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Abstract. A fundamental result of Kühn and Osthus [The minimum degree threshold for perfect
graph packings, Combinatorica, 2009] determines up to an additive constant the minimum degree
threshold that forces a graph to contain a perfect H-tiling. We prove a degree sequence version of
this result which allows for a significant number of vertices to have lower degree.
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1. Introduction

1.1. Minimum degree conditions forcing tilings. A substantial branch of extremal graph
theory concerns the study of tilings. Given two graphs H and G, an H-tiling in G is a collection
of vertex-disjoint copies of H in G. An H-tiling is called perfect if it covers all the vertices of G.
Perfect H-tilings are also often referred to as H-factors, perfect H-packings or perfect H-matchings.

In the case when H has a component on at least 3 vertices, the decision problem of whether
a graph contains a perfect H-tiling is NP-complete [6]. Thus, there has been a focus on estab-
lishing sufficient conditions to force a perfect H-tiling. The seminal Hajnal–Szemerédi theorem [5]
characterises the minimum degree that ensures a graph contains a perfect Kr-tiling.

Theorem 1.1 (Hajnal and Szemerédi [5]). Every graph G whose order n is divisible by r and
whose minimum degree satisfies δ(G) ≥ (1 − 1/r)n contains a perfect Kr-tiling. Moreover, there
are n-vertex graphs G with δ(G) = (1− 1/r)n− 1 that do not contain a perfect Kr-tiling.

The following result of Alon and Yuster [1] shows that any sufficiently large graph G with
minimum degree slightly above that in Theorem 1.1 in fact contains a perfect H-tiling for any
graph H with χ(H) = r.

Theorem 1.2 (Alon and Yuster [1]). Suppose that γ > 0 and H is a graph with χ(H) = r. Then
there exists an integer n0 = n0(γ,H) such that the following holds. If G is a graph whose order
n ≥ n0 is divisible by |H| and

δ(G) ≥ (1− 1/r + γ)n

then G contains a perfect H-tiling.

For many graphs H the minimum degree condition in Theorem 1.2 is best-possible up to the
term γn. Indeed, for many graphs H there are so-called divisibility barrier constructions G on n
vertices that have minimum degree (1−1/χ(H))n−1 but fail to contain a perfect H-tiling (see [15,
Section 2]). However, Komlós, Sárközy and Szemerédi [12] proved that the term γn in Theorem 1.2
can be replaced with a constant dependent only on H. Further, as discussed shortly, Kühn and
Osthus [14, 15] proved that there are also many graphs H for which one can significantly reduce
the minimum degree condition in Theorem 1.2.

In a related direction, Komlós [10] showed that if one only requires an H-tiling covering almost
all vertices in the host graph, then one can replace the χ(H)-term in the minimum degree condition
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of the Alon–Yuster theorem by the so-called critical chromatic number χcr(H) of H. Here χcr(H)
is defined as

χcr(H) := (χ(H)− 1)
|H|

|H| − σ(H)
,

where σ(H) denotes the size of the smallest possible colour class in any χ(H)-colouring of H. Note
that all graphs H satisfy χ(H) − 1 < χcr(H) ≤ χ(H) and χcr(H) = χ(H) precisely when every
χ(H)-colouring c of H is balanced (i.e. the colour classes of c have the same size).

Theorem 1.3 (Komlós [10]). Let η > 0 and let H be a graph. Then there exists an integer
n0 = n0(η,H) such that every graph G on n ≥ n0 vertices with

δ(G) ≥
(

1− 1

χcr(H)

)
n

contains an H-tiling covering all but at most ηn vertices.

Note that the minimum degree condition in Theorem 1.3 is best-possible in the sense that one
cannot replace the (1− 1/χcr(H)) term here with any smaller fixed constant (this is a consequence
of [10, Theorem 7]). Further, for any x ∈ (0, 1) and sufficiently large n, Komlós [10] determined the
minimum degree threshold that ensures a graph G on n vertices contains an H-tiling covering at
least xn vertices. Shoukoufandeh and Zhao [18] later proved that the number of uncovered vertices
in Theorem 1.3 can be reduced to a constant dependent only on H.

Kühn and Osthus [14, 15] showed that for many graphs H, a minimum degree slightly above that
in Komlós’ theorem actually ensures a perfect H-tiling. To state their result we need to introduce
some notation. We say that a colouring of H is optimal if it uses exactly χ(H) =: r colours.
Let CH denote the set of all optimal colourings of H. Given an optimal colouring c of H, let
xc,1 ≤ xc,2 ≤ · · · ≤ xc,r denote the sizes of the colour classes of c. We write

D(c) := {xc,i+1 − xc,i | i = 1, . . . , r − 1},

and let

D(H) :=
⋃
c∈CH

D(c).

We denote by hcfχ(H) the highest common factor of all integers in D(H). If D(H) = {0} then
we define hcfχ(H) := ∞. We write hcfc(H) for the highest common factor of all the orders of
components of H. For non-bipartite graphs H we say that hcf(H) = 1 if hcfχ(H) = 1. If χ(H) = 2
then we say hcf(H) = 1 if hcfc(H) = 1 and hcfχ(H) ≤ 2. (See [15] for some examples.) Set

χ∗(H) :=

{
χcr(H) if hcf(H) = 1;

χ(H) otherwise.

