On solution-free sets of integers

Andrew Treglown
(Joint work with Robert Hancock)
12th April 2016

Solution-free sets: Introduction

Let $[n]:=\{1, \ldots, n\}$ and let \mathcal{L} be $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ where $a_{1}, \ldots, a_{k}, b \in \mathbb{Z}$.

Solution-free sets: Introduction

Let $[n]:=\{1, \ldots, n\}$ and let \mathcal{L} be $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ where $a_{1}, \ldots, a_{k}, b \in \mathbb{Z}$.

Examples

1. Sum-free sets (sets avoiding solutions to $x+y=z$)
2. Sidon sets (sets avoiding solutions to $x+y=z+t$)
3. Progression-free sets $(x+y=2 z)$

Solution-free sets: Introduction

Let $[n]:=\{1, \ldots, n\}$ and let \mathcal{L} be $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ where $a_{1}, \ldots, a_{k}, b \in \mathbb{Z}$.

Definitions:

1. \mathcal{L} is translation-invariant if $\sum a_{i}=b=0$.
2. A subset $A \subseteq[n]$ is \mathcal{L}-free if it does not contain any 'non-trivial' solutions to \mathcal{L}.
3. A subset $A \subseteq[n]$ is a maximal \mathcal{L}-free set if it is \mathcal{L}-free, and if the addition of any further $x \in[n] \backslash A$ would make it no longer \mathcal{L}-free.

Solution-free sets: Introduction

Fundamental Questions

- Q1: What is the size of the largest \mathcal{L}-free subset of $[n]$?
- Q2: How many \mathcal{L}-free subsets of $[n]$ are there?
- Q3: How many maximal \mathcal{L}-free subsets of $[n]$ are there?

Q1: What is the size of the largest \mathcal{L}-free subset of $[n]$?

Let $\mu_{\mathcal{L}}(n)$ be the size of the largest \mathcal{L}-free subset of $[n]$.

\mathcal{L}	$\mu_{\mathcal{L}}(n)$	Comment
$x+y=z$	$\lceil n / 2\rceil$	odds or interval
$x+y=2 z$	$o(n)$	Roth's theorem (1953)
$p(x+y)=r z, r>2 p$	$n-\lfloor 2 n / r\rfloor$	union (Hegarty 2007)

Q1: What is the size of the largest \mathcal{L}-free subset of $[n]$?

Let $\mu_{\mathcal{L}}(n)$ be the size of the largest \mathcal{L}-free subset of $[n]$.

\mathcal{L}	$\mu_{\mathcal{L}}(n)$	Comment
$x+y=z$	$\lceil n / 2\rceil$	odds or interval
$x+y=2 z$	$o(n)$	Roth's theorem (1953)
$p(x+y)=r z, r>2 p$	$n-\lfloor 2 n / r\rfloor$	union (Hegarty 2007)

Generally...

\mathcal{L}	$\mu_{\mathcal{L}}(n)$
translation-invariant	$o(n)$
not translation-invariant	$\Omega(n)$

Q1: What is the size of the largest \mathcal{L}-free subset of $[n]$?

Theorem (Hancock, T. 2015+)
Let \mathcal{L} be $p x+q y=z$ where $p \geq q$ and $p \geq 2, p, q \in \mathbb{N}$. If n is sufficiently large then $\mu_{\mathcal{L}}(n)=n-\lfloor n /(p+q)\rfloor$.

- More recently, we have determined $\mu_{\mathcal{L}}(n)$ for a range of different equations \mathcal{L} of the form $p x+q y=r z$ where $p \geq q \geq r$.
- In each case, the extremal examples are 'intervals' or 'congruency classes'.

Q2: How many \mathcal{L}-free subsets of $[n]$ are there?

Let $f(n, \mathcal{L})$ be the number of \mathcal{L}-free subsets of $[n]$.
Clearly for any \mathcal{L}, we have $f(n, \mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.
Conjecture (Cameron-Erdős 1990)
Let \mathcal{L} be $x+y=z$. Then $f(n, \mathcal{L})=\Theta\left(2^{n / 2}\right)$.

Q2: How many \mathcal{L}-free subsets of $[n]$ are there?

