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Embedding subgraphs

Question

How many edges must a graph G contain to guarantee it contains
a copy of H?

Theorem (Mantel 1907)

The densest triangle-free graph on n vertices is the complete
balanced bipartite graph.

Turán’s theorem (1941) generalises this to all complete
graphs.
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The Erdős–Stone Theorem

Theorem (Erdős, Stone 1946)

Given η > 0, if G graph on sufficiently large n number of vertices
and

e(G ) ≥
(

1− 1

χ(H)− 1
+ η

)
n2

2

then H ⊆ G .
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Perfect packings in graphs

An H-packing in G is a collection of vertex-disjoint copies of
H in G .
An H-packing is perfect if it covers all vertices in G .

H

perfect H-packing
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Remarks

Perfect H-packings sometimes called H-factors or perfect
H-tilings.

If H = K2 then perfect H-packing ⇐⇒ perfect matching.

Decision problem NP-complete (Hell and Kirkpatrick ‘83).

Problem of determining largest H-packing APX -hard (Kann
‘94). (That is, impossible to approximate optimum solution
within an arbitrary factor unless P = NP.)

Sensible to look for simple sufficient conditions.
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Perfect Kr -packings

Theorem (Hajnal, Szemerédi ‘70)

G graph, |G | = n where r |n and

δ(G ) ≥ (r − 1) n/r

⇒ G contains a perfect Kr -packing.

Corrádi and Hajnal (‘64) proved triangle case

Kierstead, Kostochka, Mydlarz and Szemerédi ’10 found ‘fast’
algorithmic proof (O(rn2) running time)
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Hajnal-Szemerédi theorem best possible.

m

m + 1 m− 1

δ(G ) = 2m − 1 = 2n/3− 1 no perfect K3-packing
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Although condition on δ(G ) in Hajnal-Szemerédi is best
possible, we can still ask for more general results!

Theorem (Kierstead, Kostochka ‘08)

G graph, |G | = n where r |n and

d(x) + d(y) ≥ 2

(
1− 1

r

)
n − 1 ∀ non-adjacent x , y

⇒ G contains a perfect Kr -packing.

Result implies Hajnal-Szemerédi theorem.

Theorem best possible.

Andrew Treglown Perfect packings in graphs and directed graphs



Degree sequence conditions

Conjecture (Balogh, Kostochka and T. ‘13)

G graph, |G | = n where r |n with degree sequence d1 ≤ · · · ≤ dn

such that:

(α) di ≥ (r − 2)n/r + i for all i < n/r ;

(β) dn/r+1 ≥ (r − 1)n/r .

⇒ G contains a perfect Kr -packing.

If true, stronger than Hajnal-Szemerédi since n/r vertices
allowed ‘small’ degree.

If true, ‘best possible’.
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Results towards the conjecture

Balogh, Kostochka, T.: true if no ‘small’ degree vertex lies in
Kr+1.

We also proved other related results.

Theorem (T. ‘14+)

G graph, |G | = n where r |n with degree sequence d1 ≤ · · · ≤ dn

such that:

di ≥ (r − 2)n/r + i + o(1)n for all i < n/r .

⇒ G contains a perfect Kr -packing.
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Perfect H-packings for general H

Theorem (Alon and Yuster ‘96)

Let H be a graph with χ(H) = r . Suppose G graph, |G | = n
where |H||n and

δ(G ) ≥ (1− 1/r + o(1))n

⇒ G contains a perfect H-packing.

Result best-possible up to error term o(1)n for many graphs
H.

Proof algorithmic (O(n2.376) running time)

Komlós, Sárközy and Szemerédi ‘01 replaced error term with
a constant dependent on H.

Kühn and Osthus ‘09 characterised, up to an additive
constant, δ(G ) that forces perfect H-packing for any H.
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A degree sequence Alon-Yuster theorem

Theorem (T. ‘14+)

Let H be a graph with χ(H) = r . Suppose G graph, |G | = n
where |H||n and with degree sequence d1 ≤ · · · ≤ dn such that:

di ≥ (r − 2)n/r + i + o(1)n for all i < n/r .

⇒ G contains a perfect H-packing.

Answers another conjecture of Balogh, Kostochka, T.