Also let δ(H,n) denote the smallest integer k such that every graph G whose order n is divisible
by |H| and with δ(G) ≥ k contains a perfect H-tiling.

When hcf(H) = 1, Kühn and Osthus showed that χcr(H) is the parameter governing the min-
imum degree condition that ensures a perfect H-tiling. When hcf(H) 6= 1, χ(H) instead is the
relevant parameter.

Theorem 1.4 (Kühn and Osthus [15]). For every graph H there exists a constant C = C(H) such
that (

1− 1

χ∗(H)

)
n− 1 ≤ δ(H,n) ≤

(
1− 1

χ∗(H)

)
n+ C.
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Intuitively speaking, graphs H with hcf(H) = 1 avoid certain divisibility barrier problems when
seeking a perfect H-tiling, thus ensuring the lower threshold in this case in Theorem 1.4. Earlier
Kühn and Osthus [14] had proven a version of Theorem 1.4 for graphs H with χ(H) ≥ 3 and
hcf(H) = 1; there though the constant C(H) was replaced with a linear error term. We now state
this result explicitly for future reference.

Theorem 1.5 (Kühn and Osthus [14]). Let η > 0 and H be a graph with hcfχ(H) = 1 and
χ(H) =: r ≥ 3. Then there exists an integer n0 = n0(η,H) such that the following holds. Let G be
a graph on n ≥ n0 vertices such that |H| divides n and

δ(G) ≥
(

1− 1

χcr(H)
+ η

)
n.

Then G contains a perfect H-tiling.

1.2. Degree sequence conditions forcing tilings. As discussed in the previous subsection, the
minimum degree conditions in each of the Hajnal–Szemerédi theorem, Komlós’ theorem and the
Kühn–Osthus theorem are essentially best-possible. However, this does not mean one cannot seek
significant strengthenings of these results. For example, Kierstead and Kostochka [9] proved an
Ore-type generalisation of Theorem 1.1 where now one replaces the minimum degree condition with
the condition that the sum of the degrees of every pair of non-adjacent vertices in G is at least
2(1− 1/r)n− 1.

The focus of this paper concerns degree sequence conditions that force a perfect H-tiling. The
study of degree sequence results for tilings was initiated in [2]. In particular, a conjecture on a
degree sequence strengthening of the Hajnal–Szemerédi theorem was raised [2, Conjecture 7], as
well as a degree sequence version of the Alon–Yuster theorem [2, Conjecture 8]. In [20] the second
author proved the latter conjecture (also yielding an asymptotic version of Conjecture 7 from [2]).

Theorem 1.6 (Treglown [20]). Suppose that η > 0 and H is a graph with χ(H) =: r ≥ 2. Then
there exists an integer n0 = n0(η,H) such that the following holds. If G is a graph whose order
n ≥ n0 is divisible by |H|, and whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥ (r − 2)n/r + i+ ηn for all 1 ≤ i ≤ n/r,
then G contains a perfect H-tiling.

Theorem 1.6 is a significant strengthening of the Alon–Yuster theorem as it allows for n/r vertices
to have degree (significantly) below that required in the latter. Further Theorem 1.6 provides the
first piece of a degree sequence analogue of the Kühn–Osthus theorem.

The main result in this paper deals with the remaining part of this problem, providing a degree
sequence condition that forces a perfect H-tiling for graphs with hcf(H) = 1.

Theorem 1.7. Let η > 0 and H be a graph with hcf(H) = 1 and χ(H) =: r ≥ 2. Let σ := σ(H),
h := |H| and ω := (h− σ) /(r − 1). Then there exists an integer n1 = n1(η,H) such that the
following holds. Let G be a graph on n ≥ n1 vertices such that h divides n and G has degree
sequence d1 ≤ . . . ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h .

Then G contains a perfect H-tiling.

Note that here ω is the average size of the colour classes of H after excluding one of minimal
size σ(H). Observe that when i = ωn/h, we have

dωn
h
≥
(

1− ω

h
+ η
)
n =

(
1− 1

χcr(H)
+ η

)
n.
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Hence, Theorem 1.7 is a strengthening of Theorem 1.5. Note that Theorem 1.7 applies to all graphs
H with hcf(H) = 1, not just graphs H with χ(H) ≥ 3 and hcfχ(H) = 1 (as in Theorem 1.5).
Moreover, Theorem 1.7 (and Theorem 1.6) is best-possible for many graphs H in the sense that
we cannot replace the ηn-term with a o(

√
n)-term (see Proposition 3.3). Theorem 1.7 is also best

possible for all graphs H in the sense that there are n-vertex graphs G with only slightly more than
ωn/h vertices with degree (slightly) below (1 − ω/h + η)n that do not contain a perfect H-tiling
(see Proposition 3.6). Thus, it is not possible to allow significantly more ‘small’ degree vertices in
Theorem 1.7. Extremal examples are discussed in more detail in Section 3.2.