Let $f(n, \mathcal{L})$ be the number of \mathcal{L}-free subsets of $[n]$.
Clearly for any \mathcal{L}, we have $f(n, \mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.
Conjecture (Cameron-Erdős 1990)
Let \mathcal{L} be $x+y=z$. Then $f(n, \mathcal{L})=\Theta\left(2^{n / 2}\right)$.
Theorem (Green, Sapozhenko 2003)
Let \mathcal{L} be $x+y=z$. Then $\exists C_{1}, C_{2}$ s.t. given any $n \equiv i \bmod 2$, $f(n, \mathcal{L})=\left(C_{i}+o(1)\right) 2^{n / 2}$.

Q2: How many \mathcal{L}-free subsets of $[n]$ are there?

Let $f(n, \mathcal{L})$ be the number of \mathcal{L}-free subsets of $[n]$.
Clearly for any \mathcal{L}, we have $f(n, \mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.
Conjecture (Cameron-Erdős 1990)
Let \mathcal{L} be $x+y=z$. Then $f(n, \mathcal{L})=\Theta\left(2^{n / 2}\right)$.
Theorem (Green, Sapozhenko 2003)
Let \mathcal{L} be $x+y=z$. Then $\exists C_{1}, C_{2}$ s.t. given any $n \equiv i \bmod 2$, $f(n, \mathcal{L})=\left(C_{i}+o(1)\right) 2^{n / 2}$.

Observation (Cameron-Erdős 1990)
Let \mathcal{L} be translation-invariant. Then it is not true that $f(n, \mathcal{L})=\Theta\left(2^{\mu_{\mathcal{L}}(n)}\right)$.

Q2: How many \mathcal{L}-free subsets of $[n]$ are there?

Theorem (Green 2005)
Let \mathcal{L} be $a_{1} x_{1}+\cdots+a_{k} x_{k}=0$ where $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. Then $f(n, \mathcal{L})=2^{\mu_{\mathcal{L}}(n)+o(n)}$ (where $o(n)$ depends on \mathcal{L}).

Q2: How many \mathcal{L}-free subsets of $[n]$ are there?

Theorem (Green 2005)
Let \mathcal{L} be $a_{1} x_{1}+\cdots+a_{k} x_{k}=0$ where $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. Then $f(n, \mathcal{L})=2^{\mu_{\mathcal{L}}(n)+o(n)}$ (where $o(n)$ depends on \mathcal{L}).

Theorem (Hancock, T. 2015+)
Fix $p, q \in \mathbb{N}$ where (i) $q \geq 2$ and $p>q(3 q-2) /(2 q-2)$ or (ii) $q=1$ and $p \geq 3$. Let \mathcal{L} be $p x+q y=z$. Then $f(n, \mathcal{L})=\Theta\left(2^{\mu_{\mathcal{L}}(n)}\right)$.

Q3: How many maximal \mathcal{L}-free subsets of $[n]$ are there?

Let $f_{\max }(n, \mathcal{L})$ be the number of maximal \mathcal{L}-free subsets of $[n]$.
Question (Cameron-Erdős 1999)
Let \mathcal{L} be $x+y=z$. Is it true that $f_{\max }(n, \mathcal{L})=o(f(n, \mathcal{L}))$ or even $f_{\max }(n, \mathcal{L}) \leq f(n, \mathcal{L}) / 2^{\varepsilon n}$ for some constant $\varepsilon>0$?

Q3: How many maximal \mathcal{L}-free subsets of $[n]$ are there?

Let $f_{\text {max }}(n, \mathcal{L})$ be the number of maximal \mathcal{L}-free subsets of $[n]$.
Question (Cameron-Erdős 1999)
Let \mathcal{L} be $x+y=z$. Is it true that $f_{\max }(n, \mathcal{L})=o(f(n, \mathcal{L}))$ or even $f_{\max }(n, \mathcal{L}) \leq f(n, \mathcal{L}) / 2^{\varepsilon n}$ for some constant $\varepsilon>0$?

Theorem (Łuczak-Schoen 2001)
Let \mathcal{L} be $x+y=z$. Then $f_{\max }(n, \mathcal{L}) \leq 2^{n / 2-2^{-28} n}$.

