
ON SOME EXTREMAL AND PROBABILISTIC QUESTIONS FOR TREE POSETS
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Abstract. Given two posets P,Q we say that Q is P -free if Q does not contain a copy of P . The size of

the largest P -free family in 2[n], denoted by La(n, P ), has been extensively studied since the 1980s. We

consider several related problems. For posets P whose Hasse diagrams are trees and have radius at most 2,
we prove that there are 2(1+o(1))La(n,P ) P -free families in 2[n], thereby confirming a conjecture of Gerbner,

Nagy, Patkós and Vizer [Electronic Journal of Combinatorics, 2021] in this case. For such P we also resolve

the random version of the P -free problem, thus generalising the random version of Sperner’s theorem due
to Balogh, Mycroft and Treglown [Journal of Combinatorial Theory Series A, 2014], and Collares Neto and

Morris [Random Structures and Algorithms, 2016]. Additionally, we make a general conjecture that, roughly

speaking, asserts that subfamilies of 2[n] of size sufficiently above La(n, P ) robustly contain P , for any poset
P whose Hasse diagram is a tree.

1. Introduction

In this paper we will consider several related extremal and probabilistic questions for posets. All posets
we consider will be viewed as finite collections of finite subsets of N equipped with the containment relation.
Indeed, we will usually be working inside the power set 2[n] for some n ∈ N.

Let P,Q be posets. A poset homomorphism from P to Q is a function ϕ : P → Q such that for every
A,B ∈ P , if A ⊆ B then ϕ(A) ⊆ ϕ(B). We say that P is a subposet of Q if there is an injective poset
homomorphism from P to Q; otherwise, Q is said to be P -free. The size of the largest P -free family in
2[n] is denoted by La(n, P ). Further we say P is an induced subposet of Q if there is an injective poset
homomorphism ϕ from P to Q such that for every A,B ∈ P , ϕ(A) ⊆ ϕ(B) if and only if A ⊆ B; otherwise,
Q is said to be induced P -free.

The systematic study of La(n, P ) was initiated by Katona and Tarján in 1983 [14], though Sperner’s
classical theorem [20] was the first result in the area. The latter asserts that the largest C2-free family1 in
2[n] has size

(
n

⌊n/2⌋
)
. Whilst the asymptotic value of La(n, P ) has been determined for a range of posets P ,

the general problem remains open; see [10] or Chapter 7 of [8] for a survey on the topic and [3, 12] for a
conjecture on the asymptotic value of La(n, P ) for all posets P .

The Hasse diagram of a poset P is the directed graph with vertex set P and for A,B ∈ P , there is a
directed edge from A to B in the Hasse diagram if A ⊂ B and there does not exist a C ∈ P such that
A ⊂ C ⊂ B. The undirected Hasse diagram is the (undirected) graph obtained from the Hasse diagram by
removing all orientations on the edges. A tree poset is a poset whose undirected Hasse diagram is a tree.
A tree poset P is upward (resp. downward) monotone if there exists an element B ∈ P with B ⊆ A (resp.
A ⊆ B) for any A ∈ P . A tree poset is called monotone if it is either upward or downward monotone.

The following result of Bukh [3] determines La(n, P ) asymptotically for all tree posets P . Given a poset
P , we write h(P ) for the height of P , i.e., the length t of the longest chain Ct in P .

Theorem 1.1 (Bukh [3]). If P is a tree poset then

La(n, P ) = (h(P )− 1)

(
n

⌊n/2⌋

)
(1 +O(1/n)).
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1We write Ct to denote the chain on t elements. Thus, a C2-free family is simply an antichain.
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A phenomenon often exhibited in combinatorial problems is the property that once one is sufficiently above
a ‘threshold’ for guaranteeing the existence of a structure, one can actually ‘robustly’ find this structure.
This behaviour is often articulated in terms of supersaturation. For example, in recent years there has been
significant attention on an old conjecture of Kleitman on the minimum number of chains Ct of length t in
a subfamily of 2[n] of a given size. Indeed, after earlier progress [2, 5, 6], this conjecture was proven by
Samotij [19].

The first question we consider takes a different viewpoint on robustness. For this we need the following
definition.

Definition 1.2. Let P be a tree poset and x ∈ P , and let d ≥ 2 be a positive integer. The d-blow-up
P (x, d) rooted at x is the tree poset whose Hasse diagram is defined as follows: for each u ∈ P , if u is at
distance ρ from x in the undirected Hasse diagram of P , then u is replaced with dρ elements u1, u2, . . . , udρ

;
furthermore, if uv is an edge of the Hasse diagram of P with v being at distance ρ − 1 to x in P , then the

uis are partitioned into dρ−1 pairwise disjoint sets U1, U2, . . . , Udρ−1

each of size d, and for every j ∈ [dρ−1],
vj is joined to all members of U j . The orientation of all such edges is the same as that of uv.

x x

Figure 1. A poset rooted at x and its 2-blow-up.

The following conjecture states that once sufficiently above the threshold in Theorem 1.1, one can robustly
guarantee a copy of a given tree poset P .

Conjecture 1.3. Let P be any tree poset of height h. Given any ε > 0 there exists δ > 0 such that the
following holds for any sufficiently large n ∈ N and any x ∈ P . Consider the δn-blow-up P (x, δn) of P rooted
at x. If F ⊆ 2[n] has size at least (h− 1 + ε)

(
n

⌊n/2⌋
)
, then F contains a copy of P (x, δn).

Remark 1. First observe that, by considering the complement family F := {[n] \ F : F ∈ F}, it is clear
that if the conjecture holds for some poset P , then it also holds for the dual poset P d obtained from P by
reversing all relations.

Note that at the cost of decreasing δ by a constant factor, if Conjecture 1.3 holds for a ‘simple’ tree poset
P , then it holds for some more complicated tree posets P ′. More precisely, suppose u, v are leaves of the
Hasse diagram of P ′, w is an element of P ′ lying on the paths from x to both u and v, and for the unique
paths w = v0, v1v2, . . . , vk = v from w to v and w = u0, u1, u2, . . . , uℓ = u from w to u with k ≤ ℓ we have
vi−1 ⊆ vi if and only if ui−1 ⊆ ui for all i ∈ [k]. Finally, suppose that vi has degree 2 in the Hasse diagram
of P for all i ∈ [k− 1]. Then if we obtain P from P ′ by removing v1, v2, . . . , vk, then P ′(x, δn/2) ⊂ P (x, δn)
for sufficiently large n; so it is enough to verify Conjecture 1.3 for P .

Similarly, suppose P1, P2 are connected components of P ′ \ {x} such that y1 ∈ P1, y2 ∈ P2 are the only
elements of P1 ∪P2 adjacent to x in the Hasse diagram of P ′, and also x ⊆ y1 if and only if x ⊆ y2. Suppose
further P2 contains a copy of P1 with y2 playing the role of y1. If we obtain P from P ′ by removing P1, then
again P ′(x, δn/2) ⊂ P (x, δn) for sufficiently large n; so it is enough to verify Conjecture 1.3 for P .

Perhaps the most interesting case of Conjecture 1.3 is when P is a monotone tree. For example, it implies
that if one is sufficiently above the threshold for guaranteeing a binary monotone tree of height h (or even
a chain of length h), then actually one can find a δn-ary monotone tree of height h.

As well as being interesting in its own right, Conjecture 1.3 has implications to a couple of other well-
studied questions. The first of these concerns counting P -free families in 2[n]. Kleitman [15] proved that the
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number of C2-free families in 2[n] is 2(1+o(1))( n
⌊n/2⌋); this result was further refined by Korshunov [16]. More

generally, a trivial lower bound on the number of P -free families in 2[n] is 2La(n,P ). The following conjecture
from [7] states that this lower bound is close to being tight.

Conjecture 1.4 (Gerbner, Nagy, Patkós and Vizer [7]). The number of P -free families in 2[n] is

2(1+o(1))La(n,P ).

Our first result asserts that if Conjecture 1.3 is true for a given tree poset P , and for a specific choice of
some x ∈ P , then Conjecture 1.4 is true for this P .

Theorem 1.5. Suppose P is a tree poset of height h for which Conjecture 1.3 holds for some choice of
x ∈ P . Then the number of P -free families in 2[n] is

2(h−1+o(1))( n
⌊n/2⌋).

In Section 3.1 we prove Theorem 1.5 via a variation on the standard graph container algorithm. The
following result gives a class of tree posets P for which Conjecture 1.3 holds for some choices of x ∈ P .

