) 21 ma () \ *
Zp\E <5 % psz<”s> Z( 2 : )
b

As before, this summand is maximised when s = M, yielding, for A := v(H1)%e29/(¢),

|E(T)] 2—1/ma(Ha) e(Hy)) 9"
D01 < (gm0 1) (2000)

Making the substitution in (A.7]), we find
(A8) Y P(&(T)AE(T,L)) < exp ((—g'ce“fl) +¢fln (ACe(Hl)) v 0(1)) n2—1/m2<H2>) :
T,L

2—1/mg(H2)

Thus, if we choose C' to be a sufficiently large constant (with respect to £, ¢, 8 and A), this sum
is o(1). By Claims and respectively, so are P(€) and P(&;). Hence, by (A.6), it follows
that G(n,p) is with high probability robustly (H;, H2)-Ramsey with respect to (Fi, Fa). O

To complete the proof, we prove Claim [A:9]

Proof of Claim[A.9. In order for a forbidden copy H € F» of Hj to be viable, it must have a witness
— that is, a collection of pairwise edge-disjoint copies W, of H; containing each edge e € E(H).
We shall bound the number of witnesses for forbidden copies of Hs, thereby obtaining an upper
bound on the number of viable forbidden copies of Ha.

Note that there are various non-isomorphic types of witnesses, depending on how the copies
W, of H; are attached to the edges of the forbidden copy of Hs, and whether or not they share
vertices. Let I'1, ..., T, represent the different isomorphism classes, where m := m(Hy, H) is some
constant. Although these witnesses can have different numbers of vertices, up to a maximum of
v(Hy)+e(Hs)(v(Hp)—2), the edge-disjointness of the W, ensures they each have exactly e(Hy)e(Hs)
edges.

We will show that for p = Cn=1/m2(H1.H2) if we set K/ := 2yCeH1)e(H2) then for each i € [m)]
the probability that there are at most yK'nv(H2)—e(H2)/m2(H2) ¢opies of I'; with the central copy of
Hy coming from F3 is O(1/n). Then, taking K := mK’, a union bound over the different types
of witnesses I'; shows that the probability of there being more than yKnv(H2)—e(H2)/m2(H2) yiahle
forbidden copies of Hs is also O(1/n).

Let us fix some witness I';, where ¢ € [m], and let X; denote the number of copies of I'; in G(n, p)
with the central copy of Hs coming from Fs. If we first select this central copy, and then the
remaining vertices of T';, we see there are at most |Fp| n?(T)=0(H2) — 4o possible witnesses of
this form, each appearing with probability pe(11)e(H2)  Thus E[X;] < ynvT+)pe(H1)e(Hz),

We now differentiate between two cases.

Case I: v(I';) < v(Hsz) + e(Hz)(v(Hy) — 2) — 1. In this case we have

’U(H2)71 (ny(Hl),2pe(H1)> E(HQ)

E[Xl] < ,an(Hg)+e(H2)(v(H1)72)71pe(H1)e(H2) =n

Since n?(H)=2pelth) — Ce(Hr)p=1/m2(Hz2) " we have E[X;] < yCe(H1)e(H2)pu(Ha)—e(H2)/ma(H2) =1 By

Markov’s inequality, P(X; > yK'nv(H2)—e(H2)/m2(H2)) — O(1/n), as desired.
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Case II: v(I';) = v(H2) + e(H2)(v(Hy) — 2). In this case the copies {W, : e € E(H2)} of Hy in T
are all vertex-disjoint except for where a pair intersect in precisely one vertex in the central copy
of HQ.