Combining Theorem 1.7 with Theorem 1.6 we obtain the following degree sequence version of
the Kühn–Osthus theorem (Theorem 1.4).

Theorem 1.8. Let η > 0 and H be a graph with χ(H) =: r ≥ 2. Let σ := σ(H), h := |H| and
ω := (h− σ) /(r − 1). Then there exists an integer n1 = n1(η,H) such that if G is a graph on
n ≥ n1 vertices, h divides n and either (i) or (ii) below holds, then G contains a perfect H-tiling.

(i) hcf(H) = 1 and G has degree sequence d1 ≤ . . . ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h .

(ii) hcf(H) 6= 1 and G has degree sequence d1 ≤ . . . ≤ dn such that

di ≥ (r − 2)n/r + i+ ηn for all 1 ≤ i ≤ n/r.

One can in fact obtain the following generalisation of Theorem 1.7 in which we assume
σ(H) ≤ σ < h/r.

Theorem 1.9. Let η > 0 and H be a graph with hcf(H) = 1 and χ(H) =: r ≥ 2. Let h := |H|.
Set σ ∈ R such that σ(H) ≤ σ < h/r and ω := (h− σ) /(r − 1). Then there exists an integer
n1 = n1(η,H) such that the following holds. Let G be a graph on n ≥ n1 vertices such that h
divides n and G has degree sequence d1 ≤ . . . ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

h .

Then G contains a perfect H-tiling.

Observe that for graphs H with hcf(H) = 1, Theorem 1.9 interpolates between Theorems 1.6
and 1.7. In Section 7, we will prove Theorem 1.9 directly. The proof of Theorem 1.9 follows that
of Theorem 1.5 in [14] closely. The main novelty of our proof is how we avoid divisibility barriers.
For this we make use of an elementary number theoretic result for graphs with hcf(H) = 1 (see
Theorem 5.2). We also make use of a recent degree sequence strengthening of Komlós’ theorem
proved by the authors and Liu [7].

Since the choice of σ ∈ [σ(H), h/r) is arbitrary, note that Theorem 1.9 provides an infinite
collection of degree sequences that force a perfect H-tiling. Having a higher value of σ lowers the
starting point of the degree sequence condition, but at the price of a steeper ‘slope’ and higher
value of dωn/h (see Figure 1). As with Theorem 1.7, for many graphs H, each of these degree

sequences is best-possible in the sense that we cannot replace the ηn-term with a o(
√
n)-term (see

Section 3.2). Note too that we cannot extend Theorem 1.9 to the case when σ < σ(H). Indeed,
in this case, if we set η � 1 then the degree sequence condition in Theorem 1.9 would allow all
vertices in G to have degree below (1− 1/χcr(H))n− 1; however, we know from Theorem 1.4 that
there are graphs G that satisfy this condition and that do not contain perfect H-tilings.

The paper is organised as follows. In the next section we introduce some notation and definitions.
In Section 3 we discuss various senses of optimality for degree sequence conditions before giving
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d1 d2

Degree

(
1− 2

r

)
n+ ηn

(
1− 1

r −
σ(H)+ω(H)

2h

)
n+ ηn

(
1− ω(H)+σ(H)

h

)
n+ ηn

(
1− ω(H)

h

)
n+ ηn

(
1− 1

2r −
ω(H)

2h

)
n+ ηn

(
1− 1

r

)
n+ ηn

d
n
r

d
( h

+
rω

(H
)

2r
h

) n

d ω
(H

)n

h

Figure 1. The degree sequence in Theorem 1.9 for a fixed graph H given σ = σ(H)

(medium dashed); σ = h+rσ(H)
2r (long dashed); σ = h

r (full).

several extremal examples for Theorems 1.7 and 1.9. We also ask whether one can improve Theorem
1.7 by suitably ‘capping’ the bounds on the degrees of the vertices (see Question 3.7). In Section 4
we give a number of auxiliary results and definitions relating to the regularity lemma and tilings.
We then prove an elementary number theoretic result (Theorem 5.2) in Section 5 which will be a
crucial tool in overcoming divisibility barriers during the proof of Theorem 1.9. In Section 6 we
give an overview of the proof of Theorem 1.9 before proving it in Section 7.

2. Notation and Definitions

Let G be a graph. We define V (G) to be the vertex set of G and E(G) to be the edge set
of G. Let X ⊆ V (G). Then G[X] is the graph induced by X on G and has vertex set X and
edge set E(G[X]) := {xy ∈ E(G) : x, y ∈ X}. We also define G \ X to be the graph with
vertex set V (G) \ X and edge set E(G \ X) := {xy ∈ E(G) : x, y ∈ V (G) \ X}. For each
x ∈ V (G), we define the neighbourhood of x in G to be NG(x) := {y ∈ V (G) : xy ∈ E(G)} and
define dG(x) := |NG(x)|. We drop the subscript G if it is clear from context which graph we are
considering. We write dG(x,X) for the number of edges in G that x sends to vertices in X. Given
a subgraph G′ ⊆ G, we will write dG(x,G′) := dG(x, V (G′)). Let A,B ⊆ V (G) be disjoint. Then
we define eG(A,B) := |{xy ∈ E(G) : x ∈ A, y ∈ B}|.