Q3: How many maximal \mathcal{L}-free subsets of $[n]$ are there?

Let $f_{\text {max }}(n, \mathcal{L})$ be the number of maximal \mathcal{L}-free subsets of $[n]$.
Question (Cameron-Erdős 1999)
Let \mathcal{L} be $x+y=z$. Is it true that $f_{\text {max }}(n, \mathcal{L})=o(f(n, \mathcal{L}))$ or even $f_{\max }(n, \mathcal{L}) \leq f(n, \mathcal{L}) / 2^{\varepsilon n}$ for some constant $\varepsilon>0$?

Theorem (Łuczak-Schoen 2001)
Let \mathcal{L} be $x+y=z$. Then $f_{\max }(n, \mathcal{L}) \leq 2^{n / 2-2^{-28} n}$.
Theorem (Balogh-Liu-Sharifzadeh-Treglown 2015)
Let \mathcal{L} be $x+y=z$. For each $1 \leq i \leq 4$, there is a constant C_{i} s.t. given any $n \equiv i \bmod 4, f_{\max }(n, \mathcal{L})=\left(C_{i}+o(1)\right) 2^{n / 4}$.

Q3: How many maximal: An initial upper bound

Definition

- \mathcal{L}-triple: A solution to \mathcal{L} when \mathcal{L} is in three variables.
- $\mathcal{M}_{\mathcal{L}}(n)$: The set of $x \in[n]$ s.t. x does not lie in any \mathcal{L}-triple in $[n]$.
- $\mu_{\mathcal{L}}^{*}(n):=\left|\mathcal{M}_{\mathcal{L}}(n)\right|$.

Theorem (Hancock, T. 2015+)
Let \mathcal{L} be $p x+q y=r z$ where $p, q, r \in \mathbb{Z}$. Then $f_{\text {max }}(n, \mathcal{L}) \leq 3^{\left(\mu_{\mathcal{L}}(n)-\mu_{\mathcal{L}}^{*}(n)\right) / 3+o(n)}$.

Q3: How many maximal: Tools for upper bounds

Container lemma (Green 2005)
Let \mathcal{L} be $p x+q y=r z$ where $p, q, r \in \mathbb{Z}$.
There exists a family \mathcal{F} of subsets of $[n]$ s.t.
(i) $\forall F \in \mathcal{F},|F| \leq \mu_{\mathcal{L}}(n)+o(n)$ and F contains $\leq o\left(n^{2}\right)$ \mathcal{L}-triples; (F are 'containers' and are 'almost \mathcal{L}-free sets'.)
(ii) If $S \subseteq[n] \mathcal{L}$-free, then $S \in F$ for some $F \in \mathcal{F}$; (Every \mathcal{L}-free set is in a container.)
(iii) $|\mathcal{F}|=2^{o(n)}$. (There aren't many containers.)

Q3: How many maximal: Tools for upper bounds

Container lemma (Green 2005)

Let \mathcal{L} be $p x+q y=r z$ where $p, q, r \in \mathbb{Z}$.
There exists a family \mathcal{F} of subsets of $[n]$ s.t.
(i) $\forall F \in \mathcal{F},|F| \leq \mu_{\mathcal{L}}(n)+o(n)$ and F contains $\leq o\left(n^{2}\right)$ \mathcal{L}-triples; (F are 'containers' and are 'almost \mathcal{L}-free sets'.)
(ii) If $S \subseteq[n] \mathcal{L}$-free, then $S \in F$ for some $F \in \mathcal{F}$; (Every \mathcal{L}-free set is in a container.)
(iii) $|\mathcal{F}|=2^{o(n)}$. (There aren't many containers.)

Removal lemma (Green 2005)
If $A \subseteq[n]$ contains $o\left(n^{2}\right) \mathcal{L}$-triples, then $\exists B, C$ s.t. $A=B \cup C$ where B is \mathcal{L}-free and $|C|=o(n)$. (Every container is an \mathcal{L}-free set plus a 'very small' set.)

