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Advertisement: Birmingham Fellowship

A Birmingham Fellowship in Combinatorics will be advertised
in the near future.
These are permanent positions: essentially you are appointed
as a Lecturer/Senior Lecturer, but have a light teaching load
(and no admin!) for the first five years to focus on excellent
research.
After five years you become a standard Lecturer/Senior
Lecturer.
If you are interested, please ask me for more information.
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Characterising graphs with perfect matchings

Hall’s Theorem characterises all those bipartite graphs with
perfect matchings.

Tutte’s Theorem characterises all those graphs with perfect
matchings.
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Perfect matchings in k-uniform hypergraphs

for k ≥ 3 decision problem NP-complete (Garey, Johnson ‘79)

Natural to look for simple sufficient conditions
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minimum `-degree conditions

H k-uniform hypergraph, 1 ≤ ` < k

dH(v1, . . . , v`) = # edges containing v1, . . . , v`

minimum `-degree δ`(H) = minimum over all dH(v1, . . . , v`)

δ1(H) = minimum vertex degree

δk−1(H) = minimum codegree
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minimum `-degree conditions

H k-uniform hypergraph, 1 ≤ ` < k

dH(v1, . . . , v`) = # edges containing v1, . . . , v`

minimum `-degree δ`(H) = minimum over all dH(v1, . . . , v`)

δ1(H) = minimum vertex degree

δk−1(H) = minimum codegree

δ1(H) = 2 and δ2(H) = 1
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minimum vertex degree results

Theorem (Khan and Kühn, Osthus and T. (2013))

∃ n0 ∈ N s.t if H 3-uniform, n := |H| ≥ n0 and

δ1(H) >

(
n − 1

2

)
−
(

2n/3

2

)

then H contains a perfect matching.

Hán, Person and Schacht (2009) proved asymptotic version

Minimum vertex degree condition tight
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H
2n/3 + 1

n/3− 1

δ1(H) =
(n−1

2

)
−
(2n/3

2

)

no perfect matching
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More recent developments

Khan (2011+) determined the exact minimum vertex degree
which forces a perfect matching in a 4-uniform hypergraph.

Alon, Frankl, Huang, Rödl, Ruciński, Sudakov (2012) gave
asymptotically exact threshold for 5-uniform hypergraphs.

No other exact vertex degree results are known. (Best known
general bounds are due to Kühn, Osthus and Townsend
(2013+).)
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minimum codegree conditions

Theorem (Rödl, Ruciński and Szemerédi (2009))

H k-uniform hypergraph, |H| = n sufficiently large, k|n

δk−1(H) ≥ n/2 =⇒ perfect matching

In fact, they gave exact minimum codegree threshold that
forces a perfect matching.
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Type 1

edges hit A in even no. of vertices

|A| oddA

B |A| ≈ |B|

δk−1(H) ≈ |H|/2 but no perfect matching
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Type 2

edges hit A in odd no. of vertices

A blankblank|A| odd, |H|/k even or |A| even, |H|/k odd

B |A| ≈ |B|

δk−1(H) ≈ |H|/2 but no perfect matching
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minimum `-degree conditions

Theorem (Pikhurko (2008))

Suppose H k-uniform hypergraph on n vertices and
k/2 ≤ ` ≤ k − 1.

δ`(H) ≥ (1/2 + o(1))

(
n − `
k − `

)
=⇒ perfect matching

Previous examples shows result essentially best-possible.
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minimum `-degree conditions

Let δ(n, k , `) denote the max. value of δ`(H) amongst all
k-uniform hypergraphs H on n vertices of Type 1 or 2.

Theorem (T., Zhao (2013))

Let n be sufficiently large. Suppose H k-uniform hypergraph on n
vertices and k/2 ≤ ` ≤ k − 1.

δ`(H) > δ(n, k, `) =⇒ perfect matching

Our result makes Pikhurko’s exact.

Our result implies the theorem of Rödl, Ruciński and
Szemerédi.
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Proof overview

We will only consider the case of 4-uniform hypergraphs and
minimum 2-degree.

H 4-uniform on n vertices and δ2(H) > δ(n, 4, 2)

Absorbing sets
Let 0 < ε� γ � 1.

S ⊆ V (H) an absorbing set if

|S | = γn and H[S ] contains a perfect matching
H[S ∪ Q] has a perfect matching for any set Q ⊆ V (H) s.t.
|Q| ≤ εn.
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Theorem (Markström and Ruciński (2011))

Suppose H 4-uniform on n vertices

δ2(H) ≥
(

7

16
+ o(1)

)(
n

2

)
=⇒

H contains matching covering all but
√

n vertices.

Our proof is therefore easy if we have an absorbing set:

Find absorbing set S in H

Find a matching M in H − S covering almost all vertices

Absorb uncovered vertices using S to obtain perfect matching
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One can show that there is an absorbing set if:

(i) ∀ xy ∈
(V (H)

2

)
, ∃ (1/2 + o(1))

(n
2

)
tuples ab ∈

(V (H)
2

)
s.t.

|NH(xy) ∩ NH(ab)| ≥ o(1)n2 or

(ii) ∃ o(1)n2 pairs xy ∈
(V (H)

2

)
of “large degree”, i.e.

dH(xy) ≥ (1/2 + o(1))
(n
2

)
.

We can therefore assume (i) and (ii) fail.

We then show that this means H is close to one of the extremal
hypergraphs (Type 1 or 2).
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G

(
V (H)

2

) (
V (H)

2

)

ab cd

(ab)(cd) ∈ E (G ) ⇐⇒ abcd ∈ E (H)
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(i) ∃ xy ∈
(V (H)

2

)
s.t. ∃ ≥ (1/2− o(1))

(n
2

)
tuples ab ∈

(V (H)
2

)

s.t. |NH(xy) ∩ NH(ab)| ≤ o(1)n2 or

(ii) almost all pairs xy ∈
(V (H)

2

)
are s.t.

dH(xy) ≤ (1/2 + o(1))
(n
2

)
.

(
V (H)

2

) (
V (H)

2

)

xy

N(xy)
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(
V (H)

2

) (
V (H)

2

)

xy

N(xy)

(i)

Now use this structure in G to conclude H is close to one of
the extremal examples. (Needs quite a bit of work!)

Then minimum 2-degree condition forces a perfect matching.
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Open problems

Characterise the minimum vertex degree that forces a perfect
matching in a k-uniform hypergraph for k ≥ 5.

What about minimum `-degree conditions for k-uniform H
where 1 < ` < k/2?
(Alon, Frankl, Huang, Rödl, Ruciński, Sudakov have some
such results.)
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