Let t ∈ N. We define the blow-up G(t) to be the graph constructed by first replacing each vertex
x ∈ V (G) by a set Vx of t vertices and then replacing each edge xy ∈ E(G) with the edges of the
complete bipartite graph with vertex sets Vx and Vy.
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We write 0 < a� b� c < 1 to mean that we can choose the constants a, b, c from right to left.
More precisely, there exist non-decreasing functions f : (0, 1] → (0, 1] and g : (0, 1] → (0, 1] such
that for all a ≤ f(b) and b ≤ g(c) our calculations and arguments in our proofs are correct. Larger
hierarchies are defined similarly. Note that a� b implies that we may assume e.g. a < b or a < b2.

3. A discussion on the optimality of degree sequence conditions

In this section we describe various notions concerning when a degree sequence condition is ‘best-
possible’ in some sense. In particular, we will explain in what way our results (Theorems 1.7
and 1.9) are essentially best-possible, as well as how we may be able to strengthen these theorems
further. Some of our discussion draws on the survey [3].

First we introduce a few definitions. An integer sequence π = (d1 ≤ · · · ≤ dn) is called graphic if
there exists a (simple) graph G that has π as its degree sequence. Given a graph property P , we
say that a graphic sequence π forces P if every graph with degree sequence π satisfies property P .
Given a property P (such as containing a Hamilton cycle or perfect H-tiling), the ‘holy-grail’ in
the study of degree sequences is to establish all those graphic sequences π that force P .

The following theorem of Chvátal [4] provides an extremely general condition on degree sequences
that force a Hamilton cycle.

Theorem 3.1 (Chvátal [4]). Suppose that the degree sequence of a graph G is d1 ≤ · · · ≤ dn. If
n ≥ 3 and di ≥ i+ 1 or dn−i ≥ n− i for all i < n/2 then G is Hamiltonian.

Note that Chvátal’s theorem is best-possible in the following sense: if d1 ≤ · · · ≤ dn is a degree
sequence that does not satisfy the condition in Theorem 3.1 then there exists a non-Hamiltonian
graph G whose degree sequence d′1 ≤ · · · ≤ d′n is such that d′i ≥ di for all 1 ≤ i ≤ n. (We will
informally refer to a degree sequence result being best-possible in this way as a Chvátal-type result.)

Crucially note though that Chvátal’s theorem does not describe all those graphic sequences that
force a Hamilton cycle. For example, graphs with degree sequence (2, 2, 2, 2, 2) must be Hamiltonian
(in fact, are themselves simply a 5-cycle), but do not satisfy Chvátal’s condition. More generally,
all 2k-regular graphs on 4k + 1 vertices are Hamiltonian [17] yet their degree sequences fail the
condition in Theorem 3.1.

3.1. Degree sequence conditions forcing perfect H-tilings. At present, for a given fixed
graph H, it seems out of reach to characterise those graphic degree sequences that force a perfect
H-tiling, or obtain a Chvátal-type result in this setting. Thus, it is natural to seek degree sequence
conditions that force a perfect H-tiling, and are best-possible in some weaker sense. For example,
consider the following conjecture:

Conjecture 3.2 (Balogh, Kostochka and Treglown [2]). Let n, r ∈ N such that r divides n. Suppose
that G is a graph on n vertices with degree sequence d1 ≤ . . . ≤ dn such that:

(α) di ≥ (r − 2)n/r + i for all i < n/r;
(β) dn/r+1 ≥ (r − 1)n/r.

Then G contains a perfect Kr-tiling.

Conjecture 3.2 is best-possible in the sense that there are examples (see [2, Section 4]) showing
that one cannot replace (α) with di ≥ (r−2)n/r+ i−1 for even a single i or (β) with dn/r+1 ≥ (r−
1)n/r−1 and dn/r+2 ≥ (r−1)n/r. That is, there is no room to lower the degree sequence condition
further, not even by lowering a single entry by just one. (We will informally refer to a degree
sequence result being best-possible in this way as a Pósa-type result.) However, Conjecture 3.2, if
true, is likely still significantly weaker than a Chvátal-type result. For example, it is easy to see
that any graph G with degree sequence d1 ≤ · · · ≤ dn satisfying (i) d1 ≥ r− 1; (ii) d2 ≥ n− 2; (iii)
dn−r+2 ≥ n−1 contains a perfect Kr-tiling even though the condition in Conjecture 3.2 is violated.

6



One could also ask for a Pósa-type strengthening of the Kühn–Osthus theorem (Theorem 1.4) for
all graphs H. However, obtaining such a result again seems extremely difficult, not only because
(the special case) Conjecture 3.2 is still open, but also in general because the ‘correct’ value of the
constant C(H) in Theorem 1.4 is not known.

