Monochromatic triangles in three-coloured graphs

Andrew Treglown

Charles University, Prague

10th September 2012

Joint work with James Cummings (Carnegie Mellon), Daniel Král' (Charles University), Florian Pfender (Colorado), Konrad Sperfeld (Universität Rostock) and Michael Young (lowa State)

Ramsey theory

- Ramsey theory concerns questions of the following type: What is the smallest n such that K_{n} contains a monochromatic triangle whenever its edge set is 2 -coloured?

- If $n=5$, may have no monochromatic triangle. If $n \geq 6$, you must!

Ramsey multiplicity

- Ramsey's theorem $\forall k \in \mathbb{N}$ and any graph H, if n suff. large $\Longrightarrow K_{n}$ contains a monochromatic H for any k-colouring
- It is natural therefore to ask how many monochromatic H must a k-coloured copy of K_{n} contain?
- Ramsey multiplicity $M_{k}(H, n)=$ minimum number of monochromatic H over all k-colourings of K_{n}.
- e.g. $M_{2}\left(K_{3}, 5\right)=0$ and $M_{2}\left(K_{3}, 6\right) \geq 1$ (actually, $M_{2}\left(K_{3}, 6\right)=2$).
- How many monochromatic triangles must a 2-coloured K_{n} contain (for $n \geq 6$)?

Theorem (Goodman 1959)

 If K_{n} is 2 -coloured \Longrightarrow at least $2\binom{n / 2}{3}$ monochromatic triangles.

So $M_{2}\left(K_{3}, n\right)=2\binom{n / 2}{3}$.

Monochromatic triangles in 3-coloured graphs

- Goodman also asked for a 3-coloured analogue.
- Giraud (1976): $M_{3}\left(K_{3}, n\right)>4\binom{n}{3} / 115$ for large n.
- Sane and Walis (1988): $M_{3}\left(K_{3}, 17\right)=5$. (Note that $R_{3}\left(K_{3}\right)=17$ so $M_{3}\left(K_{3}, 16\right)=0$.)
\square

Monochromatic triangles in 3-coloured graphs

- Goodman also asked for a 3-coloured analogue.
- Giraud (1976): $M_{3}\left(K_{3}, n\right)>4\binom{n}{3} / 115$ for large n.
- Sane and Walis (1988): $M_{3}\left(K_{3}, 17\right)=5$. (Note that $R_{3}\left(K_{3}\right)=17$ so $M_{3}\left(K_{3}, 16\right)=0$.)

Theorem (Cummings, Král', Pfender, Sperfeld, T., Young 2012+)

If n large and K_{n} is 3 -coloured \Longrightarrow at least $5\binom{n / 5}{3} \approx 0.04\binom{n}{3}$ monochromatic triangles.

Theorem (Cummings, Král', Pfender, Sperfeld, T., Young 2012+)
If n large and K_{n} is 3 -coloured \Longrightarrow at least $5\binom{n / 5}{3} \approx 0.04\binom{n}{3}$ monochromatic triangles.

So $M_{3}\left(K_{3}, n\right)=5\binom{n / 5}{3}$ for large n.

- Notice that the extremal graph isn't unique.

- Let \mathcal{G}_{n} denote class of all such 3-coloured K_{n}.
- We actually prove a stronger result.

Theorem (Cummings, Král', Pfender, Sperfeld, T., Young 2012+)
 Suppose n sufficiently large and G is 3 -coloured K_{n} containing minimum number of monochromatic $K_{3} \Longrightarrow G$ is member of \mathcal{G}_{n}

- So we have characterised all the extremal examples.

outline of the proof

Theorem (CKPSTY)

Suppose n large and G is 3-coloured K_{n} containing min. number of mono. $K_{3} \Longrightarrow G \in \mathcal{G}_{n}$

Consider the following family of 3-coloured graphs \mathcal{H}

outline of the proof

- Note that no graph in \mathcal{G}_{n} contains an element of \mathcal{H} as a subgraph.

- Using Razborov's method of flag algebras we prove the following.

Proposition

$\forall \varepsilon>0$, if n large and G is 3 -coloured copy of K_{n} then:
(i) G contains $\geq(0.04-\varepsilon)\binom{n}{3}$ mono. K_{3}
(ii) If G contains $\leq 0.04\binom{n}{3}$ mono. $K_{3} \Longrightarrow$
G contains $\leq \varepsilon\binom{n}{4}$ copies of graphs in \mathcal{H}.

- So if $G=3$-coloured K_{n} with minimum number of mono. K_{3} then G satisfies (i) and (ii).
(i) G contains $\geq(0.04-\varepsilon)\binom{n}{3}$ mono. K_{3}
(ii) G contains $\leq \varepsilon\binom{n}{4}$ copies of graphs in \mathcal{H}.

Let $n_{1} \ll n$.

- Call a set V of n_{1} vertices standard if
(1) $G[V]$ contains $\leq(0.04+o(1))\binom{n_{1}}{3}$ mono. K_{3};
(2) $G[V]$ contains no element of \mathcal{H}.

With high probability a random sample of n_{1} vertices is standard.

A standard subgraph 'looks' like an element of $\mathcal{G}_{n_{1}}$.

Let $n_{2} \ll n_{1}$.
We can find a set V of n_{2} vertices such that
(1) $G[V]$ looks like an element of $\mathcal{G}_{n_{2}}$;
(2) $G[V \cup\{u, v\}]$ looks like an element of $\mathcal{G}_{n_{2}+2}$ for almost all pairs of vertices u, v.
$\Longrightarrow G$ 'close' to an element of \mathcal{G}_{n}.
$\Longrightarrow G$ is an element of \mathcal{G}_{n}.

Open problems

- Lower the bound on n in our theorem. (Note the result can't hold for all n though.)
- Prove analogous results for more colours $(k \geq 4)$.

