Ramsey properties of the Erdős-Renyi graph and random sets of integers

Andrew Treglown
University of Birmingham

London, May 2017

Joint work with
Robert Hancock (Birmingham) and Katherine Staden (Warwick)

Overview

In this talk we are interested in:

- Ramsey properties of graphs and sets of integers of a given density
- The resilience of these properties
- How this relates to independent sets in hypergraphs

Classical Ramsey theory

Let H be a graph and $r \in \mathbb{N}$.

- A graph G is (H, r)-Ramsey if whenever the edges of G are r-coloured, there is a monochromatic copy of H in G.

Classical Ramsey theory

Let H be a graph and $r \in \mathbb{N}$.

- A graph G is (H, r)-Ramsey if whenever the edges of G are r-coloured, there is a monochromatic copy of H in G.

K_{5} is not $\left(K_{3}, 2\right)$-Ramsey

Classical Ramsey theory

Let H be a graph and $r \in \mathbb{N}$.

- A graph G is (H, r)-Ramsey if whenever the edges of G are r-coloured, there is a monochromatic copy of H in G.

Theorem (Ramsey 1930)

For any H and $r \in \mathbb{N}$, if n is sufficiently large then K_{n} is (H, r)-Ramsey.

Ramsey properties of random graphs

The Erdős-Renyi graph $G_{n, p}$ has:

- Vertex set $[n]:=\{1, \ldots, n\}$;
- Each edge is present with probability p, independently of all other choices.

Question

For which values of p is $G_{n, p}$ with high probability (w.h.p.) (H, r)-Ramsey?

Ramsey properties of random graphs

Given a graph H define

$$
m_{2}(H):=\max \left\{\frac{e\left(H^{\prime}\right)-1}{v\left(H^{\prime}\right)-2}: H^{\prime} \subseteq H \text { and } v\left(H^{\prime}\right) \geq 3\right\}
$$

Theorem (Rödl and Ruciński 1995)

- Suppose H is not a forest consisting of stars or paths of length 3;
- $r \geq 2$.

Then there exist $c, C>0$ s.t.

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[G_{n, p} \text { is }(H, r) \text {-Ramsey }\right]= \begin{cases}0 & \text { if } p<c n^{-1 / m_{2}(H)} \\ 1 & \text { if } p>\mathrm{Cn}^{-1 / m_{2}(H)}\end{cases}
$$

Resilience of graph properties

Question

How strongly does a graph possess a given property?

Resilience of graph properties

Question

How strongly does a graph possess a given property?

Theorem (Turán 1941)

The largest K_{t}-free subgraph of K_{n} has at most

$$
\left(1-\frac{1}{t-1}\right) \frac{n^{2}}{2} \text { edges. }
$$

Resilience of graph properties

Question

How strongly does a graph possess a given property?

Theorem (Turán 1941)

The largest K_{t}-free subgraph of K_{n} has at most

$$
\left(1-\frac{1}{t-1}\right) \frac{n^{2}}{2} \text { edges. }
$$

Theorem (Erdős and Stone 1946)
The largest H-free subgraph of K_{n} has

$$
\left(1-\frac{1}{\chi(H)-1}+o(1)\right) \frac{n^{2}}{2} \text { edges. }
$$

Let H be a graph, $\varepsilon>0$.
A graph G is (H, ε)-Turán if every subgraph of G on at least

$$
\left(1-\frac{1}{\chi(H)-1}+\varepsilon\right) e(G)
$$

edges contains a copy of H.

- This is the strongest notion of resilience one can hope for.

Turán properties of random graphs

Let H be a graph, $\varepsilon>0$.
A graph G is (H, ε)-Turán if every subgraph of G on at least

$$
\left(1-\frac{1}{\chi(H)-1}+\varepsilon\right) e(G)
$$

edges contains a copy of H.

- This is the strongest notion of resilience one can hope for.

Theorem (Conlon-Gowers and Schacht 2016)

$\forall H$ s.t. $\Delta(H) \geq 2$ and any $\varepsilon>0, \exists c, C>0$ s.t.

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[G_{n, p} \text { is }(H, \varepsilon) \text {-Turán }\right]= \begin{cases}0 & \text { if } p<c n^{-1 / m_{2}(H)} \\ 1 & \text { if } p>C n^{-1 / m_{2}(H)}\end{cases}
$$

Recall $m_{2}(H):=\max \left\{\frac{e\left(H^{\prime}\right)-1}{v\left(H^{\prime}\right)-2}: H^{\prime} \subseteq H\right.$ and $\left.v\left(H^{\prime}\right) \geq 3\right\}$.

Resilience of Ramsey properties

How resilient is K_{n} to the property of being ($K_{3}, 2$)-Ramsey?

Resilience of Ramsey properties

How resilient is K_{n} to the property of being ($K_{3}, 2$)-Ramsey?