3.2. Extremal examples for Theorems 1.7 and 1.9. Despite the aforementioned challenges,
in this paper we have provided degree sequence conditions that force a perfect H-tiling, and are
best-possible in various ways. The following 3 extremal examples demonstrate this. The first shows
that we cannot significantly lower every term in the degree sequence conditions of Theorems 1.7
and 1.9 and still ensure a perfect H-tiling for complete r-partite graphs H. The second shows that
that the ‘slope’ of the degree sequence in Theorem 1.7 is best possible for so-called bottle graphs.
The third demonstrates that for any graph H, to ensure a perfect H-tiling (or even an ‘almost’
perfect H-tiling) in a graph G on n vertices we cannot have significantly more than ωn/h vertices

that have degree below
(

1− 1
χcr(H) + η

)
n.

Extremal Example 1. The following construction (a simple adaption of [20, Proposition 3.1])
demonstrates that for most complete r-partite graphs H, one cannot replace the ηn-term in Theo-
rems 1.7 and 1.9 with a o(

√
n)-term.

Proposition 3.3. Let r ≥ 3 and H := Kt1,...,tr with ti ≥ 2 (for all 1 ≤ i ≤ r). Let h := |H|. Set
σ ∈ R such that σ(H) ≤ σ < h/r and ω := (h− σ) /(r − 1). Let n ∈ N be sufficiently large so
that

√
n is an integer that is divisible by 6h2. Set C :=

√
n/3h2. Then there exists a graph G on n

vertices whose degree sequence d1 ≤ · · · ≤ dn satisfies

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ C for all 1 ≤ i ≤ ωn

h

but such that G does not contain a perfect H-tiling.

Proof. Let G denote the graph on n vertices consisting of r vertex classes V1, . . . , Vr with |V1| = 1,
|V2| = ωn/h + 1 + Cr, |V3| = (σ + ω)n/h − 2 − 3C and |Vi| = ωn/h − C if 4 ≤ i ≤ r and which
contains the following edges:

• All possible edges with an endpoint in V3 and the other endpoint in V (G)\V1. (In particular,
G[V3] is complete.);
• All edges with an endpoint in V2 and the other endpoint in V (G) \ V2;
• All edges with an endpoint in Vi and the other endpoint in V (G) \ Vi for 4 ≤ i ≤ r;
• There are

√
n/2 vertex-disjoint stars in V2, each of size b2|V2|/

√
nc or d2|V2|/

√
ne, which

cover all of V2.

In particular, note that the vertex v ∈ V1 sends all possible edges to V (G) \ V3 but no edges to V3.
Let d1 ≤ · · · ≤ dn denote the degree sequence of G. Notice that every vertex in Vi for 3 ≤ i ≤ r

has degree at least (1 − ω/h)n + C. Note that b2|V2|/
√
nc ≥ 2

√
n/h = 6Ch ≥ 6Cr. Thus, there

are
√
n/2 vertices in V2 of degree at least

(1− ω/h)n− 1− Cr + (6Cr − 1) ≥ (1− ω/h)n+ C.

The remaining ωn/h+ 1 + Cr −
√
n/2 ≤ ωn/h−

√
n/3− 1 vertices in V2 have degree at least

(1− ω/h)n− Cr ≥ (1− ω/h)n− σ
√
n/3ω + C.

Since dG(v) ≥
(
1− ω+σ

h

)
n+ C + σ/ω for the vertex v ∈ V1 we have that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i+ C for all 1 ≤ i ≤ ωn

h .

Suppose that v ∈ V1 lies in a copy H ′ of H in G. Then by construction of G, two of the vertex
classes U1, U2 of H ′ must lie entirely in V2. By definition of H, H ′[U1 ∪ U2] contains a path of

7



length 3. However, G[V2] does not contain a path of length 3, a contradiction. Thus, v does not lie
in a copy of H and so G does not contain a perfect H-tiling. �

Extremal Example 2. We require the following definitions. Let t ∈ N. We will refer to a vertex
class of size t of G as a t-class of G. Set r, σ, ω ∈ N and σ < ω. We define the r-partite bottle
graph B with neck σ and width ω to be the complete r-partite graph with one σ-class and (r − 1)
ω-classes.

Let η > 0 be fixed. Let B be an r-partite bottle graph with neck σ and width ω. The following
extremal example (adapted from Proposition 3.1 in [7]) G on n vertices demonstrates that The-
orem 1.7 is best possible for such graphs B, in the sense that G satisfies the degree sequence of
Theorem 1.7 except for a small linear part that only just fails the degree sequence, but does not
contain a perfect B-tiling. In fact, G does not contain a B-tiling that covers all but at most ηn
vertices.

Proposition 3.4. Let η > 0 be fixed and n ∈ N such that 0 < 1/n � η � 1. Let r ≥ 3 be an
integer. Let B be an r-partite bottle graph with neck σ and width ω, where b := |B|. Additionally
assume that b divides n. Then for any 1 ≤ k < ωn/b − (rb + 1)ηn, there exists a graph G on n
vertices whose degree sequence d1 ≤ . . . ≤ dn satisfies

di ≥
(

1− ω + σ

b

)
n+

σ

ω
i+ ηn for all i ∈ {1, . . . , k − 1, k + rbηn+ 1, . . . , ωn/b},

di =

(
1− ω + σ

b

)
n+

⌈σ
ω
k
⌉

+ ηn for all k ≤ i ≤ k + rbηn,

but such that G does not contain a B-tiling covering all but at most ηn vertices.

