On solution-free sets of integers

Andrew Treglown

(Joint work with Robert Hancock) 12th April 2016

Let $[n] := \{1, \ldots, n\}$ and let \mathcal{L} be $a_1x_1 + \cdots + a_kx_k = b$ where $a_1, \ldots, a_k, b \in \mathbb{Z}$.

Let $[n]:=\{1,\ldots,n\}$ and let $\mathcal L$ be $a_1x_1+\cdots+a_kx_k=b$ where $a_1,\ldots,a_k,b\in\mathbb Z$.

Examples

- 1. Sum-free sets (sets avoiding solutions to x + y = z)
- 2. Sidon sets (sets avoiding solutions to x + y = z + t)
- 3. Progression-free sets (x + y = 2z)

Let $[n]:=\{1,\ldots,n\}$ and let $\mathcal L$ be $a_1x_1+\cdots+a_kx_k=b$ where $a_1,\ldots,a_k,b\in\mathbb Z$.

Definitions:

- 1. \mathcal{L} is translation-invariant if $\sum a_i = b = 0$.
- 2. A subset $A \subseteq [n]$ is \mathcal{L} -free if it does not contain any 'non-trivial' solutions to \mathcal{L} .
- 3. A subset $A \subseteq [n]$ is a maximal \mathcal{L} -free set if it is \mathcal{L} -free, and if the addition of any further $x \in [n] \setminus A$ would make it no longer \mathcal{L} -free.

Fundamental Questions

- ▶ **Q1:** What is the size of the largest \mathcal{L} -free subset of [n]?
- ▶ **Q2:** How many \mathcal{L} -free subsets of [n] are there?
- ▶ **Q3:** How many maximal \mathcal{L} -free subsets of [n] are there?

Q1: What is the size of the largest \mathcal{L} -free subset of [n]?

Let $\mu_{\mathcal{L}}(n)$ be the size of the largest \mathcal{L} -free subset of [n].

${\cal L}$	$\mu_{\mathcal{L}}(n)$	Comment
x + y = z	$\lceil n/2 \rceil$	odds or interval
x + y = 2z	o(n)	Roth's theorem (1953)
p(x+y) = rz, r > 2p	$n - \lfloor 2n/r \rfloor$	union (Hegarty 2007)

Q1: What is the size of the largest \mathcal{L} -free subset of [n]?

Let $\mu_{\mathcal{L}}(n)$ be the size of the largest \mathcal{L} -free subset of [n].

\mathcal{L}	$\mu_{\mathcal{L}}(n)$	Comment
x + y = z	$\lceil n/2 \rceil$	odds or interval
x + y = 2z	o(n)	Roth's theorem (1953)
p(x+y) = rz, r > 2p	$n - \lfloor 2n/r \rfloor$	union (Hegarty 2007)

Generally...

\mathcal{L}	$\mu_{\mathcal{L}}(n)$
translation-invariant	o(n)
not translation-invariant	$\Omega(n)$

Q1: What is the size of the largest \mathcal{L} -free subset of [n]?

Theorem (Hancock, T. 2015+)

Let \mathcal{L} be px + qy = z where $p \geq q$ and $p \geq 2, p, q \in \mathbb{N}$. If n is sufficiently large then $\mu_{\mathcal{L}}(n) = n - \lfloor n/(p+q) \rfloor$.

- More recently, we have determined $\mu_{\mathcal{L}}(n)$ for a range of different equations \mathcal{L} of the form px+qy=rz where $p\geq q\geq r.$
- In each case, the extremal examples are 'intervals' or 'congruency classes'.

Let $f(n,\mathcal{L})$ be the number of \mathcal{L} -free subsets of [n]. Clearly for any \mathcal{L} , we have $f(n,\mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.

Conjecture (Cameron-Erdős 1990)

Let \mathcal{L} be x + y = z. Then $f(n, \mathcal{L}) = \Theta(2^{n/2})$.

Let $f(n,\mathcal{L})$ be the number of \mathcal{L} -free subsets of [n]. Clearly for any \mathcal{L} , we have $f(n,\mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.

Conjecture (Cameron-Erdős 1990)

Let \mathcal{L} be x + y = z. Then $f(n, \mathcal{L}) = \Theta(2^{n/2})$.

Theorem (Green, Sapozhenko 2003)

Let \mathcal{L} be x+y=z. Then $\exists C_1,C_2$ s.t. given any $n\equiv i \mod 2$, $f(n,\mathcal{L})=(C_i+o(1))2^{n/2}$.

Let $f(n, \mathcal{L})$ be the number of \mathcal{L} -free subsets of [n]. Clearly for any \mathcal{L} , we have $f(n, \mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.

Conjecture (Cameron-Erdős 1990)

Let \mathcal{L} be x + y = z. Then $f(n, \mathcal{L}) = \Theta(2^{n/2})$.