Generalises the Alon-Yuster theorem

For many H, degree sequence condition ‘best possible’.
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Versions of the Hajnal-Szemerédi theorem for directed
graphs

Our digraphs are allowed “double edges”.

G

δ+(G) = δ−(G) = 1
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Versions of the Hajnal-Szemerédi theorem for directed
graphs

What is a natural analogue of the Hajnal-Szemerédi theorem for
directed graphs?

Minimum semi-degree δ0(G ) := min{δ+(G ), δ−(G )}
Tournament: orientation of a complete graph
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Tr = transitive tournament on r vertices

C3 = cyclic triangle
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A guess for an extremal example...

Let T be a tournament on 3 vertices.

m

m + 1 m− 1

δ0(G ) = 2m − 1 = 2n/3− 1
no perfect T -packing
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A minimum semi-degree result

Theorem (T. +‘13)

G large digraph, |G | = n where r |n. Let T be tournament on r
vertices.

δ0(G ) ≥ (1− 1/r)n

⇒ G contains a perfect T -packing.

Our guess was right in this case: minimum semi-degree
condition best-possible.

Earlier, Czygrinow, Kierstead and Molla gave approximate
result when T = C3.

Result implies the Hajnal-Szemerédi theorem for large graphs.
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Surprisingly, there is an extra extremal example when T = C3.

m

m + 1m− 1

δ0(G ) = 2m − 2 = 2n/3− 2 no perfect C3-packing
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Proof overview in T3 case

Theorem

G large digraph, |G | = n where 3|n.

δ0(G ) ≥ 2n/3

⇒ G contains a perfect T3-packing.

Absorbing sets: A set S ⊆ V (G ) is an absorbing set for Q ⊆ V (G )
if both G [S ] and G [S ∪ Q] contain perfect T3-packings.

Suppose we find a ‘small’ set S that absorbs any ‘very small’
set Q ⊆ V (G ) (where 3||Q|).

Then it suffices to show G \ S contains an ‘almost’ perfect
T3-packing.
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Proof overview in T3 case

Problem: May not be able to find such an absorbing set!

m

m m

Cannot absorb any 3 vertices from same class
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Proof overview in T3 case

However, if G is ‘non-extremal’ then can find an absorbing set.

Lemma 1

OTFH:

(i) G is extremal (contains an almost independent set of size
n/3).

(ii) G contains an absorbing set S.

Proof:

(0) Assume (i) doesn’t hold.

(1) For each x , y ∈ V (G ), find many ‘connecting structures’
between x and y .

(2) Use these connecting structures to find ‘local’ absorbing sets.

(3) Randomly select ‘local’ absorbing sets to obtain S .
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Proof overview in T3 case

Lemma 2

G is extremal (contains an almost independent set of size n/3) ⇒
G contains a perfect T3-packing.

Proof: Easy!

Lemma 3

G is non-extremal ⇒ G \ S contains an ‘almost’ perfect
T3-packing.

Proof: Turn problem into one about hypergraph matchings
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The proof in other cases

Main work is in finding absorbing lemmas.

Depending on structure of tournament T , we need different
arguments.

Hardest case is C3 case as there are two extremal examples
now.
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Open problems

Prove the degree sequence Hajnal–Szemerédi theorem exactly

Conjecture (Balogh, Kostochka and T. ‘13)

G graph, |G | = n where r |n with degree sequence d1 ≤ · · · ≤ dn

such that:

(α) di ≥ (r − 2)n/r + i for all i < n/r ;

(β) dn/r+1 ≥ (r − 1)n/r .

⇒ G contains a perfect Kr -packing.
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Open problems

Given any graph H define cH to be the smallest number such that
every graph G on n vertices with δ(G ) ≥ cHn contains a perfect
H-packing.

Question

Let γ > 0. Given a graph G on n vertices and with
δ(G ) ≥ (cH − γ)n is the decision problem whether G contains a
perfect H-packing NP-complete?

Kühn and Osthus answered question in affirmative for
complete r -partite graphs.

Look for analogue of Hajnal–Szemerédi theorem in the
oriented graph setting.

Balogh, Lo and Molla answered problem for transitive
triangles.
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