Proof. Let G be the graph on n vertices with r + 1 vertex classes V1, . . . , Vr+1 where

• |V1| = σn/b;
• |V2| = ωn/b− ηn;
• |V3| = . . . = |Vr| = ωn/b− (ηn+ 1);
• |Vr+1| = (r − 1)(ηn+ 1)− 1.

Label the vertices of V1 as a1, a2, . . . , aσn/b. Similarly, label the vertices of V2 as c1, c2, . . . , cωn/b−ηn.
The edge set of G is constructed through the following process.

Initially, let G have the following edges:

• All edges with an endpoint in V1 and the other endpoint in V (G) \ V2, in particular G[V1]
is complete;
• All edges with an endpoint in Vi and the other endpoint in V (G)\(V1∪Vi) for 2 ≤ i ≤ r+1;
• All edges with both endpoints in Vr+1, in particular G[Vr+1] is complete;
• Given any 1 ≤ i ≤ ωn/b− ηn and j ≤ dσi/ωe include all edges ciaj .

So at the moment G indeed satisfies the degree sequence in Theorem 1.7; we therefore modify
G slightly. For all k ≤ i ≤ k + rbηn and dσk/ωe+ 1 ≤ j ≤ dσ(k + rbηn)/ωe delete each edge
between ci and aj . One can easily check that G satisfies the degree sequence in the statement of
the proposition. In particular, the vertices of degree

(
1− ω+σ

b

)
n+ dσωke+ ηn are ck, . . . , ck+rbηn.

Define A := {a1, . . . , adσk/ωe} and C := {c1, . . . , ck+rbηn}. Note that there are no edges between
C and V1 \A in G.

Claim 3.5. Let T be a B-tiling of G. Then T does not cover at least 3ηn/2 vertices in C.

Firstly, consider any copy B′ of B in T that contains at least one vertex in Vr+1. Since C is an
independent set in G, observe that B′ contains at most ω vertices from C. Thus, there are at most
ω|Vr+1| = ω(r − 1)ηn + ω(r − 2) vertices in C covered by copies of B in T that each contain at
least one vertex in Vr+1.
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Secondly, consider any copy B′ of B in T that contains at least one vertex from C and no vertices
from Vr+1. As before, since C is an independent set in G, we have that B′ contains at most ω
vertices from C. Since there are no edges between C and V1 \A in G, B′ contains at least σ vertices
in A.

These two observations, alongside the fact that b = σ + ω(r − 1) ≥ ω(r − 1) ≥ ω(r − 2), imply
that at most ω(r− 1)ηn+ω(r− 2) + dσk/ωe(ω/σ) < k+ 1 + b(ηn+ 1) vertices in C can be covered
by T . Since |C| = k+ rbηn, we have that T does not cover at least 3ηn/2 vertices in C. Therefore,
Claim 3.5 holds. Hence G does not have a B-tiling covering all but at most ηn vertices. �

Extremal Example 3. LetH be an h-vertex graph, χ(H) =: r, σ := σ(H) and ω := (h−σ)/(r−1).
The following extremal example demonstrates that there are n-vertex graphs G for which all but
(ω/h+ o(1))n vertices have degree above (1−1/χcr(H) + o(1))n, with the remaining (ω/h+ o(1))n
vertices having degree (1−1/χcr(H)−o(1))n, and yet G does not contain a perfect H-tiling. Thus,
this shows that one cannot have significantly more than ωn/h ‘small’ degree vertices in Theorem 1.7.

Proposition 3.6. Let 0 < η � 1 be fixed. Let H be a graph with χ(H) =: r. Let h := |H|,
σ := σ(H) and set ω := (h − σ)/(r − 1). Then there exists a graph G on n vertices whose degree
sequence d1 ≤ . . . ≤ dn satisfies

di = (1− ω/h− (r − 1)η)n = (1− 1/χcr(H)− (r − 1)η)n for all i ≤ (ω/h+ (r − 1)η)n,

di ≥ (1− ω/h+ η)n = (1− 1/χcr(H) + η)n for all i > (ω/h+ (r − 1)η)n,

but such that G does not contain an H-tiling covering all but at most ηn vertices.

Proof. Let G be the complete r-partite graph on n vertices with vertex classes V1, . . . , Vr such
that

• |V1| = σn
h − ηn,

• |V2| = ωn
h + (r − 1)ηn,

• |V3| = . . . = |Vr| = ωn
h − ηn.

Then G satisfies the degree sequence condition in the proposition. The choice in size of V1 ensures
that any H-tiling in G covers at most |V1|h/σ < n− ηn vertices, as desired. �

3.3. A possible strengthening of Theorem 1.7. Whilst Proposition 3.3 demonstrates that we
cannot lower every term in the degree sequence condition in Theorem 1.7 by much, perhaps one
can cap the degrees as follows.

Question 3.7. Can the degree sequence condition in Theorem 1.7 be replaced by

di ≥ min

{(
1− ω + σ

h

)
n+

σ

ω
i+ ηn,

(
1− 1

χcr(H)

)
n+ C

}
for all 1 ≤ i ≤ ωn

h

where C is a constant dependent only on H?