Q3: How many maximal: Tools for upper bounds

Link graphs

Given two subsets $B, S \subseteq[n]$, the link graph $L_{S}[B]$ of S on B is defined to have

- vertex set B;
- an edge between x and y if $\exists z \in S$ s.t. $\{x, y, z\}$ is an \mathcal{L}-triple;
- a loop at x if $\exists z, z^{\prime} \in S$ s.t. $\{x, x, z\}$ or $\left\{x, z, z^{\prime}\right\}$ is an \mathcal{L}-triple.

Q3: How many maximal: Tools for upper bounds

Link graphs

Given two subsets $B, S \subseteq[n]$, the link graph $L_{S}[B]$ of S on B is defined to have

- vertex set B;
- an edge between x and y if $\exists z \in S$ s.t. $\{x, y, z\}$ is an \mathcal{L}-triple;
- a loop at x if $\exists z, z^{\prime} \in S$ s.t. $\{x, x, z\}$ or $\left\{x, z, z^{\prime}\right\}$ is an \mathcal{L}-triple.

Lemma

Suppose that B, S are disjoint \mathcal{L}-free subsets of $[n]$ and suppose $I \subseteq B$. If $S \cup I$ is a maximal \mathcal{L}-free subset of $[n]$, then I is a maximal independent set in $L_{S}[B]$.

Q3: How many maximal: Tools for upper bounds

Bounds on no. maximal independent sets:
Moon-Moser (1965) MIS $(G) \leq 3^{n / 3}$.
Theorem (Hancock, T. 2015+)
Let \mathcal{L} be $p x+q y=r z$ where $p, q, r \in \mathbb{Z}$. Then $f_{\text {max }}(n, \mathcal{L}) \leq 3^{\left(\mu_{\mathcal{L}}(n)-\mu_{\mathcal{L}}^{*}(n)\right) / 3+o(n)}$.

Q3: How many maximal: Further improvements?

Bounds on no. maximal independent sets:
Moon-Moser (1965) $\operatorname{MIS}(G) \leq 3^{n / 3}$.

Q3: How many maximal: Further improvements?

Bounds on no. maximal independent sets:
Moon-Moser (1965) MIS $(G) \leq 3^{n / 3}$.
Hujter-Tuza (1993) $\operatorname{MIS}(G) \leq 2^{n / 2}$ if G is triangle-free.

Q3: How many maximal: Further improvements?

Bounds on no. maximal independent sets:
Moon-Moser (1965) MIS $(G) \leq 3^{n / 3}$.
Hujter-Tuza (1993) $\operatorname{MIS}(G) \leq 2^{n / 2}$ if G is triangle-free.
Theorem (Hancock, T. 2015+)
Let \mathcal{L} be $p x+q y=z$ where $p \geq q \geq 2$ are integers s.t. $p \leq q^{2}-q$ and $\operatorname{gcd}(p, q)=q$. Then $f_{\text {max }}(n, \mathcal{L}) \leq 2^{\left(\mu_{\mathcal{L}}(n)-\mu_{\mathcal{L}}^{*}(n)\right) / 2+o(n)}$.

Q3: How many maximal: Further improvements?

Bounds on no. maximal independent sets:
Moon-Moser (1965) MIS $(G) \leq 3^{n / 3}$.
Hujter-Tuza (1993) $\operatorname{MIS}(G) \leq 2^{n / 2}$ if G is triangle-free.
Theorem (Hancock, T. 2015+)
Let \mathcal{L} be $p x+q y=z$ where $p \geq q \geq 2$ are integers s.t. $p \leq q^{2}-q$ and $\operatorname{gcd}(p, q)=q$. Then $f_{\text {max }}(n, \mathcal{L}) \leq 2^{\left(\mu_{\mathcal{L}}(n)-\mu_{\mathcal{L}}^{*}(n)\right) / 2+o(n)}$.

Theorem (Hancock, T. 2016++)
Let \mathcal{L} be $q x+q y=z$ where $q \geq 2$ is an integer. Then $f_{\text {max }}(n, \mathcal{L})=2^{n / 2 q+o(n)}$.

Open problems

- Give an asymptotic formula for $f_{\max }(n, \mathcal{L})$ for all linear \mathcal{L} !
- What about abelian groups? (Questions 1 and 2 have be resolved for sum-free sets in abelian groups.)