Theorem 1.6. Conjecture 1.3 holds for all tree posets P and any x ∈ P for which all elements of P are
within distance at most 2 of x in the (undirected) Hasse diagram of P .

In Section 4 we discuss why it seems challenging to extend Theorem 1.6 to arbitrary tree posets. The
next corollary follows immediately from Theorems 1.5 and 1.6. Here we say a tree poset P has radius at
most t if there is some x ∈ P so that every vertex in the (undirected) Hasse diagram is at distance at most
t from x.

Corollary 1.7. Given any tree poset P of height h ≤ 5 and radius at most 2, the number of P -free families
in 2[n] is

2(h−1+o(1))( n
⌊n/2⌋).

Notice that every tree poset P of radius at most 2 has height at most 5; we only include the h ≤ 5 condition
in Corollary 1.7 (and in the statement of other results below) to make this restriction on the height explicit.
Note that Corollary 1.7 resolves Conjecture 1.4 for various natural posets P including all monotone trees of
height at most 3 and the poset N (see Figure 2).

Figure 2. Some posets of radius 2: the N poset, a monotone tree, and a more complicated one.

We also prove the following special version of Theorem 1.6 that ensures a larger blow-up of P .

Lemma 1.8. Let P be any tree poset of height h ≤ 5 and radius at most 2. Let x ∈ P such that every
element of P is of distance at most two in the (undirected) Hasse diagram of P . Given any ε > 0, the
following holds for any sufficiently large n ∈ N. Consider the n1.9-blow-up P (x, n1.9) of P rooted at x. If
F ⊆ 2[n] is such that |F| ≥ 4(h− 1 + ε)

(
n

⌊n/2⌋
)
, then F contains a copy of P (x, n1.9).
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This lemma is a crucial tool in the proof of Theorem 1.10. Note that we have not tried to optimise the
lower bound on |F| in Lemma 1.8 as the result suffices for our purposes.

Our other application of Conjecture 1.3 is to the random version of the P -free problem. Let P(n, p) be
obtained from 2[n] by selecting each element of 2[n] independently at random with probability p. The model
P(n, p) was first investigated by Rényi [18] who determined the probability threshold for the property that
P(n, p) is not itself an antichain, thereby answering a question of Erdős. There has also been interest in the
problem of determining when the largest P -free family of P(n, p) has size p · (1 + o(1))La(n, P ) with high
probability (w.h.p.).2 For example, the next result resolves this problem when P = C2.

Theorem 1.9 (Balogh, Mycroft and Treglown [1] and Collares Neto and Morris [4]). For any ε > 0 there
exists a constant C such that if p > C/n then w.h.p. the largest C2-free family (i.e., antichain) in P(n, p)
has size (1± ε)p

(
n

⌊n/2⌋
)
.

Osthus [17] had earlier proven Theorem 1.9 in the case when pn/ log n → ∞. Moreover, Osthus showed
that, for a fixed c > 0, if p = c/n then with high probability the largest antichain in P(n, p) has size at least
(1 + o(1))(1 + e−c/2)p

(
n

⌊n/2⌋
)
. So the bound on p in Theorem 1.9 is best-possible up to the constant C.

The results in [1, 4] actually yield an analogous result for Ct-free families (for any fixed t ∈ N). Hogen-
son [13] also adapted the proof of Theorem 1.9 from [1] to obtain an analogous result for the so-called t-fork.
In [7, Conjecture 7] a general conjecture was made on the threshold for the P -free problem in P(n, p) and
the corresponding problem for induced P was also considered. Our next result resolves the random version
of the P -free problem for all tree posets of radius at most 2.

Theorem 1.10. Let P be any tree poset of height h ≤ 5 and radius at most 2. Given any ε > 0, there exists
C = C(ε, P ) > 0 such that the following holds. If p > C/n then w.h.p. the largest P -free family in P(n, p)
has size (h− 1± ε)p

(
n

⌊n/2⌋
)
.

Notice that Theorem 1.10 implies the random version of Sperner’s theorem (Theorem 1.9). Furthermore,
the lower bound on p in Theorem 1.10 is essentially tight. Indeed, for such P , [7, Corollary 6] implies that
if p = o(1/n) then w.h.p. the largest P -free family in P(n, p) has size at least (h− o(1))p

(
n

⌊n/2⌋
)
. The proof

of Theorem 1.10 applies Theorem 1.6, Lemma 1.8 and the graph container method. As noted by one of
the referees of the paper, it may be possible to prove Theorem 1.10 via the hypergraph container method.
In fact, the analogous result for Ct-free families was proven using the hypergraph container method in [4].
Our proofs of Theorems 1.5 and 1.10 show that variants of the graph container algorithm have the potential
to attack problems that cannot be naturally stated in the language of independent sets in graphs. This
philosophy is perhaps the most important message for the reader to take from our work.

The paper is organised as follows. In Section 2 we introduce some useful results. The proofs of Theo-
rems 1.5, 1.6 and 1.10 and Lemma 1.8 are presented in Section 3. In Section 4 we provide some further
discussion and make a few simple observations.

Notation. Throughout this paper we omit floors and ceilings whenever this does not affect the argument.
Given a set S and t ∈ N we write

(
S
≤t

)
to denote the set of all subsets of S of size at most t, and let(|S|

≤t

)
:=

∣∣∣( S
≤t

)∣∣∣.
Given any poset P , when considering P as a Hasse diagram we will often refer to the elements of P as

vertices. Consider a tree poset P with root x ∈ P . Suppose u ∈ P is of distance ρ from x in the undirected
Hasse diagram of P , and let v ∈ P be a neighbour of u of distance ρ + 1 from x in the undirected Hasse
diagram. Then we call u the parent of v and v a child of u. Note that every vertex other than x has precisely
one parent, though every vertex can have multiple children.

2. Preliminaries

In this section, we introduce a few tools that will be used in the proofs of some of our main results.

2Here, by with high probability we mean with probability tending to 1 as n tends to infinity.
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Definition 2.1. The Lubell-mass λn(F) of a family F ⊆ 2[n] is
∑

F∈F
1

( n
|F |)

. This is the expected number

of sets in F that are contained in a maximum chain C in 2[n] chosen uniformly at random among all such
chains.

Let Cn denote the set of all maximal chains in 2[n]. Given a family F ⊆ 2[n], the min-partition of Cn is⋃
F∈F CF ∪C∗

∅, where CF contains those C ∈ Cn where F is the smallest set in F ∩ C, while C∗
∅ is the set

of those C ∈ Cn for which C ∩ F = ∅. For a set F ∈ F , we write UF (F ) := {G \ F : G ∈ F , F ⊆ G} and we
drop the subscript F if it is clear from context.

As λn(F) is the expected number of sets of F in a randomly selected C ∈ Cn, and λn−|F |(U(F )) is the
expected number of sets of F in a randomly selected chain C ∈ CF , we obtain the following proposition.

Proposition 2.2. Given K > 0, if λn−|F |(U(F )) ≤ K for all F ∈ F , then λn(F) ≤ K.

Proposition 2.3 (Griggs, Li and Lu, Lemma 3.2 in [11]). Given K > 0, if λn(F) ≤ K, then |F| ≤ K
(

n
⌊n/2⌋

)
.

The proof of the next lemma is essentially identical to that of Theorem 3.1 in [9]. Let ∇j
F (F ) := |{G ∈

F : F ⊆ G, |G| = |F |+ j}|.

Lemma 2.4. Let ε > 0 and n ∈ N be sufficiently large. Let F ⊆ 2[n] be a family that contains only sets of
size in [n/2− n2/3, n/2 + n2/3]. If for every F ∈ F we have (i) ∇1

F (F ) ≤ εn and (ii) ∇j
F (F ) ≤ εn2 for all

j ≥ 2, then |F| ≤ (1 + 15ε)
(

n
⌊n/2⌋

)
.

Proof. We consider the min-partition of Cn and bound λn−|F |(U(F )). As all sets of F have size in [n/2 −
n2/3, n/2 + n2/3], we obtain that for all F ∈ F ,

λn−|F |(U(F )) ≤ 1 +
∇1

F (F )

n− |F |
+

∇2
F (F )(

n−|F |
2

) +

2n2/3∑
j=3

∇j
F (F )(

n−|F |
j

) ≤ 1 + 14ε+O
( ε

n

)
,

where here we used properties (i) and (ii). Propositions 2.2 and 2.3 complete the proof. □

Lemma 2.5. Let ε > 0 and n ∈ N be sufficiently large. Let F ⊆ 2[n] be a family that contains only
sets of size in [n/2 − n2/3, n/2 + n2/3]. If for every F ∈ F we have ∇j

F (F ) ≤ εn4 for all j ≥ 4, then
|F| ≤ (4 + 400ε)

(
n

⌊n/2⌋
)
.