Note that Theorem 1.8 does not quite imply the Kühn–Osthus theorem (Theorem 1.4) due to the
ηn-terms. On the other hand, an affirmative answer to Question 3.7, together with an analogous
‘capped’ version of Theorem 1.8 (ii), would fully imply the upper bound in Theorem 1.4.
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4. Auxiliary results

4.1. The regularity and blow-up lemmas. The results in this section will be employed in our
proof of Theorem 1.9. First we need the following definitions.

Definition 4.1. Let G = (A,B) be a bipartite graph with vertex classes A and B. We define the
density of G to be

dG(A,B) :=
eG(A,B)

|A||B|
.

Set ε > 0. We say that G is ε-regular if for all X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B|
we have that |dG(X,Y )− dG(A,B)| < ε.

Definition 4.2. Given ε > 0, d ∈ [0, 1] and G = (A,B) a bipartite graph, we say that G is (ε, d)-
superregular if all sets X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y | ≥ ε|B| satisfy that d(X,Y ) > d,
that dG(a) > d|B| for all a ∈ A and that dG(b) > d|A| for all b ∈ B.

The following groundbreaking result of Szemerédi [19] will be instrumental in our proof of The-
orem 1.9.

Lemma 4.3 (Degree form of Szemerédi’s Regularity lemma [19]). Let ε ∈ (0, 1) and M ′ ∈ N.
Then there exist natural numbers M and n0 such that for any graph G on n ≥ n0 vertices and
any d ∈ (0, 1) there is a partition of the vertices of G into subsets V0, V1, . . . , Vk and a spanning
subgraph G′ of G such that the following hold:

• M ′ ≤ k ≤M ;
• |V0| ≤ εn;
• |V1| = . . . = |Vk| =: q;
• dG′(x) > dG(x)− (d+ ε)n for all x ∈ V (G);
• e(G′[Vi]) = 0 for all i ≥ 1;
• For all 1 ≤ i, j ≤ k with i 6= j the pair (Vi, Vj)G′ is ε-regular and has density either 0 or at

least d.

We call V1, . . . , Vk the clusters of our partition, V0 the exceptional set and G′ the pure graph.
We define the reduced graph R of G with parameters ε, d and M ′ to be the graph whose vertex set
is V1, . . . , Vk and in which ViVj is an edge if and only if (Vi, Vj)G′ is ε-regular with density at least
d. Note also that |V (R)| = k.

We will apply the following well known fact, in conjunction with Lemma 4.5 (below), in Sec-
tion 7.2.

Fact 4.4. Let 0 < ε < α and ε′ := max{ε/α, 2ε}. Let (A,B) be an ε-regular pair of density d.
Suppose A′ ⊆ A and B′ ⊆ B where |A′| ≥ α|A| and |B′| ≥ α|B|. Then (A′, B′) is an ε′-regular pair
with density d′ where |d′ − d| < ε.

Lemma 4.5 (Key lemma [13]). Suppose that 0 < ε < d, that q, t ∈ N and that R is a graph with
V (R) = {v1, . . . , vk}. We construct a graph G as follows: Replace every vertex vi ∈ V (R) with a
set Vi of q vertices and replace each edge of R with an ε-regular pair of density at least d. For each
vi ∈ V (R), let Ui denote the set of t vertices in R(t) corresponding to vi. Let H be a subgraph of
R(t) with maximum degree ∆ and set h := |H|. Set δ := d− ε and ε0 := δ∆/(2 + ∆). If ε ≤ ε0 and
t− 1 ≤ ε0q then there are at least

(ε0q)
h labelled copies of H in G

so that if x ∈ V (H) lies in Ui in R(t), then x is embedded into Vi in G.

Let G be a graph as in Theorem 1.9 and R a reduced graph of G. The next well known lemma
essentially says that R ‘inherits’ the degree sequence of G.
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Lemma 4.6 (See e.g. [7]). Set M ′, n0 ∈ N and ε, d, η, b, ω, σ to be positive constants such that
1/n0 � 1/M ′ � ε � d � η, 1/b and where ω + σ ≤ b. Suppose G is a graph on n ≥ n0 vertices
with degree sequence d1 ≤ . . . ≤ dn such that

di ≥
b− ω − σ

b
n+

σ

ω
i+ ηn for all 1 ≤ i ≤ ωn

b .

Let R be the reduced graph of G with parameters ε, M ′ and d and set k := |V (R)|. Then R has
degree sequence dR,1 ≤ . . . ≤ dR,k such that

dR,i ≥
b− ω − σ

b
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

b .

Let G and H be graphs and R be a reduced graph of G. Let H be a perfect H-tiling in R. The
following result ensures that after removing only a few vertices from each cluster in R every edge
in each copy of H ∈ H corresponds to a superregular pair. This will be essential to apply Lemma
4.8 in Section 7.4.