Theorem (Green, Sapozhenko 2003)

Let \mathcal{L} be x+y=z. Then $\exists C_1, C_2$ s.t. given any $n\equiv i \mod 2$, $f(n,\mathcal{L})=(C_i+o(1))2^{n/2}$.

Observation (Cameron-Erdős 1990)

Let $\mathcal L$ be translation-invariant. Then it is not true that $f(n,\mathcal L)=\Theta(2^{\mu_{\mathcal L}(n)}).$

Theorem (Green 2005)

Let \mathcal{L} be $a_1x_1 + \cdots + a_kx_k = 0$ where $a_1, \ldots, a_k \in \mathbb{Z}$. Then $f(n, \mathcal{L}) = 2^{\mu_{\mathcal{L}}(n) + o(n)}$ (where o(n) depends on \mathcal{L}).

```
Theorem (Green 2005) Let \mathcal{L} be a_1x_1+\cdots+a_kx_k=0 where a_1,\ldots,a_k\in\mathbb{Z}. Then f(n,\mathcal{L})=2^{\mu_{\mathcal{L}}(n)+o(n)} (where o(n) depends on \mathcal{L}). Theorem (Hancock, T. 2015+) Fix p,q\in\mathbb{N} where (i) q\geq 2 and p>q(3q-2)/(2q-2) or (ii) q=1 and p\geq 3. Let \mathcal{L} be px+qy=z. Then f(n,\mathcal{L})=\Theta(2^{\mu_{\mathcal{L}}(n)}).
```

Let $f_{\max}(n,\mathcal{L})$ be the number of maximal \mathcal{L} -free subsets of [n].

Question (Cameron-Erdős 1999)

Let \mathcal{L} be x + y = z. Is it true that $f_{\max}(n, \mathcal{L}) = o(f(n, \mathcal{L}))$ or even $f_{\max}(n, \mathcal{L}) \le f(n, \mathcal{L})/2^{\varepsilon n}$ for some constant $\varepsilon > 0$?

Let $f_{\max}(n,\mathcal{L})$ be the number of maximal \mathcal{L} -free subsets of [n].

Question (Cameron-Erdős 1999)

Let \mathcal{L} be x+y=z. Is it true that $f_{\max}(n,\mathcal{L})=o(f(n,\mathcal{L}))$ or even $f_{\max}(n,\mathcal{L})\leq f(n,\mathcal{L})/2^{\varepsilon n}$ for some constant $\varepsilon>0$?

Theorem (Łuczak-Schoen 2001)

Let \mathcal{L} be x + y = z. Then $f_{\max}(n, \mathcal{L}) \leq 2^{n/2 - 2^{-28}n}$.

Let $f_{\max}(n,\mathcal{L})$ be the number of maximal \mathcal{L} -free subsets of [n].

Question (Cameron-Erdős 1999)

Let \mathcal{L} be x+y=z. Is it true that $f_{\max}(n,\mathcal{L})=o(f(n,\mathcal{L}))$ or even $f_{\max}(n,\mathcal{L})\leq f(n,\mathcal{L})/2^{\varepsilon n}$ for some constant $\varepsilon>0$?

Theorem (Łuczak-Schoen 2001)

Let \mathcal{L} be x+y=z. Then $f_{\max}(n,\mathcal{L}) \leq 2^{n/2-2^{-28}n}$.

Theorem (Balogh-Liu-Sharifzadeh-Treglown 2015)

Let \mathcal{L} be x+y=z. For each $1 \leq i \leq 4$, there is a constant C_i s.t. given any $n \equiv i \mod 4$, $f_{\max}(n,\mathcal{L}) = (C_i + o(1))2^{n/4}$.

Q3: How many maximal: An initial upper bound

Definition

- ▶ \mathcal{L} -triple: A solution to \mathcal{L} when \mathcal{L} is in three variables.
- ▶ $\mathcal{M}_{\mathcal{L}}(n)$: The set of $x \in [n]$ s.t. x does not lie in any \mathcal{L} -triple in [n].
- $\blacktriangleright \mu_{\mathcal{L}}^*(n) := |\mathcal{M}_{\mathcal{L}}(n)|.$

Let \mathcal{L} be px + qy = rz where $p, q, r \in \mathbb{Z}$. Then $f_{\max}(n, \mathcal{L}) \leq 3^{(\mu_{\mathcal{L}}(n) - \mu_{\mathcal{L}}^*(n))/3 + o(n)}$.

Container lemma (Green 2005)

Let \mathcal{L} be px + qy = rz where $p, q, r \in \mathbb{Z}$.

There exists a family \mathcal{F} of subsets of [n] s.t.

- (i) $\forall F \in \mathcal{F}$, $|F| \leq \mu_{\mathcal{L}}(n) + o(n)$ and F contains $\leq o(n^2)$ \mathcal{L} -triples; (F are 'containers' and are 'almost \mathcal{L} -free sets'.)
- (ii) If $S\subseteq [n]$ \mathcal{L} -free, then $S\in F$ for some $F\in \mathcal{F}$; (Every \mathcal{L} -free set is in a container.)
- (iii) $|\mathcal{F}| = 2^{o(n)}$. (There aren't many containers.)