Proof. We again consider the min-partition of Cn and bound λn−|F |(U(F )). For all F ∈ F ,

λn−|F |(U(F )) ≤ 4 +
∇4

F (F )(
n−|F |

4

) +

2n2/3∑
j=5

∇j
F (F )(

n−|F |
j

) ≤ 4 + 399ε+O
( ε

n

)
.

Propositions 2.2 and 2.3 complete the proof. □

3. The proofs of our main results

3.1. Proof of Theorem 1.5. To prove Theorem 1.5 we apply the following graph container result.

Lemma 3.1. Suppose P is a tree poset of height h for which Conjecture 1.3 holds for some choice of x ∈ P .
Given any ε > 0, let δ > 0 be as in Conjecture 1.3 and suppose n ∈ N is sufficiently large. Then there exists

a function f :
(

2[n]

≤|P |2n/δn
)
→

(
2[n]

≤(h−1+ε)( n
⌊n/2⌋)

)
such that for any P -free family F in 2[n] there is a subfamily

H ⊆ F so that H ∈
(

2[n]

≤|P |2n/δn
)
and F ⊆ H ∪ f(H).

Given any H ∈
(

2[n]

≤|P |2n/δn
)
we refer to the family H ∪ f(H) produced by Lemma 3.1 as a container. We

call H the fingerprint of the container H∪ f(H). With Lemma 3.1 at hand, Theorem 1.5 now follows easily.

Proof of Theorem 1.5. Suppose P is a tree poset of height h for which Conjecture 1.3 holds for some choice
of x ∈ P . By Theorem 1.1, there exists a P -free family F in 2[n] of size (h− 1+ o(1))

(
n

⌊n/2⌋
)
. By considering

all subfamilies of F we see that there are at least 2(h−1+o(1))( n
⌊n/2⌋) P -free families in 2[n]. To prove the
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theorem, note that it therefore suffices to prove the following: given any ε > 0, if n ∈ N is sufficiently large

then there are at most 2(h−1+3ε)( n
⌊n/2⌋) P -free families in 2[n].

Given any ε > 0 let δ > 0 be as in Conjecture 1.3 and suppose n ∈ N is sufficiently large. Let C be the

collection of all the containers H∪f(H) (for all H ∈
(

2[n]

≤|P |2n/δn
)
) obtained when applying Lemma 3.1. Thus,

|C| =
(

2n

≤ |P |2n/δn

)
≤ 2

2|P |2n
δn logn ≤ 2ε(

n
⌊n/2⌋),

where the last inequality follows as n is sufficiently large. Moreover, by Lemma 3.1, |C| ≤ (h−1+2ε)
(

n
⌊n/2⌋

)
for every C ∈ C. Since every P -free family in 2[n] is a subset of some container C ∈ C, we immediately obtain
that there are at most

|C| · 2(h−1+2ε)( n
⌊n/2⌋) ≤ 2(h−1+3ε)( n

⌊n/2⌋)

P -free families in 2[n], as desired. □

It remains to prove Lemma 3.1. The proof uses a modified version of the graph container algorithm. In
particular, there are some specific subtleties we need to take care of.

In the proof of Lemma 3.1 we will be constructing our containers through a process of analysing copies
of t-blow-ups P (x, t) in 2[n]. For this, it will be helpful to consider the following process of ‘constructing’
a copy of P in P (x, t) with root x. Suppose the children of x in P are u1, . . . , us. Then for each of these
children ui there is a set Ui of size t in P (x, t) where each xi ∈ Ui can ‘play the role’ of ui in a copy of P
rooted at x. That is, there is an edge between xi and x in the Hasse diagram of P (x, t) and it is oriented in
the ‘same’ direction as the edge between ui and x in the Hasse diagram of P .

Fix some choice of xi ∈ Ui for each i ∈ [s]; so xi will play the role of ui in the copy of P we are constructing.
Fix any i ∈ [s], and let u1,i, . . . , usi,i denote the children of ui in P . Again, for each of these children uj,i

there is a set Uj,i of size t in P (x, t) where each xj,i ∈ Uj,i can play the role of uj,i in a copy of P rooted at
x that contains x1, . . . , xs. In particular, every vertex xj,i ∈ Uj,i is adjacent to xi in the Hasse diagram of
P (x, t) and the edge between xj,i and xi is oriented in the ‘same’ direction as the edge between uj,i and ui in
the Hasse diagram of P . For each i ∈ [s] and j ∈ [si], fix some xj,i ∈ Uj,i to play the role of uj,i in the copy
of P we are constructing. We repeat this process to construct a copy of P rooted at x in P (x, t): at every
step we consider the children u of every vertex selected in the previous step; we have t vertices in P (x, t)
that are able to play the role of u in the copy of P we are constructing, so we can continue this process to
obtain our desired copy of P .

Suppose now F is a P -free family in 2[n] and consider a copy of P (x, t) in 2[n] for some t ∈ N and x ∈ P .
Run the process described in the previous two paragraphs, however, now at every step insist that any vertex
in P (x, t) selected must be in F . Since F is a P -free family this process cannot finish and produce a copy
of P . That is, either the root of our copy of P (x, t) does not belong to F , or at some step of the process we
must encounter a set U of t vertices that corresponds to some u ∈ P and where U ∩ F = ∅. As we will now
see, this simple observation is crucial to the success of running our version of the graph container algorithm.

Proof of Lemma 3.1. Suppose P is a tree poset of height h for which Conjecture 1.3 holds for some choice
of x ∈ P . Set p := |P |. Given any ε > 0, let δ > 0 be as in Conjecture 1.3 and suppose n ∈ N is sufficiently
large.

Fix a total order O2[n] of the elements of 2[n]. Let OP be a total order of the vertices of P such that the
first vertex is x; the next vertices are the children of x; the next vertices are those vertices of distance two
from x in the undirected Hasse diagram of P , and so forth. We write y1, . . . , yp for the vertices of P ordered

as in OP ; so y1 = x. Further, let Pblow denote the set of all copies of P (x, t) in 2[n] for all t ∈ N. Let Oblow

be a total order of the elements of Pblow.
We now run our modified version of the graph container algorithm. The input of the algorithm is a P -free

family F ⊆ 2[n]. The algorithm will output a fingerprint H and a container H ∪ f(H) where H ⊆ F ⊆
H ∪ f(H).

Initially we set G0 := 2[n] and H0 := ∅. We will add vertices from 2[n] to H0 and remove vertices from G0

through the following iterative process, beginning at Step 1.
At Step i, let P1(x, t) ∈ Pblow be a copy of P (x, t) in Gi−1 ⊆ 2[n] where we choose t to be as large as

possible. If there is more than one copy of P (x, t) in Gi−1 for this choice of t we choose P1(x, t) to be the
6



copy of P (x, t) appearing earliest in the total order Oblow. Let x1 be the vertex of P1(x, t) that plays the
role of x.

• Suppose x1 ̸∈ F . Then define Gi := Gi−1 \ {x1} and Hi := Hi−1. Proceed to Step i+ 1.
• Suppose x1 ∈ F and t ≥ δn. We will update Gi−1 and Hi−1 in several subphases to obtain Gi and

Hi respectively.
– Subphase 1. Delete x1 from Gi−1 and add it to Hi−1. Proceed to Subphase 2.
– Subphase 2. Recall that we write y1, . . . , yp for the vertices of P ordered as in OP . So y1 = x

and y2 is a child of x in P . In P1(x, t) there is a set of t vertices U2 ⊆ Gi−1 so that each x2 ∈ U2

is adjacent to x1 in the Hasse diagram of P1(x, t) and further the edge between x1 and x2 is
oriented in the same direction as the edge between y1(= x) and y2 in the Hasse diagram for P .

Look through the vertices in U2 ⊆ 2[n] one by one, following the total order O2[n] . If we run
through the entire set U2 without finding an element from F then we delete all t vertices in U2

from Gi−1 and stop Step i.

