On generalisations of the Hajnal–Szemerédi theorem

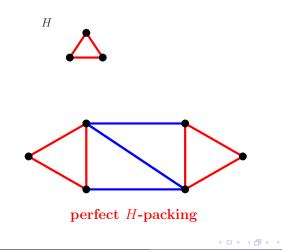
Andrew Treglown

University of Birmingham, School of Mathematics

向下 イヨト イヨト

Perfect packings in graphs

- An *H*-packing in *G* is a collection of vertex-disjoint copies of *H* in *G*.
- An *H*-packing is perfect if it covers all vertices in *G*.



- Perfect *H*-packings sometimes called *H*-factors or perfect *H*-tilings.
- If $H = K_2$ then perfect *H*-packing \iff perfect matching.
- Decision problem *NP*-complete (Hell and Kirkpatrick '83).
- Sensible to look for simple sufficient conditions.

イロト イポト イヨト イヨト

Theorem (Hajnal, Szemerédi '70)

G graph, |G| = n where r|n and

$$\delta(G) \ge (r-1) n/r$$

 \Rightarrow G contains a perfect K_r-packing.

- Corrádi and Hajnal ('64) proved triangle case
- Easy to see minimum degree condition tight

- 4 周 ト - 4 日 ト - 4 日 ト

• Although condition on $\delta(G)$ in Hajnal-Szemerédi is best possible, we can still ask for more general results!

Theorem (Kierstead, Kostochka '08)

G graph, |G| = n where r|n and

$$d(x) + d(y) \ge 2\left(1 - \frac{1}{r}\right)n - 1 \quad \forall \text{ non-adjacent } x, y$$

 \Rightarrow G contains a perfect K_r-packing.

- Result implies Hajnal-Szemerédi theorem.
- Theorem best possible.

A (10) A (10)

Conjecture (Balogh, Kostochka and T.)

G graph, |G| = n where r|n with degree sequence $d_1 \leq \cdots \leq d_n$ such that:

(
$$\alpha$$
) $d_i \ge (r-2)n/r + i$ for all $i < n/r$;

(
$$\beta$$
) $d_{n/r+1} \ge (r-1)n/r$.

 \Rightarrow G contains a perfect K_r-packing.

- If true, stronger than Hajnal-Szemerédi since *n*/*r* vertices allowed 'small' degree.
- If true, 'best possible'.

(4月) (4日) (4日)

Theorem (T. '14+)

G graph, |G| = n where r|n with degree sequence $d_1 \leq \cdots \leq d_n$ such that:

•
$$d_i \ge (r-2)n/r + i + o(1)n$$
 for all $i < n/r$.

 \Rightarrow G contains a perfect K_r-packing.

• Keevash and Knox also have a proof in K_3 case.

- 4 同 6 4 日 6 4 日 6

Theorem (Alon and Yuster '96)

Let H be a graph with $\chi(H) = r$. Suppose G graph, |G| = n where |H||n and

$$\delta(G) \geq (1 - 1/r + o(1))n$$

 \Rightarrow G contains a perfect H-packing.

- Result best-possible up to error term o(1)n for many graphs H.
- Komlós, Sárközy and Szemerédi '01 replaced error term with a constant dependent on *H*.
- Kühn and Osthus '09 characterised, up to an additive constant, δ(G) that forces perfect H-packing for any H.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem (T. '14+)

Let *H* be a graph with $\chi(H) = r$. Suppose *G* graph, |G| = n where |H||n and with degree sequence $d_1 \leq \cdots \leq d_n$ such that:

•
$$d_i \ge (r-2)n/r + i + o(1)n$$
 for all $i < n/r$.

 \Rightarrow G contains a perfect H-packing.

- Bipartite case proven earlier by Knox and T.
- Answers another conjecture of Balogh, Kostochka, T.
- Generalises the Alon-Yuster theorem
- For many *H*, degree sequence condition 'best possible'.

(4月) (4日) (4日)

Theorem (T. '14+)

G graph, |G| = n where r|n with degree sequence $d_1 \leq \cdots \leq d_n$ such that:

•
$$d_i \ge (r-2)n/r + i + o(1)n$$
 for all $i < n/r$.

 \Rightarrow G contains a perfect K_r-packing.

 Proof uses Absorbing method of Rödl, Ruciński and Szemerédi.

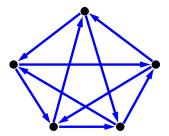
Sketch of a proof sketch:

- Find an absorbing set M in G.
- Find an almost perfect K_r -packing in G M.
- Use *M* to absorb remaining vertices to obtain a perfect *K*_r-packing.

イロト イポト イヨト イヨト

The Hajnal-Szemerédi theorem for directed graphs

- Minimum semi-degree $\delta^{0}(G) := \min\{\delta^{+}(G), \delta^{-}(G)\}$
- Minimum total degree δ(G) = minimum number of edges incident to a vertex in G
- Tournament: orientation of a complete graph



- T_r = transitive tournament on r vertices
- $C_3 = \text{cyclic triangle}$

Minimum total degree results

Theorem (Czygrinow, DeBiasio, Kierstead and Molla +'13)

G digraph, |G| = n where r|n.

 $\delta(G) \geq 2(1-1/r)n-1$

 \Rightarrow G contains a perfect T_r-packing.

Theorem (Czygrinow, DeBiasio, Kierstead and Molla + 13)

G digraph, |G| = n where r|n.

 $\delta^+(G) \ge (1-1/r)n$

 \Rightarrow G contains a perfect T_r-packing.

- Both minimum degree conditions best-possible.
- Both results imply the Hajnal-Szemerédi theorem.

ヨト イヨト ニヨ

Theorem (T. + 13)

G large digraph, |G| = n where r|n. Let *T* be tournament on *r* vertices.

$$\delta^0(G) \geq (1-1/r)n$$

 \Rightarrow G contains a perfect T-packing.

- Minimum semi-degree condition best-possible.
- Earlier, Czygrinow, Kierstead and Molla gave approximate result when T = C₃.
- Result implies the Hajnal-Szemerédi theorem for large graphs.

(本間) (本語) (本語)

Theorem (T. + 13)

G large digraph, |G| = n where r|n. Let *T* be tournament on *r* vertices.

$$\delta^0(G) \geq (1-1/r)n$$

 \Rightarrow G contains a perfect T-packing.

- Natural to ask if we can replace condition here with $\delta(G) \ge 2(1-1/r)n-1$.
- However, a result of Wang shows we cannot do this for $T = C_3$.

▲祠 → ▲ 臣 → ▲ 臣 →

Question

G digraph, |G| = n where r|n. Let *T* be tournament on *r* vertices s.t. $T \neq C_3$. Does

$$\delta(G) \geq 2(1-1/r)n-1$$

 \Rightarrow G contains a perfect T-packing?

- Look for analogues in the oriented graph setting.
- Balogh, Lo and Molla have solved the δ⁰(G) problem for transitive triangles.

- 4 同 6 4 日 6 4 日 6