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Ramsey theory

Ramsey theory concerns questions of the following type:
What is the smallest n such that Kn contains a
monochromatic triangle whenever its edge set is 2-coloured?

If n = 5, may have no monochromatic triangle. If n ≥ 6, you
must!
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Ramsey multiplicity

Ramsey’s theorem ∀ k ∈ N and any graph H, if n suff. large
=⇒ Kn contains a monochromatic H for any k-colouring

It is natural therefore to ask how many monochromatic H
must a k-coloured copy of Kn contain?

Ramsey multiplicity Mk(H, n) = minimum number of
monochromatic H over all k-colourings of Kn.

e.g. M2(K3, 5) = 0 and M2(K3, 6) ≥ 1
(actually, M2(K3, 6) = 2).
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How many monochromatic triangles must a 2-coloured Kn

contain (for n ≥ 6)?

Theorem (Goodman 1959)

If Kn is 2-coloured =⇒ at least 2
(n/2

3

)
monochromatic triangles.

n/2 n/2

So M2(K3, n) = 2
(n/2

3

)
.
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Monochromatic triangles in 3-coloured graphs

Goodman also asked for a 3-coloured analogue.

Giraud (1976): M3(K3, n) > 4
(n
3

)
/115 for large n.

Sane and Walis (1988): M3(K3, 17) = 5.
(Note that R3(K3) = 17 so M3(K3, 16) = 0.)

Theorem (Cummings, Král’, Pfender, Sperfeld, T., Young 2012+)

If n large and Kn is 3-coloured =⇒ at least 5
(n/5

3

)
≈ 0.04

(n
3

)
monochromatic triangles.
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n/5 n/5
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Notice that the extremal graph isn’t unique.

green matching

Let Gn denote class of all such 3-coloured Kn.
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We actually prove a stronger result.

Theorem (Cummings, Král’, Pfender, Sperfeld, T., Young 2012+)

Suppose n sufficiently large and G is 3-coloured Kn containing
minimum number of monochromatic K3 =⇒ G is member of Gn

So we have characterised all the extremal examples.
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outline of the proof

Theorem (CKPSTY)

Suppose n large and G is 3-coloured Kn containing min. number
of mono. K3 =⇒ G ∈ Gn

Consider the following family of 3-coloured graphs H
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outline of the proof

Note that no graph in Gn contains an element of H as a
subgraph.

n/5n/5

n/5 n/5

n/5
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Using Razborov’s method of flag algebras we prove the
following.

Proposition

∀ ε > 0, if n large and G is 3-coloured copy of Kn then:

(i) G contains ≥ (0.04− ε)
(n
3

)
mono. K3

(ii) If G contains ≤ 0.04
(n
3

)
mono. K3 =⇒

G contains ≤ ε
(n
4

)
copies of graphs in H.

So if G = 3-coloured Kn with minimum number of mono. K3

then G satisfies (i) and (ii).
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(i) G contains ≥ (0.04− ε)
(n
3

)
mono. K3

(ii) G contains ≤ ε
(n
4

)
copies of graphs in H.

Let n1 � n.

Call a set V of n1 vertices standard if
(1) G [V ] contains ≤ (0.04 + o(1))

(n1
3

)
mono. K3;

(2) G [V ] contains no element of H.

With high probability a random sample of n1 vertices is standard.
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A standard subgraph ‘looks’ like an element of Gn1 .
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Let n2 � n1.

We can find a set V of n2 vertices such that
(1) G [V ] looks like an element of Gn2 ;
(2) G [V ∪ {u, v}] looks like an element of Gn2+2 for almost all
pairs of vertices u, v .

=⇒ G ‘close’ to an element of Gn.

=⇒ G is an element of Gn.
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Open problems

Lower the bound on n in our theorem.
(Note the result can’t hold for all n though.)

Prove analogous results for more colours (k ≥ 4).
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