Otherwise, let x2 ∈ U2 denote the very first element from F that we discover in U2. Add x2 to
Hi−1 and remove from Gi−1 both x2 and all elements of U2 that occur before x2 in the total
order O2[n] . So here we have deleted between 1 and t elements of Gi−1, and of these only x2 lies
in F . Proceed to Subphase 3.

– Subphase j (for 3 ≤ j ≤ p). In the previous subphases we have defined x1, . . . , xj−1 ∈ P1(x, t)
corresponding to y1, . . . , yj−1 ∈ P .

By definition of OP , the unique parent yk of yj in P must be one of y1, . . . , yj−1. Furthermore,
by definition of P (x, t), there is a set of t vertices Uj ⊆ Gi−1 in P1(x, t) corresponding to yj so
that every xj ∈ Uj is adjacent to xk in the Hasse diagram of P1(x, t), and moreover, the edge
between xk and xj is oriented in the same direction as the edge between yk and yj in the Hasse
diagram for P .

Look through the vertices in Uj ⊆ 2[n] one by one, following the total order O2[n] . If we run
through the entire set Uj without finding an element from F then we delete all t vertices in Uj

from Gi−1 and stop Step i.

Otherwise, let xj ∈ Uj denote the very first element from F that we discover in Uj . Add xj to
Hi−1 and remove from Gi−1 both xj and all elements of Uj that occur before xj in the total
order O2[n] . So here we have deleted at most t elements of Gi−1, of which only xj lies in F .
Proceed to Subphase j + 1.

At the end of these subphases relabel Gi−1 as Gi and Hi−1 as Hi; then proceed to Step i + 1.
Since F is P -free, for some j ∈ [p], Subphase j must consider a set Uj where Uj ∩ F = ∅. Thus,
in Step i we have deleted at least t vertices from Gi−1 to obtain Gi and have added at most p − 1
vertices to Hi−1 (at most one in each of the first p− 1 subphases) to obtain Hi.

• Suppose x1 ∈ F and t < δn. Then define H := Hi−1 ∪ {x1} and f(H) := Gi−1 \ {x1} and terminate
the algorithm.

Note that in every step of the algorithm we only add elements to Hi−1 that lie in F . So certainly H ⊆ F .
Similarly, by construction, F ⊆ H ∪ f(H). In every step of the algorithm, except the final step, if we add
(at most p− 1) elements to Hi−1 we delete at least δn elements from Gi−1 ⊆ 2[n]. Therefore,

|H| ≤ (p− 1)2n

δn
+ 1 ≤ p · 2n

δn
.

Furthermore, by construction of the algorithm, the family f(H) ⊆ 2[n] does not contain a copy of the δn
blow-up P (x, δn). Thus, by the assumption of the lemma, we have that

|f(H)| ≤ (h− 1 + ε)

(
n

⌊n/2⌋

)
.

Therefore all that remains to check is that the function f is well-defined. That is, suppose F1 and F2 are
P -free families in 2[n] such that, on input Fi, our algorithm outputs the container Hi∪f(Hi) for each i ∈ [2];
if H1 = H2 then we require that f(H1) = f(H2). This follows though immediately from the definition of the
algorithm. Indeed, suppose one is only presented with the fingerprint that is outputted by the algorithm.
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Then one can completely identify every action taken during the algorithm. Thus, two applications of the
algorithm yielding the same fingerprint must also yield the same container. □
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Figure 3. The Hasse diagrams of the
∧
, Y d, S, S+, and S++ posets.

3.2. Proofs of Theorem 1.6 and Lemma 1.8. For the proofs, we need to define five specific posets. See
their Hasse diagrams in Figure 3. Let

•
∧

be the three element poset on {a, x, c} with a, x < c, and a, x unrelated;
• Y be the four element poset on {a, x, c, d} with a, x > c > d being all its cover relations;
• S be the five element poset on {a, b, x, d, e} with a > b < x < d > e being all its cover relations;
• S+ be the six element poset on {a, b, x, d, e, f} with a > b < x < d < f and d > e being all its cover
relations;

• S++ be the seven element poset on {a, b, x, d, e, f, g} with a > b, g < b < x < d < f , and d > e being
all its cover relations.

Proof of Theorem 1.6. Let ε > 0; note that it suffices to prove the theorem under the assumption that ε is
sufficiently small and n ∈ N is sufficiently large. Observe that if x ∈ P is within distance at most 2 of all
other elements of P , then a connected component of P \ {x} is either an isolated vertex or contains a vertex
u that is contained in all edges of the Hasse diagram of that component, and where u is adjacent to x in
the Hasse diagram of P . This and Remark 1 imply that it is enough to prove the statement for the posets∧
, Y d,S,S+,S++ and x as given in their definition and in Figure 3. For example, if P is of height 2 and

γ1 > 0, then there exists a γ2 > 0 such that there is a choice of y ∈ P so that P (y, γ2n) ⊆
∧
(x, γ1n) or

P (y, γ2n) ⊆
∧d

(x, γ1n) for all sufficiently large n ∈ N.

Consider first the poset
∧
; its height is 2. It suffices to consider F ⊆ 2[n] of size exactly (1 + ε)

(
n

⌊n/2⌋
)
.

Let δ := ε2

(1+ε)120 . As n is large enough, we can and will assume (here and in the cases of the four other

posets as well) that all sets in F have size between n/2− n2/3 and n/2 + n2/3. Indeed, there are o(
(

n
⌊n/2⌋

)
)

sets in 2[n] that do not have size between n/2 − n2/3 and n/2 + n2/3, so we can ignore any such sets in F .
We say that F ∈ F is of

• Type 1 if there exist at least εn/30 sets G ∈ F with |G| = |F | − 1 and G ⊂ F ;
• Type 2 if, for some j ≥ 2, there exist at least εn2/30 sets G ∈ F with |G| = |F | − j and G ⊂ F ;
• Type 3 otherwise.

Let F∗ denote the subfamily of F of sets of type 1 or 2. Applying Lemma 2.4 ‘upside down’, we obtain
that the subfamily F \ F∗ of sets of type 3 has size at most (1 + ε/2)

(
n

⌊n/2⌋
)
. Therefore, |F∗| ≥ ε

(
n

⌊n/2⌋
)
/2.

Consider the bipartite graph B with parts F and F∗, where there is an edge between G ∈ F and F ∈ F∗ if
and only if G ⊂ F . By definition of the types, the number of edges in B is at least εn|F∗|/30 ≥ ε2n

(
n

⌊n/2⌋
)
/60;

so there exists a set Fx ∈ F with degree at least 2δn in B. Fx will play the role of x in the copy of P (x, δn)
8



that we will construct. At least δn of Fx’s neighbours in B are of the same type (i.e., all of type 1 or all of
type 2); they will play the role of the many copies of c in P (x, δn). Let Fc ⊆ F∗ denote a family of such
sets so that |Fc| = δn.

Suppose first that all sets in Fc are of type 1. Each F ∈ Fc has at least εn/30 subsets in F of size
|F | − 1; so there are at least εn/30 − |Fc| − 1 ≥ εn/60 such subsets of F that do not belong to Fc ∪ {Fx}.
If F, F ′ ∈ Fc have different sizes, then the subsets of F and F ′ that we consider are clearly distinct. If F, F ′

have the same size, then they share at most one common subset of size |F | − 1. Therefore, for all F ∈ Fc we
can pick εn/60− |Fc| ≥ δn distinct subsets of F to obtain a copy of

∧
(x, δn) in F .

Suppose next that Fc consists only of sets of type 2. Then each of them contains at least εn2/30−|Fc|−1 ≥
δn|Fc| subsets that do not lie in Fc ∪ {Fx}. So we can pick greedily δn distinct subsets for each F ∈ Fc to
obtain a copy of

∧
(x, δn).

Consider next the poset Y d. In this case it suffices to consider F ⊆ 2[n] of size exactly (2+ ε)
(

n
⌊n/2⌋

)
. Let

δ1 be the output of the theorem on input ε/2,
∧

and x; thus, δ1 = ε2/(480(1 + ε/2)). For Y d we show that
we can take δ := δ1/2. Now we say that F ∈ F is of

• Type 1 if there exist at least εn/30 sets G ∈ F with |G| = |F |+ 1 and G ⊃ F ;
• Type 2 if, for some j ≥ 2, there exist at least εn2/30 sets G ∈ F with |G| = |F |+ j and G ⊃ F ;
• Type 3 otherwise.

Applying Lemma 2.4, we obtain the subfamily of F of sets of type 3 has size at most (1 + ε/2)
(

n
⌊n/2⌋

)
.