- If delete $>1 / 5$ th of edges can make it non-Ramsey

Resilience of Ramsey properties

How resilient is K_{n} to the property of being ($K_{3}, 2$)-Ramsey?

- If delete $>1 / 5$ th of edges can make it non-Ramsey
- If $G \subseteq K_{n}$ contains $>4 / 5$ th of edges then Turán's theorem
$\Longrightarrow K_{6} \subseteq G \Longrightarrow G$ is $\left(K_{3}, 2\right)$-Ramsey

Resilience of Ramsey properties

How resilient is K_{n} to the property of being ($K_{3}, 2$)-Ramsey?

- If delete $>1 / 5$ th of edges can make it non-Ramsey
- If $G \subseteq K_{n}$ contains $>4 / 5$ th of edges then Turán's theorem $\Longrightarrow K_{6} \subseteq G \Longrightarrow G$ is $\left(K_{3}, 2\right)$-Ramsey

$$
\begin{aligned}
& \text { Theorem (Hancock, Staden and T. } 2017+\text {) } \\
& \text { If } p \gg n^{-1 / 2} \text { then w.h.p every } G \subseteq G_{n, p} \text { s.t. } \\
& \qquad e(G)>\left(\frac{4}{5}+o(1)\right) e\left(G_{n, p}\right) \\
& \text { is }\left(K_{3}, 2\right) \text {-Ramsey. }
\end{aligned}
$$

Resilience of Ramsey properties

Let
$e x^{r}(n, H):=\max \{e(G): G n$-vertex and is not (H, r)-Ramsey $\}$
and

$$
\pi^{r}(H):=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}^{r}(n, H)}{\binom{n}{2}}
$$

Resilience of Ramsey properties

Let

$$
e^{r}(n, H):=\max \{e(G): G n \text {-vertex and is not }(H, r) \text {-Ramsey }\}
$$

and

$$
\pi^{r}(H):=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}^{r}(n, H)}{\binom{n}{2}}
$$

Theorem (Hancock, Staden and T. 2017+)

Let H be a graph and $r \in \mathbb{N}$. If $p \gg n^{-1 / m_{2}(H)}$ then w.h.p every $G \subseteq G_{n, p}$ s.t.

$$
e(G)>\left(\pi^{r}(H)+o(1)\right) e\left(G_{n, p}\right)
$$

is (H, r)-Ramsey.

Resilience of Ramsey properties

Theorem (Hancock, Staden and T. 2017+)

Let H be a graph and $r \in \mathbb{N}$. If $p \gg n^{-1 / m_{2}(H)}$ then w.h.p every $G \subseteq G_{n, p}$ s.t.

$$
e(G)>\left(\pi^{r}(H)+o(1)\right) e\left(G_{n, p}\right)
$$

is (H, r)-Ramsey.

- Provides a resilience strengthening of the random Ramsey theorem
- Implies the random Turán theorem
- actually generalises to hypergraphs and the 'asymmetric' case

Arithmetic Ramsey theory

Theorem (Schur 1916)

$\forall r \in \mathbb{N}$, if n is sufficiently large, whenever $[n]$ is r-coloured
\Longrightarrow monochromatic solution to $x+y=z$.

- Call this property r-Schur
- van der Waerden (1927): analogue for arithmetic progressions of length k
- Rado (1933): determined for which systems of homogeneous linear equations one has an analogue of Schur's theorem

A random version of Schur's theorem

Let $[n]_{p}$ denote the subset of $[n]$ obtained by keeping each element with probability p (independently of all other selections).

A random version of Schur's theorem

Let $[n]_{p}$ denote the subset of $[n]$ obtained by keeping each element with probability p (independently of all other selections).

Theorem (Graham, Rödl and Ruciński 1996)

$$
\forall r \geq 2, \exists c, C>0 \text { s.t. }
$$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left([n]_{p} \text { is } r \text {-Schur }\right)= \begin{cases}0 & \text { if } p<c n^{-1 / 2} \\ 1 & \text { if } p>C n^{-1 / 2}\end{cases}
$$

A random version of Schur's theorem

Let $[n]_{p}$ denote the subset of $[n]$ obtained by keeping each element with probability p (independently of all other selections).

Theorem (Graham, Rödl and Ruciński 1996)

$$
\forall r \geq 2, \exists c, C>0 \text { s.t. }
$$

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left([n]_{p} \text { is } r \text {-Schur }\right)= \begin{cases}0 & \text { if } p<c n^{-1 / 2} \\ 1 & \text { if } p>C n^{-1 / 2}\end{cases}
$$

- Results of Rödl and Ruciński (1997) and Friedgut, Rödl and Schacht (2010) yield a random version of Rado's theorem

Resilience of the Schur property

Question (Abbott and Wang 1977)

What is the size of largest subset $S \subseteq[n]$ without the r-Schur property?
(That is, how strongly does [n] possess the Schur property?)