Container lemma (Green 2005)

Let \mathcal{L} be px + qy = rz where $p, q, r \in \mathbb{Z}$.

There exists a family \mathcal{F} of subsets of [n] s.t.

- (i) $\forall F \in \mathcal{F}$, $|F| \leq \mu_{\mathcal{L}}(n) + o(n)$ and F contains $\leq o(n^2)$ \mathcal{L} -triples; (F are 'containers' and are 'almost \mathcal{L} -free sets'.)
- (ii) If $S\subseteq [n]$ \mathcal{L} -free, then $S\in F$ for some $F\in \mathcal{F}$; (Every \mathcal{L} -free set is in a container.)
- (iii) $|\mathcal{F}| = 2^{o(n)}$. (There aren't many containers.)

Removal lemma (Green 2005)

If $A\subseteq [n]$ contains $o(n^2)$ \mathcal{L} -triples, then $\exists\, B,C$ s.t. $A=B\cup C$ where B is \mathcal{L} -free and |C|=o(n). (Every container is an \mathcal{L} -free set plus a 'very small' set.)

Link graphs

Given two subsets $B, S \subseteq [n]$, the link graph $L_S[B]$ of S on B is defined to have

- vertex set B;
- ▶ an edge between x and y if $\exists\,z\in S$ s.t. $\{x,y,z\}$ is an \mathcal{L} -triple;
- ▶ a loop at x if $\exists z, z' \in S$ s.t. $\{x, x, z\}$ or $\{x, z, z'\}$ is an \mathcal{L} -triple.

Link graphs

Given two subsets $B, S \subseteq [n]$, the link graph $L_S[B]$ of S on B is defined to have

- vertex set B;
- ▶ an edge between x and y if $\exists\,z\in S$ s.t. $\{x,y,z\}$ is an \mathcal{L} -triple;
- ▶ a loop at x if $\exists z, z' \in S$ s.t. $\{x, x, z\}$ or $\{x, z, z'\}$ is an \mathcal{L} -triple.

Lemma

Suppose that B,S are disjoint \mathcal{L} -free subsets of [n] and suppose $I\subseteq B$. If $S\cup I$ is a maximal \mathcal{L} -free subset of [n], then I is a maximal independent set in $L_S[B]$.

Bounds on no. maximal independent sets:

Moon-Moser (1965) $MIS(G) \le 3^{n/3}$.

Theorem (Hancock, T. 2015+)

Let \mathcal{L} be px + qy = rz where $p, q, r \in \mathbb{Z}$. Then $f_{\max}(n, \mathcal{L}) \leq 3^{(\mu_{\mathcal{L}}(n) - \mu_{\mathcal{L}}^*(n))/3 + o(n)}$.

Bounds on no. maximal independent sets: Moon-Moser (1965) $MIS(G) \le 3^{n/3}$.

Bounds on no. maximal independent sets:

Moon-Moser (1965) $\mathsf{MIS}(G) \leq 3^{n/3}$. Hujter-Tuza (1993) $\mathsf{MIS}(G) \leq 2^{n/2}$ if G is triangle-free.

Bounds on no. maximal independent sets:

Moon-Moser (1965) ${\sf MIS}(G) \le 3^{n/3}.$ Hujter-Tuza (1993) ${\sf MIS}(G) \le 2^{n/2}$ if G is triangle-free.

Theorem (Hancock, T. 2015+)

Let \mathcal{L} be px + qy = z where $p \geq q \geq 2$ are integers s.t. $p \leq q^2 - q$ and $\gcd(p,q) = q$. Then $f_{\max}(n,\mathcal{L}) \leq 2^{(\mu_{\mathcal{L}}(n) - \mu_{\mathcal{L}}^*(n))/2 + o(n)}$.

Bounds on no. maximal independent sets:

Moon-Moser (1965) ${\sf MIS}(G) \le 3^{n/3}.$ Hujter-Tuza (1993) ${\sf MIS}(G) \le 2^{n/2}$ if G is triangle-free.

Theorem (Hancock, T. 2015+)

Let \mathcal{L} be px + qy = z where $p \geq q \geq 2$ are integers s.t. $p \leq q^2 - q$ and $\gcd(p,q) = q$. Then $f_{\max}(n,\mathcal{L}) \leq 2^{(\mu_{\mathcal{L}}(n) - \mu_{\mathcal{L}}^*(n))/2 + o(n)}$.

Theorem (Hancock, T. 2016++)

Let $\mathcal L$ be qx+qy=z where $q\geq 2$ is an integer. Then $f_{\max}(n,\mathcal L)=2^{n/2q+o(n)}.$

Open problems

- ▶ Give an asymptotic formula for $f_{\max}(n, \mathcal{L})$ for all linear \mathcal{L} !
- What about abelian groups? (Questions 1 and 2 have be resolved for sum-free sets in abelian groups.)