Therefore, the subfamily F∗ ⊆ F of sets of type 1 or 2 has size at least (1 + ε/2)
(

n
⌊n/2⌋

)
. By the previous

case, we obtain a copy of
∧
(x, δ1n) in F∗. Let Fx be the set corresponding to x, Fc be the family of sets

corresponding to the copies of c, and Fa be the family of sets corresponding to copies of a. Suppose that
there exist Fc ∈ Fc, Fa ∈ Fa with Fa ⊃ Fc. Then we can exchange the roles of Fa and Fc and we still have
a copy of

∧
(x, δn). As after such a swap, the number of pairs Fa ⊃ Fc decreases, after a finite number of

changes, we can assume that no Fa ∈ Fa contains any Fc ∈ Fc.
Now we are ready to use our copy of

∧
(x, δ1n) to obtain a copy of Y d(x, δ1n/2) by adding δ1n/2 distinct

supersets of each Fc ∈ Fc. We distinguish two cases according to the type of sets in Fc; at the price of
working with

∧
(x, δ1n/2) rather than

∧
(x, δ1n), we can assume that all sets in Fc are of the same type.

Suppose first that all sets in Fc are of type 1. Then, by our assumption that no Fa ∈ Fa contains any
Fc ∈ Fc, any Fc ∈ Fc has at least (ε/30 − δ1/2)n supersets of size |Fc| + 1 in F that are not used in our
copy of

∧
(x, δ1n/2). If Fc and F ′

c have different sizes, then these supersets are distinct because they are
also of different size. If Fc, F

′
c are of the same size, then they can share at most one common superset of

size |Fc| + 1; thus, as δ1 is much smaller than ε, we can pick δ1n/2 distinct supersets of each Fc ∈ Fc to
obtain Y d(x, δ1n/2). Suppose next that all Fc ∈ Fc are of type 2. Then as εn2/30 > δ1n|Fc|, we can pick
the supersets of each Fc greedily to obtain a copy of Y d(x, δ1n/2).

Finally, we can consider the posets S, S+, and S++. As the proofs are almost identical, we only show
the statement for S+. Let F ⊆ 2[n] be a family of size exactly (3 + ε)

(
n

⌊n/2⌋
)
. Let δ1 be the value of δ that

we showed to exist for ε/3,
∧

and x, and let δ2 be the value of δ that we showed to exist for ε/3, Y d and x.
Set δ∗ := min{δ1, δ2}. Let F1 be the subfamily of F consisting of those sets F ∈ F for which there exists
no copy of

∨
(x, δ∗n) ⊂ F in which F plays the role of x. (The poset

∨
is the dual of

∧
.) Let F2 be the

subfamily of F consisting of those sets F ∈ F for which there exists no copy of Y d(x, δ∗n) ⊂ F in which F
plays the role of x. By definition of δ1, δ2 and δ∗, we have |F1| ≤ (1+ε/3)

(
n

⌊n/2⌋
)
and |F2| ≤ (2+ε/3)

(
n

⌊n/2⌋
)
;

so there exists a set Fx ∈ F \ (F1 ∪ F2). By definition of F1 and F2, Fx plays the role of x both in a copy
G1 of

∨
(x, δ∗n) and in a copy G2 of Y d(x, δ∗n). In G1 ∪G2, the containment relations are as required as in a

copy of S+(x, δ∗n) with Fx playing the role of x; the only problem that can occur is that G1 and G2 might
overlap. We overcome this problem by decreasing the value of δ∗ and filtering out sets from G1 ∪ G2.

For y ∈ {d, e, f} let Gy ⊂ G2 denote the family of sets corresponding to y in G2 and similarly for y ∈ {a, b}
let Gy ⊂ G1 denote the family of sets corresponding to y in G1. Therefore, Gd,Ge,Gf are pairwise disjoint
and so are Ga,Gb. Also, Gb ∩ (Gd ∪Gf ) = ∅ as all sets in Gb are proper subsets of Fx, while all sets in Gd ∪Gf

are proper supersets of Fx. For a set Gb ∈ Gb, we write E(Gb) ⊂ Ga for the family of sets that correspond to
the component of G1 \ {Fx} containing Gb, and for a set Gd ∈ Gd we write E(Gd) ⊂ Ge ∪ Gf for the family
of sets that correspond to the component of G2 \ {Fx} containing Gd.
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• Consider a subfamily G′
b ⊂ Gb with |G′

b| = 1
2 |Gb|. Remove from G1 (and thus Gb and Ga respectively)

all elements of G′
b as well as all elements from {E(G′

b) : G
′
b ∈ G′

b}. As we removed δ∗n/2 sets from Gb,
for every set Gd ∈ Gd we have |E(Gd) ∩ Gb| ≤ δ∗n/2. We may therefore throw away exactly half of
E(Gd)∩ Ge and exactly half of E(Gd)∩ Gf for every Gd ∈ Gd, so that now E(Gd) is disjoint from Gb.
We now must have that any overlaps between G1 and G2 occur between Ga and Gd∪Ge∪Gf . Note that
currently we have that |Gb| = δ∗n/2; |E(Gb)| = δ∗n for all Gb ∈ Gb; |Gd| = δ∗n; |E(Gd)∩Ge| = δ∗n/2
and |E(Gd) ∩ Gf | = δ∗n/2 for all Gd ∈ Gd.

• Consider a subfamily G′
d ⊂ Gd with |G′

d| = 99
100 |Gd|. Remove from G2 (and thus Gd and Ge ∪ Gf

respectively) all elements of G′
d as well as all elements from {E(G′

d) : G′
d ∈ G′

d}. For every set
Gb ∈ Gb we therefore now have that |E(Gb)∩Gd| ≤ δ∗n/100. We can thus throw away exactly half of
E(Gb) for every Gb ∈ Gb, so that now E(Gb) is disjoint from Gd. We now must have that any overlaps
between G1 and G2 occur between Ga and Ge ∪ Gf . Note that currently we have that |Gb| = δ∗n/2;
|E(Gb)| = δ∗n/2 for all Gb ∈ Gb; |Gd| = δ∗n/100; |E(Gd)∩ Ge| = δ∗n/2 and |E(Gd)∩ Gf | = δ∗n/2 for
all Gd ∈ Gd.

• We say that a Gb ∈ Gb is destroyed if |E(Gb)∩ (Ge ∪Gf )| ≥ 99|E(Gb)|/100 = 99δ∗n/200. Notice that
at most 99|Gb|/100 Gb ∈ Gb are destroyed. Indeed, suppose not. Then recalling that the sets E(Gb)
for Gb ∈ Gb are disjoint, we obtain that

|Ge ∪ Gf | ≥
∑

Gb∈Gb

|E(Gb) ∩ (Ge ∪ Gf )| ≥
99|Gb|
100

× 99δ∗n

200
=

(
99δ∗n

200

)2

.

This is a contradiction though as

|Ge ∪ Gf | = |Gd|δ∗n =
(δ∗n)2

100
<

(
99δ∗n

200

)2

.

Remove all destroyed Gb from Gb and also remove from Ga everything from {E(Gb) : Gb is destroyed}.
So now |Gb| ≥ δ∗n/200. For each Gb ∈ Gb delete from E(Gb) all elements from E(Gb)∩(Ge∪Gf ). Since
each Gb ∈ Gb is not destroyed, we still have that |E(Gb)| = δ∗n/200. Recall also that |Gd| = δ∗n/100,
and |E(Gd) ∩ Ge| = δ∗n/2 and |E(Gd) ∩ Gf | = δ∗n/2 for all Gd ∈ Gd.

We have ensured that Ga and Ge ∪ Gf are disjoint, and thus G1 and G2 are disjoint. Therefore,
G1 ∪ G2 contains a copy of S+(x, δn) where δ := δ∗/200, as desired.

□

Proof of Lemma 1.8. The proof closely follows that of Theorem 1.6, but instead of using Lemma 2.4 we apply
Lemma 2.5. Again, as in the case of Theorem 1.6, by Remark 1, it is enough to only prove the result for
P =

∧
, Y d, S, S+, S++, but with the slightly stronger conclusion that we seek a copy of P (x, n1.91). As x is

at distance at most 2 from any element of P , every element y ∈ P has at most n3.82 ≪ n4 sets corresponding
to y in a copy of P (x, n1.91). This combined with the fact that we now consider families F that are four
times as large as those in Theorem 1.6 means the proof is actually cleaner than that of Theorem 1.6. As
such, we only explicitly show the case of

∧
.