The calculation above shows E[X;] < yCe(H1)e(Hz2)pu(Ha)—e(Hz)/ma2(H2)  We can again use Lemma
to bound Var(Xj;), applying the lemma with H :=T'; and H the collection of all possible witnesses
of this type for forbidden copies of Hs. As in the proof of Claim this gives

A2V (T)! (v () pel'i) )2

Var(X;) < A+ E[X;] < o) + ,ynv(Fi)pe(Fi)
(A
nv(La) pe(ls) 2 nv(H2)—e(Hz2)/mo(Hz) 2
(TN )
a p1(Is) - p1(T5) ’

where p1(I';) is as defined in Theorem|2.7] The penultimate equality above then follows from the fact
that 1(I;) = min{uo(T;), n*T)peT) 1. We shall shortly show that sy (T;) = Q(n). Chebyshev’s
inequality then gives the desired bound:

P ( X, > K/nv(Hz)—e(Hz)/m2(H2)> <P ( X; — E[X;] > ,yce(Hl)e(Hz)nﬂ(Hz)—e(Hz)/mz(Hz))

Var(X;) (1)
< 5=0(~].
(ryCe(Hl)€(H2)nU(Hz)—e(Hz)/mz(Hz)) n

To finish, we establish a lower bound for i (I;) = min{n*FpeF) . F C Ty, e(F) > 1}, and let
Fy be the subgraph of I'; that minimises this expression. Recall that for each edge h in the central
forbidden copy H € F3 of Ha, we have a copy W}, of Hy containing h. Let Fy(h) be the subgraph
of Hy induced by Fy on Wp,, and let wy, := e(Fp(h)) be the number of edges it contains. We then
have e(Fp) = > e, Wh-

When we count the vertices of Fjy, we observe that the vertices from the central Hs will belong
to several of the Fy(h). Thus, for each h € E(Ha), we let vy, := v(EFy(h)), and let r,, € {0,1,2}
denote the number of the vertices from h that are in Fy. Let F{J denote the subgraph of the
central Hy contained within Fp; in particular, we have r, = 2 if and only if h € E(Fj). Moreover,
v(Fo) = v(FF) + X hepmy) (Vh — Th)-

Thus we have

Ml(ri) — n’U(F())pe(FO) _ nv(Fé‘) H nvh*Thp’wh > Oe(Fg)nv(Fg) H nvhfrhfwh/mg(Hl,Hg)'
heE(Hz) heE(Hs):
wp>1
For each h in the final product, since Fy(h) C Hj, the definition of mo(Hy, Hy) implies wy <
(v, — 2+ 1/ma(H2))ma(H1, H2). Therefore

,Ul(rz) > Ce(Fo)nv(Fg) H n277"h71/m2(H2) > Cve(Fg)nv(Fa‘)+|{h€E(H2):wh21,7“h:0}\fe(Fg)/mz(H2)7

heE(Ho):
wp>1
where the last inequality is due to the fact that, since mo(H2) > 1, the exponent 2 —r, —1/mqo(Hs)
is at least 1 if r, = 0, is non-negative when rp, = 1, and is —1/mg(Hs2) when r;, = 2 or, equivalently,
h € E(Ff).

If e(F§) > 1 (and therefore v(F) > 2), then by definition of mo(Hz) we have e(Fy) < (v(Fy) —
2)mo(Hsy) + 1. Substituting this into the exponent, we find n?(F6)—e(Fg)/ma(Hz) > p2=1/m2(Hz) >y
and hence p;(I';) = Q(n).

Therefore we may assume e(Fj) = 0, in which case p1(I';) = Q(n
This exponent is always at least 1, since either v(Fy) > 1, or r, = 0 for all h € E(Hz) and,
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since e(Fp) > 1, we must have wy, > 1 for some h as well. Thus we indeed have pu;(T';) = Q(n),
completing the proof of this claim. O

A.3.4. Random graphs are globally Ramsey. Having proven part (i) of Theorem we finally
deduce the global Ramsey properties of G(n,p) from the above proofs, thereby establishing the
remaining parts (ii) and (iii). Here we wish to show that, for appropriate probabilities, G(n,p) is
p-globally (Hy, Hy)-Ramsey, for pn > 0 constant and p = n~? respectively.

We begin with the assumption (a), that mo(H;) = ma(H2). For (ii), let © > 0 be a fixed
constant, and set Cy := Clufl/””‘?(Hl’H?), where C is the constant from part (i). To show that
G(n,p) is p-globally (Hy, Hy)-Ramsey when p > Con~t/m2(H1.H2) it will suffice to apply the union
bound over all subsets U C [n] of ng := un vertices.