Resilience of the Schur property

Question (Abbott and Wang 1977)

What is the size of largest subset $S \subseteq[n]$ without the r-Schur property?
(That is, how strongly does [n] possess the Schur property?)

Theorem (Hu 1980)

Every $S \subseteq[n]$ s.t. $|S|>n-\lfloor n / 5\rfloor$ is 2-Schur.

Resilience of the Schur property

Question (Abbott and Wang 1977)

What is the size of largest subset $S \subseteq[n]$ without the r-Schur property?
(That is, how strongly does [n] possess the Schur property?)

Theorem (Hu 1980)

Every $S \subseteq[n]$ s.t. $|S|>n-\lfloor n / 5\rfloor$ is 2 -Schur.

- $S:=\{x \in[n]: x \not \equiv 0 \bmod 5\}$ shows Hu's theorem is best possible.

Resilience of the Schur property

$$
\begin{aligned}
& \text { Theorem (Hancock, Staden and T. } 2017+\text {) } \\
& \text { If } p \gg n^{-1 / 2} \text { then w.h.p every } S \subseteq[n]_{p} \text { s.t. } \\
& \qquad|S|>\left(\frac{4}{5}+o(1)\right)\left|[n]_{p}\right|
\end{aligned}
$$

is 2-Schur.

- Our result generalises to give a resilience version of the random Rado theorem

Independent sets in hypergraphs

What does all of this have to do with independent sets in hypergraphs?

Theorem
$\forall \varepsilon>0, \exists C>0$ s.t. if $p>C n^{-1 / 2}$
$\lim _{n \rightarrow \infty} \mathbb{P}\left[\right.$ largest sum-free set in $[n]_{p}$ has size $\left.(1 / 2 \pm \varepsilon) n p\right]=1$.

Independent sets in hypergraphs

What does all of this have to do with independent sets in hypergraphs?

Theorem
$\forall \varepsilon>0, \exists C>0$ s.t. if $p>C n^{-1 / 2}$
$\lim _{n \rightarrow \infty} \mathbb{P}\left[\right.$ largest sum-free set in $[n]_{p}$ has size $\left.(1 / 2 \pm \varepsilon) n p\right]=1$.
Define a hypergraph \mathcal{H} with:

- vertex set $[n]$
- an edge $\{x, y, z\}$ precisely when $x+y=z$.

Independent sets in hypergraphs

What does all of this have to do with independent sets in hypergraphs?

Theorem
$\forall \varepsilon>0, \exists C>0$ s.t. if $p>C n^{-1 / 2}$
$\lim _{n \rightarrow \infty} \mathbb{P}\left[\right.$ largest sum-free set in $[n]_{p}$ has size $\left.(1 / 2 \pm \varepsilon) n p\right]=1$.
Define a hypergraph \mathcal{H} with:

- vertex set $[n]$
- an edge $\{x, y, z\}$ precisely when $x+y=z$.
S sum-free subset of $[n] \Longleftrightarrow S$ independent set in \mathcal{H}

Independent sets in hypergraphs

What does all of this have to do with independent sets in hypergraphs?

Theorem

$\forall \varepsilon>0, \exists C>0$ s.t. if $p>C^{-1 / 2}$
$\lim _{n \rightarrow \infty} \mathbb{P}\left[\right.$ largest sum-free set in $[n]_{p}$ has size $\left.(1 / 2 \pm \varepsilon) n p\right]=1$.
Define a hypergraph \mathcal{H} with:

- vertex set $[n]$
- an edge $\{x, y, z\}$ precisely when $x+y=z$.
S sum-free subset of $[n] \Longleftrightarrow S$ independent set in \mathcal{H}
- Let $I_{\max }\left(\mathcal{H}_{p}\right)$ denote the largest independent set in \mathcal{H}_{p}

Aim: show w.h.p $\left|I_{\max }\left(\mathcal{H}_{p}\right)\right|=(1 / 2 \pm \varepsilon) n p$

Independent sets in hypergraphs

- Now we can apply the hypergraph container method of Balogh, Morris and Samotij and independently Saxton and Thomason
- In the case of r colours: sets that are not r-Schur correspond to r-tuples of disjoint independent sets in \mathcal{H}
- We adapt the hypergraph container method to consider such tuples of independent sets

Open problem

Question (Abbott and Wang 1977)

What is the size of largest subset $S \subseteq[n]$ without the r-Schur property?

Still open for $r \geq 3$.

Open problem

- Obtain sharp threshold versions of the random Ramsey and random Rado theorems
- Friedgut, Rödl, Ruciński and Tetali (2006): for ($K_{3}, 2$)-Ramsey
- Schacht, Schulenburg (2016+): for 'strictly balanced nearly bipartite' graphs
- Friedgut, Hàn, Person and Schacht (2016): for van der Waerden in \mathbb{Z}_{m}