Let 0 < ε < 1/4 be fixed, n be sufficiently large and F ⊆ 2[n] be of size (4 + 4ε)
(

n
⌊n/2⌋

)
= 4(h(

∧
) − 1 +

ε)
(

n
⌊n/2⌋

)
. Let F− be the family of sets F ∈ F that do not contain εn4/500 other sets of F of size |F | − j for

any j ≥ 4. By Lemma 2.5, |F−| ≤ (4+ 4ε
5 )

(
n

⌊n/2⌋
)
and thus F+ := F\F− has size at least 3ε

(
n

⌊n/2⌋
)
. Consider

the bipartite graph B with parts F+ and F such that F+ ∈ F+ and F ∈ F are joined by an edge if and
only if F ⊂ F+. By definition of F+, the number of edges in B is at least εn4|F+|/500 ≥ ε2n4

(
n

⌊n/2⌋
)
/200;

therefore there exists Fx ∈ F with degree at least ε2n4/1000 in B. Fx will play the role of x in the copy of∧
(x, n1.91) that we will construct, and n1.91 of its neighbours Fc in B will play the role of x’s neighbours

in
∧
(x, n1.91). For each of these n1.91 neighbours Fc of Fx, we greedily pick n1.91 distinct subsets of Fc to

obtain a copy of
∧
(x, n1.91) in F . □

3.3. Proof of Theorem 1.10. To prove Theorem 1.10 we need to apply the following container result.
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Lemma 3.2. Let P be any tree poset of height h ≤ 5 and radius at most 2. Let 0 < ε < 1/5 and let δ > 0 be
as in Conjecture 1.3.3 Suppose n ∈ N is sufficiently large and write m :=

(
n

⌊n/2⌋
)
. Then there exist functions

f :
(

2[n]

≤|P |n−1.92n

)
→

(
2[n]

≤4(h−1+ε)m

)
and g :

(
2[n]

≤|P |(4h−3)m/δn

)
→

(
2[n]

≤(h−1+ε)m

)
such that for any P -free family F

in 2[n] there are disjoint subfamilies H1,H2 ⊆ F so that:

(i) H1 ∈
(

2[n]

≤|P |n−1.92n

)
and H1 ∪H2 ∈

(
2[n]

≤|P |(4h−3)m/δn

)
;

(ii) H1 ∪H2 and g(H1 ∪H2) are disjoint;
(iii) H2 ⊆ f(H1);
(iv) F ⊆ H1 ∪H2 ∪ g(H1 ∪H2).

Similarly to before we refer to the family H1 ∪H2 ∪ g(H1 ∪H2) produced by Lemma 3.2 as a container ;
we call H1 and H2 the fingerprints.

The proof of Lemma 3.2 closely follows that of Lemma 3.1 except that we analyse the container algorithm
over two separate stages. The idea of a multi-stage analysis of the graph container algorithm was first
introduced in [1]. In particular, as in the proof of Theorem 1.9 presented in [1], using a two-stage container
algorithm will allow us to employ more careful calculations in the proof of Theorem 1.10, thereby allowing
us to deal with probabilities p ‘close’ to 1/n.

Proof of Lemma 3.2. Let P be as in the statement of the lemma and set p := |P |. Let x ∈ P be of distance
at most two from every other element in the Hasse diagram of P . Given any 0 < ε < 1/5, let δ > 0 be as in
Conjecture 1.3. Suppose n ∈ N is sufficiently large and let m :=

(
n

⌊n/2⌋
)
.

Fix a total order O2[n] of the elements of 2[n]. Let OP be a total order of the vertices of P such that the
first vertex is x; the next vertices are the children of x; the next vertices are those vertices of distance two
from x in the undirected Hasse diagram of P , and so forth. We write y1, . . . , yp for the vertices of P ordered

as in OP ; so y1 = x. Further, let Pblow denote the set of all copies of P (x, t) in 2[n] for all t ∈ N. Let Oblow

be a total order of the elements of Pblow.
We now run our modified version of the graph container algorithm. The input of the algorithm is a P -free

family F ⊆ 2[n]. The algorithm will output fingerprints H1, H2 and a container H1∪H2∪ g(H1∪H2) where
H1 ∪H2 ⊆ F ⊆ H1 ∪H2 ∪ g(H1 ∪H2). We proceed in two stages.

Stage 1: Initially we set G0
1 := 2[n] and H0

1 := ∅. We will add vertices from 2[n] to H0
1 and remove vertices

from G0
1 through the following iterative process, beginning at Step 1.

At Step i, let P1(x, t) ∈ Pblow be a copy of P (x, t) in Gi−1
1 ⊆ 2[n] where we choose t to be as large as

possible. If there is more than one copy of P (x, t) in Gi−1
1 for this choice of t we choose P1(x, t) to be the

copy of P (x, t) appearing earliest in the total order Oblow. Let x1 be the vertex of P1(x, t) that plays the
role of x.

• Suppose x1 ̸∈ F . Then define Gi
1 := Gi−1

1 \ {x1} and Hi
1 := Hi−1

1 . Proceed to Step i+ 1.

• Suppose x1 ∈ F and t ≥ n1.9. We will update Gi−1
1 and Hi−1

1 in several subphases to obtain Gi
1 and

Hi
1 respectively.
– Subphase 1. Delete x1 from Gi−1

1 and add it to Hi−1
1 . Proceed to Subphase 2.

– Subphase 2. Recall that we write y1, . . . , yp for the vertices of P ordered as in OP . So y1 = x

and y2 is a child of x in P . In P1(x, t) there is a set of t vertices U2 ⊆ Gi−1
1 so that each x2 ∈ U2

is adjacent to x1 in the Hasse diagram of P1(x, t) and further the edge between x1 and x2 is
oriented in the same direction as the edge between y1(= x) and y2 in the Hasse diagram for P .

Look through the vertices in U2 ⊆ 2[n] one by one, following the total order O2[n] . If we run
through the entire set U2 without finding an element from F then we delete all t vertices in U2

from Gi−1
1 and stop Step i.

Otherwise, let x2 ∈ U2 denote the very first element from F that we discover in U2. Add x2 to
Hi−1

1 and remove from Gi−1
1 both x2 and all elements of U2 that occur before x2 in the total

order O2[n] . So here we have deleted between 1 and t elements of Gi−1
1 , and of these only x2 lies

in F . Proceed to Subphase 3.

3Note that in Theorem 1.6 we proved that Conjecture 1.3 holds for such P and some x ∈ P ; so we can indeed select δ as in
Conjecture 1.3.
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– Subphase j (for 3 ≤ j ≤ p). In the previous subphases we have defined x1, . . . , xj−1 ∈ P1(x, t)
corresponding to y1, . . . , yj−1 ∈ P .

By definition of OP , the unique parent yk of yj in P must be one of y1, . . . , yj−1. Furthermore,

by definition of P (x, t), there is a set of t vertices Uj ⊆ Gi−1
1 in P1(x, t) corresponding to yj so

that every xj ∈ Uj is adjacent to xk in the Hasse diagram of P1(x, t), and moreover, the edge
between xk and xj is oriented in the same direction as the edge between yk and yj in the Hasse
diagram for P .

Look through the vertices in Uj ⊆ 2[n] one by one, following the total order O2[n] . If we run
through the entire set Uj without finding an element from F then we delete all t vertices in Uj

from Gi−1
1 and stop Step i.

Otherwise, let xj ∈ Uj denote the very first element from F that we discover in Uj . Add xj to

Hi−1
1 and remove from Gi−1

1 both xj and all elements of Uj that occur before xj in the total

order O2[n] . So here we have deleted at most t elements of Gi−1
1 , of which only xj lies in F .

Proceed to Subphase j + 1.

At the end of these subphases relabel Gi−1
1 as Gi

1 and Hi−1
1 as Hi

1; then proceed to Step i + 1.
Since F is P -free, for some j ∈ [p], Subphase j must consider a set Uj where Uj ∩ F = ∅. Thus,

in Step i we have deleted at least t vertices from Gi−1
1 to obtain Gi

1 and have added at most p − 1

vertices to Hi−1
1 (at most one in each of the first p− 1 subphases) to obtain Hi

1.

• Suppose x1 ∈ F and t < n1.9. Then define H1 := Hi−1
1 ∪{x1} and f(H1) := Gi−1

1 \{x1} and proceed
to Step 1 of Stage 2.