Indeed, for any such set U, we have G(n,p)[U] ~ G(ng,p), where p = Can

Clngl/mQ(Hl’Hz). By (A.2), the probability that G(n,p)[U] is not (Hj, H2)-Ramsey is at most

exp <—Cl7m§71/m2(H1)/8) + o(1), where 7 = w(H;, Ha, K3) from Proposition |A.5

However, the o(1) error term came from the event &, where many forbidden copies of H; appeared
in G(ng,p). Since we do not have forbidden copies in our current setting, we do not incur this error.
Thus, recalling that ma(H7) > 1, and assuming, as we may freely do, C; > 8mu~!, we see that the
probability that G(n,p)[U] is not (Hi, Hz)-Ramsey is at most exp(—n). We may therefore take a
union bound over all such sets U, of which there are fewer than 2", which shows that G(n,p) is
u-globally (Hy, Hy)-Ramsey with high probability.

—1/mo(H1,H2) —

For part (iii), we instead set ng := n'=?, and set C3 := C;. Letting U C [n] be a set of ng

vertices, we have G(n,p)[U] ~ G(ng,p), where p > C’lnal/m2(H1’H2). As above, the probability

that G(n,p)[U] is not (Hy, Hy)-Ramsey is at most exp(—Clwng_l/mQ(Hl)/S).
We can now take a union bound over all such sets U, of which there are (" ) < exp (noIn (ne/ng)) =

no
exp(n(1)+o(1)). Hence the probability that there is a non-Ramsey subgraph induced on some U is at

most exp(n(l)+o(1) — Cmng_l/mQ(Hl)/S). Since mo(Hy) > 1, it follows that G(n,p) is n~5-globally
(Hy, Hy)-Ramsey with high probability.

The argument under the assumption (b), that H; is strictly balanced with respect to ma(-, Hz2),
is very similar. We will again run a union bound over all sets U of size ng := un (for constant
p >0 and g = n~?), using the fact that G(n,p)[U] ~ G(no,p) and choosing the constants Cy and
Cs such that p > Cyng /™0 H2)

In we bounded from above the probability of G(n,p) not being robustly (H;, Hz)-Ramsey.
Since we do not have collections of forbidden copies of H; and Ha, we can again omit the error

term from the event & of there being too many viable forbidden copies of Hs. We then have

P(G(n, p)[U] is not (Hy, Hy)-Ramsey) < P(€1) + Y P(&(T) A &(T, L)).
T.L

Recall that & is the event that we have more than n2-1/ma2(H2)=3 1on jsolated copies of Hy. In

Claim [A.7] we only obtained polynomially small bounds on its probability, and so we cannot afford
to take a union bound over this event holding for each induced subgraph G(n,p)[U]. Instead, we
replace the event by &}, the event that G(n,p) has more than ng_l/ m2(H2)=0 1 oh isolated copies
of Hy. Since a non-isolated copy of Hy in G(n,p)[U] must be non-isolated in G(n,p) as well, this
modified event would suffice for our purposes, and we can avoid the union bound for &;.

To see that £] holds with vanishingly small probability, observe that in Claim the expected
number of pairs of intersecting copies of Hj, which we bounded by O (n2_1/ m2 H17H2)_25), was
polynomial in n and p. Hence when we increase p to either Coyn~t/m2(HuH2) op Cyp~(1=8)/ma(H1,Hz)
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provided 8 < Bo(Hi, Hz), this expected number will grow to at most O (n2_1/m2(H1’H2)_55/3).
Similarly, since ng > n!'=, we have ng_l/m2(H2)_6 = Q (n27Y/ma(H2)=19/3

apply Markov’s inequality to deduce P(€]) = o(1).

This leaves us with the sum > 5 ; P (£2(T) A E(T, L)), which we saw in (A.8) can be bounded
by exp(—2 (n2_1/ m2(H2)). As under the assumption (a), we can afford to take a union bound over
all (7:‘0) choices for the set U, and still have the probability that there is some induced subgraph

G(n,p)[U] where E(T)AE(T, L) holds be o(1). Hence it follows that G(n, p) is with high probability
p-globally (Hi, Ha)-Ramsey in this case as well, completing the proof of Theorem m O

). Thus we can still
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