Note that in every step of Stage 1 we only add elements to Hi−1
1 that lie in F . So certainly H1 ⊆ F .

Similarly, by construction, F ⊆ H1 ∪ f(H1), and H1 and f(H1) are disjoint. In every step of Stage 1 except
the final step, if we add (at most p− 1) elements to Hi−1

1 we delete at least n1.9 elements from Gi−1
1 ⊆ 2[n].

Therefore,

|H1| ≤
(p− 1)2n

n1.9
+ 1 ≤ p · 2n

n1.9
.(1)

Furthermore, by construction of Stage 1, the family f(H1) ⊆ 2[n] does not contain a copy of the n1.9-blow-up
P (x, n1.9). Thus, by Lemma 1.8, we have that

|f(H1)| ≤ 4(h− 1 + ε)m.

Stage 2. At the start of Stage 2 we set G0
2 := f(H1) and H0

2 := ∅. We will add vertices from f(H1) to H0
2

and remove vertices from G0
2 through the following iterative process, beginning at Step 1.

At Step i of Stage 2, let P2(x, t) ∈ Pblow be a copy of P (x, t) in Gi−1
2 ⊆ 2[n] where we choose t to be as

large as possible. If there is more than one copy of P (x, t) in Gi−1
2 for this choice of t we choose P2(x, t) to

be the copy of P (x, t) appearing earliest in the total order Oblow. Let x1 be the vertex of P2(x, t) that plays
the role of x.

• Suppose x1 ̸∈ F . Then define Gi
2 := Gi−1

2 \ {x1} and Hi
2 := Hi−1

2 . Proceed to Step i+ 1.

• Suppose x1 ∈ F and t ≥ δn. We then update Gi−1
2 and Hi−1

2 in at most p subphases to obtain Gi
2

and Hi
2 respectively. These subphases are identical to those subphases described in Stage 1, just

with Gi−1
2 , Hi−1

2 and P2(x, t) now playing the roles of Gi−1
1 , Hi−1

1 and P1(x, t) respectively.

At the end of the subphases relabel Gi−1
2 as Gi

2 and Hi−1
2 as Hi

2; then proceed to Step i + 1 of
Stage 2. Since F is P -free, for some j ∈ [p], Subphase j must consider a set Uj where Uj ∩ F = ∅.
Thus, in Step i of Stage 2, we have deleted at least t vertices from Gi−1

2 to obtain Gi
2 and have added

at most p− 1 vertices to Hi−1
2 (at most one in each of the first p− 1 subphases) to obtain Hi

2.

• Suppose x1 ∈ F and t < δn. Then define H2 := Hi−1
2 ∪ {x1} and g(H1 ∪ H2) := Gi−1

2 \ {x1} and
terminate the algorithm.

Note that in every step of Stage 2 we only add elements to Hi−1
2 that lie in F ∩ f(H1). So certainly

H2 ⊆ F . Further, as H1 and f(H1) are disjoint, this implies H1 and H2 are disjoint. Similarly, by
construction, conditions (ii)–(iv) of the lemma hold.
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In every step of Stage 2 except the final step, if we add (at most p−1) elements to Hi−1
2 we delete at least

δn elements from Gi−1
2 ⊆ 2[n]. Moreover, recall that G0

2 := f(H1) and |f(H1)| ≤ 4(h− 1 + ε)m. Therefore,

|H2| ≤
(p− 1)4(h− 1 + ε)m

δn
+ 1 ≤ p · 4(h− 1 + ε)m

δn
.

Combining this with (1) we see that condition (i) of the lemma holds.
Note that g(H1∪H2) ⊆ 2[n] is defined so that it does not contain a copy of P (x, δn). Thus, by Theorem 1.6,

|g(H1 ∪H2)| ≤ (h− 1 + ε)m.

Therefore all that remains to check is that the functions f and g are well-defined. That is, if for two P -free
families F and F ′ the algorithm outputs the same H1, then f(H1) is defined the same, and furthermore, if
H1 ∪H2 is the same for both runs of the algorithm then so is g(H1 ∪H2). This follows though immediately
from the definition of the algorithm. Indeed, suppose one is only presented with the fingerprint H1 that is
outputted by Step 1 of the algorithm. Then one can completely identify every action taken during Step 1 of
the algorithm. Similarly, if one is further given the second fingerprint H2, then one can completely identify
every action taken during Step 2 of the algorithm. □

With Lemma 3.2 at hand, we can now prove Theorem 1.10.

Proof of Theorem 1.10. Let P be any tree poset of height h ≤ 5 and radius at most 2. Fix ε > 0; it suffices
to prove the theorem under the assumption that ε < 1/5. Let ε1 := ε/4 and let δ > 0 be as in Conjecture 1.3
on input ε1. Define C := 1010|P |(4h− 3)h4ε−5δ−1. Let p > C/n and m :=

(
n

⌊n/2⌋
)
.

Note that the middle h− 1 layers of 2[n] form a P -free subfamily of 2[n] of size (h− 1− o(1))m. So w.h.p.
P(n, p) contains a P -free family of size at least (h − 1 − ε)pm. It remains to show that, w.h.p., P(n, p)
contains no P -free family of size greater than (h− 1 + ε)pm. We now follow the proof of Theorem 1.9 given
in [1] closely.

Apply Lemma 3.2 with ε1 playing the role of ε. Suppose for a contradiction that P(n, p) does contain
some P -free family F with |F| > (h − 1 + ε)pm. Let H1 and H2 denote the fingerprints for F given
by Lemma 3.2. Then since H1 ∪ H2 ⊆ F , we must have that H1 ∪ H2 ⊆ P(n, p). Further, at least
|F| − |H1 ∪H2| ≥ (h− 1 + ε)pm− |P |(4h− 3)m/δn ≥ (h− 1 + ε/2)pm elements of g(H1 ∪H2) must be in
P(n, p).

Note that the number of possibilities for H1 is
(

2n

≤|P |n−1.92n

)
, and for each possibility the probability that

H1 ⊆ P(n, p) is p|H1|. For any fixed H1 we have |f(H1)| ≤ 4(h− 1+ ε1)m ≤ (4h− 3)m and H2 ⊆ f(H1), so

the number of possibilities for H2 is at most
(

(4h−3)m
≤|P |(4h−3)m/δn

)
, and for each possibility the probability that

H2 ⊆ P(n, p) is p|H2|.
Furthermore, for any fixed H1 and H2 we have g(H1 ∪ H2) ≤ (h − 1 + ε1)m = (h − 1 + ε/4)m, so the

expected number of elements of g(H1 ∪H2) selected for P(n, p) is at most (h− 1+ ε/4)pm. By the Chernoff
bound for the binomial distribution, the probability that at least (h − 1 + ε/2)pm elements of g(H1 ∪ H2)

are selected for P(n, p) is therefore at most e−ε2pm/(100h2).
Taking a union bound, we conclude that the probability that P(n, p) contains a P -free family of size

greater than (h− 1 + ε)pm is at most

Π :=
∑

0≤a≤|P |n−1.92n

∑
0≤b≤|P |(4h−3)m/δn

(
2n

a

)
· pa ·

(
(4h− 3)m

b

)
· pb · e−ε2pm/(100h2)

≤
(
|P |n−1.92n + 1

)
(|P |(4h− 3)m/δn+ 1)

(
2n

|P |n−1.92n

)
· p|P |n−1.92n

(
(4h− 3)m

|P |(4h− 3)m/δn

)
· p|P |(4h−3)m/δn · e−ε2pm/(100h2).

Note that for large n, with room to spare we have

(|P |n−1.92n + 1)(|P |(4h− 3)m/δn+ 1) ≤ eε
2pm/(400h2)

and (
2n

|P |n−1.92n

)
· p|P |n−1.92n ≤ eε

2pm/(400h2).
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Further, as C = 1010|P |(4h− 3)h4ε−5δ−1, for sufficiently large n we have that(
(4h− 3)m

|P |(4h− 3)m/δn

)
· p|P |(4h−3)m/δn ≤ eε

2pm/(400h2).

Therefore, the upper bound Π on the probability is o(1), as required. □

4. Further discussion and observations

For tree posets P of radius at most 2, we have asymptotically determined the number of P -free families
in 2[n] (Corollary 1.7) and have also resolved the random version of the P -free problem (Theorem 1.10). In
general though, these questions for other posets P remain wide open. However, as we will now see, if one
has solved either of these problems for some poset P , then one can often deduce further results from this.

Let Pt,h denote the (upward) monotone t-ary tree poset of height h; the t-fork ∨t is Pt,2. Let Dk denote
the k-diamond ; that is, the poset with a unique maximal element above all other elements, a unique minimal
element below all other elements, and k (incomparable) elements in between. Note that ♢ := D2 is the
diamond.

Observation 4.1.

(1) Given any t, h ∈ N, and ε > 0, there exists C > 0 such that the following holds. If p > C/n then
w.h.p. the largest Pt,h-free family in P(n, p) has size (h− 1± ε)p

(
n

⌊n/2⌋
)
.

(2) The number of Pt,h-free families in 2[n] is 2(h−1+o(1))( n
⌊n/2⌋).

Proof. The lower bound of (1) follows by noting that, w.h.p., P(n, p) contains at least (h − 1 − ε)p
(

n
⌊n/2⌋

)
elements from the h−1 middle layers of 2[n]. The lower bound of (2) can be seen by considering all subfamilies
of the h− 1 middle layers of 2[n].

The proof of the upper bound of (1) proceeds by induction on h, with the base case h = 2 proved by
Hogenson [13]. Suppose (1) holds for any choice of the height of the tree less than h where h ≥ 3. Fix any
t ∈ N and ε > 0. By the induction hypothesis, there exists C1 > 0 such that if p > C1/n then, w.h.p, the
largest P2th,2-free family in P(n, p) has size at most (1+ε/2)p

(
n

⌊n/2⌋
)
. Further, there exists C2 > 0 such that

if p > C2/n then, w.h.p, the largest Pt,h−1-free family in P(n, p) has size at most (h− 2 + ε/2)p
(

n
⌊n/2⌋

)
.

Let C := max{C1, C2} and consider p > C/n. Consider any Pt,h-free family F ⊆ P(n, p). Define
F ′ := {F ∈ F : |U(F ) \ {F}| < 2th}. As F ′ is P2th,2-free then, w.h.p., |F ′| ≤ (1 + ε/2)p

(
n

⌊n/2⌋
)
.

Furthermore, observe that F \F ′ is Pt,h−1-free, as otherwise a copy of Pt,h−1 in F \F ′ could be extended
greedily to a copy of Pt,h in F . Indeed, any set F corresponding to a leaf of Pt,h−1 is contained in at least
2th many other sets of F , at least th of which do not belong to the copy of Pt,h−1. As there are th−2 leaves,
we can pick pairwise disjoint families of t supersets for every leaf.

Thus, w.h.p., |F \ F ′| ≤ (h− 2 + ε/2)p
(

n
⌊n/2⌋

)
, yielding |F| ≤ (h− 1 + ε)p

(
n

⌊n/2⌋
)
w.h.p., as desired.

The upper bound of (2) follows similarly by induction on h with the base case h = 2 proved in [13]. Any
Pt,h-free family F ⊆ 2[n] can be partitioned into F ′ and F \F ′ as above; so the number of Pt,h-free families

in 2[n] is at most the product of the number of Pt,h−1-free families and the number of P2th,2-free families.
The statement then follows by induction. □

Since any upward monotone tree poset P of height h is contained in Pt,h for t large enough, Observation 4.1
holds for any such P . Moreover, it holds for a somewhat wider class of tree posets. We say that P is a
two-way monotone tree poset if there exists x ∈ P such that U(x) ∪ D(x) = P where U(x) is the set of
elements of P that are supersets of x and D(x) is the set of elements of P that are subsets of x. It can be
shown that Observation 4.1 holds for two-way monotone tree posets of height h as well.

In this paper we have considered the problem of determining for what probabilities p the largest P -free
family in P(n, p) has size p · (1 + o(1))La(n, P ) with high probability. It is of course natural to consider
other values of p (i.e., when the largest P -free family in P(n, p) has size more than p · (1 + o(1))La(n, P ));
see [1, 17]. The following is such a result for the diamond.

Observation 4.2. Given ε > 0 there exist C1, C2 > 0 such that the following holds. If C1/n < p < C2/n
2/3

then w.h.p. the largest ♢-free family in P(n, p) has size (3± ε)p
(

n
⌊n/2⌋

)
.
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Proof. The upper bound follows from the fact that a ♢-free family F ⊆ P(n, p) cannot contain a 4-chain
which is a special copy of ♢. Therefore F can be partitioned into three antichains F1,F2,F3; thus the upper
bound on |F| follows from Theorem 1.9 applied to all Fis.

To see the lower bound, observe that the expected number E1 of sets in the middle three layers of P(n, p)
is (3 ± ε/4)p

(
n

⌊n/2⌋
)
. Also, the expected number E2 of copies of ♢ in the middle three layers of P(n, p) is

(1±ε/4)p4 n2

8

(
n

⌊n/2⌋
)
. Using the Markov and Chebyshev inequalities, it follows that if C2 > 0 is small enough,

then w.h.p. E1 ≥ (3 − ε/2)p
(

n
⌊n/2⌋

)
and E2 ≤ (1 + ε/2)p4 n2

8

(
n

⌊n/2⌋
)
≤ ε

2p
(

n
⌊n/2⌋

)
. So removing one element

from each copy of a ♢ leaves us with a ♢-free family of size at least (3− ε)p
(

n
⌊n/2⌋

)
in P(n, p). □

As Theorem 1.5 articulates, Conjecture 1.3 has implications to the counting problem for tree posets P .
The resolution of Conjecture 1.3 would also likely allow one to generalise Theorem 1.10 to all tree posets P
of height h, not just those of radius 2. For this one would also need an analogue of Lemma 1.8.

One might wonder why our proof of Theorem 1.6 does not work for posets of radius larger than 2, and
why Bukh’s original argument [3] cannot be applied to prove Theorem 1.6 for arbitrary tree posets and
arbitrary element x. Let us consider first the latter question. Bukh’s proof uses some preliminary structural
results on tree posets. Namely, he shows that any tree poset of height h is a subposet of a height h saturated
tree poset, i.e., one in which all maximal chains contain h elements. Then he shows that any saturated tree
poset T of height h can be obtained from Ch by ‘adding intervals’ I1, I2, . . . , Im, i.e., branches of the Hasse
diagram. This enables him to obtain an inductive proof by showing that T \ Im can be embedded not only
into any large enough family F , but to nice, extendable sets of F , where nice means that a constant number
of sets cannot ruin the extending property. There are two points of this proof that we do not see how to save
to generalise Theorem 1.6. As a height h tree poset can have arbitrary radius, it is not enough to extend
the embedding of the blow-up by one interval, but by a polynomial (of arbitrary high degree!) number
of blow-ups of intervals, and now the extension property should not be ruined by a polynomial number of
sets (rather than a constant number). Even more importantly, we do not know how to start the induction.
Bukh’s result for chains (even with the extension property) is immediate from any supersaturation result for
h-chains, but we are unable to prove Theorem 1.6 for C4 and x being its minimal element.

This brings us to the other question: why our proof does not work for the blow-up of trees with larger
radius. Getting the result for

∨
and

∧
is basically an exercise if one is familiar with the notion of Lubell-

mass. Then for the poset Y , we try to apply some kind of an induction: we find lots of blow-ups of
∨

and then a blow-up of
∨

in the root of the blow-ups of the first round. All we need to take care of are
the overlaps of these blow-ups. This is done via introducing type 1, 2, and 3 sets and observing that if we
work with type 1 sets, then the pairwise overlaps are of size at most 1 and so at the price of shrinking δ, we
get our pairwise disjoint blow-ups, while if we work with type 2 sets, then we need only a linear number of
sets, while the blow-ups are quadratic. The latter could work for arbitrary long chains, but type 1 sets are
problematic: type 1 copies of blow-ups of Y can intersect in a linear number of sets, and we were unable to
handle how to get many pairwise disjoint copies of them.

Because of the above reasoning, the full resolution of each of Conjecture 1.3, Conjecture 1.4 and the
random version of the P -free problem does currently seem out of reach. It would therefore be interesting to
resolve these problems for other natural classes of posets P . For example, it would be interesting to extend
our results to cover all tree posets P of height 2, particularly those posets whose (undirected) Hasse diagram
is a path. In [11], La(n,Dk) was asymptotically determined for infinitely many choices of k. It would be
interesting to resolve Conjecture 1.4 and the random version of the P -free problem for such Dk. It is also
natural to seek induced versions of our results, including Corollary 1.7 and Theorem 1.10.
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