Proposition 4.7 (See e.g. [16]). Let G be a graph, ε, d ∈ (0, 1) and M ′,∆ ∈ N. Apply Lemma 4.3
to G with parameters ε,M ′ and d to obtain a reduced graph R with clusters of size q. Let H be a
subgraph of the reduced graph R with ∆(H) ≤ ∆ and label the vertices of H as V1, . . . , V|H|. Then
each vertex Vi of H contains a subset V ′i of size (1− ε∆)q such that for every edge ViVj of H the
graph (V ′i , V

′
j )G′ is (ε/(1− ε∆), d− (1 + ∆)ε)-superregular.

The following fundamental result of Komlós, Sárközy and Szemerédi [11], known as the Blow-up
lemma, essentially says that (ε, d)-superregular pairs behave like complete bipartite graphs with
respect to containing bounded degree subgraphs.

Lemma 4.8 (Blow-up lemma [11])). Given a graph F on vertices {1, . . . , f} and d,∆ > 0, there
exists an ε0 = ε0(d,∆, f) > 0 such that the following holds. Given L1, . . . , Lf ∈ N and ε ≤ ε0, let
F ∗ be the graph obtained from F by replacing each vertex i ∈ F with a set Vi of Li new vertices
and joining all vertices in Vi to all vertices in Vj whenever ij is an edge of F . Let G be a spanning
subgraph of F ∗ such that for every edge ij ∈ F the pair (Vi, Vj)G is (ε, d)-superregular. Then G
contains a copy of every subgraph H of F ∗ with ∆(H) ≤ ∆.

4.2. Tilings in complete graphs. In [14], the following result of Kühn and Osthus is essential
to their proof of Theorem 1.5.

Lemma 4.9. [15, Lemma 12] Let H be a graph with χ(H) =: r ≥ 2 and hcf(H) = 1. Let h := |H|
and ω(H) := (h− σ(H)) /(r−1). Let 0 < β1 � λ1 � σ(H)/ω(H), 1−σ(H)/ω(H), 1/h be positive
constants. Suppose that F is a complete r-partite graph with vertex classes U1, . . . , Ur such that:

1/|F | � β1; |F | is divisible by h; (1 − λ
1/10
1 )|Ur| ≤ σ(H)|Ui|/ω(H) ≤ (1 − λ1)|Ur| for all

i < r; ||Ui| − |Uj || ≤ β1|F | whenever 1 ≤ i < j < r. Then F contains a perfect H-tiling.

We will use the Blow-up lemma in tandem with the following generalisation of Lemma 4.91

to conclude that a particular tiling that we construct in a reduced graph R guarantees a perfect
H-tiling in our original graph G.

Lemma 4.10. Let H be a graph with χ(H) =: r ≥ 2 and hcf(H) = 1. Let h := |H|. Set σ ∈ R
such that σ(H) ≤ σ < h/r and ω := (h− σ) /(r − 1). Let 0 < β2 � λ2 � σ/ω, 1 − σ/ω, 1/h
be positive constants. Suppose that F is a complete r-partite graph with vertex classes U1, . . . , Ur
such that: 1/|F | � β2; |F | is divisible by h; (1− λ1/10

2 )|Ur| ≤ σ|Ui|/ω ≤ (1− λ2)|Ur| for all i < r;
||Ui| − |Uj || ≤ β2|F | whenever 1 ≤ i < j < r. Then F contains a perfect H-tiling.

1Note that Lemma 4.9 is the σ = σ(H) case of Lemma 4.10.
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Proof. Note we may assume that σ > σ(H) as otherwise the result follows immediately from
Lemma 4.9. We choose β2 � β1 � λ2 � λ1 where β1 and λ1 are as in Lemma 4.9. Additionally
we may assume β2, λ2 � (σ/ω − σ(H)/ω(H)).

Let F be as in the statement of the lemma. Set H∗ to be the complete balanced r-partite graph
on rh vertices (that is, each vertex class of H∗ has size h). Observe that H∗ has a perfect H-tiling
using precisely r copies of H.

Repeatedly delete disjoint copies of H∗ from F (and therefore update the classes U1, . . . , Ur)

until the first point for which there is some i < r such that (1− λ1/10
1 /2)|Ur| ≤ σ(H)|Ui|/ω(H) ≤

(1− 2λ1)|Ur|. Call the resulting graph F ′. Note that σ/ω > σ(H)/ω(H), so we can indeed obtain
F ′. Further note that our (sufficiently small) choice of β2 ensures each class Uj still contains at least

a β
1/2
2 -proportion of the vertices it started with. So now ||Ui| − |Uj || ≤ β2|F | ≤ β

1/2
2 |F ′| ≤ β1|F ′|

whenever 1 ≤ i < j < r. Moreover, this implies (1 − λ1/10
1 )|Ur| ≤ σ(H)|Uj |/ω(H) ≤ (1 − λ1)|Ur|

for all j < r. Thus, by Lemma 4.9, F ′ contains a perfect H-tiling and therefore, so too does F , as
desired. �

4.3. A degree sequence Komlós theorem. In [14], Kühn and Osthus begin their proof of
Theorem 1.5 by applying Komlós’ theorem (Theorem 1.3). In our proof of Theorem 1.9 we will use
the following degree sequence version of Komlós’ theorem that the authors and Liu proved in [7].

Theorem 4.11. [7, Theorem 8.1] Let η > 0 and H be a graph with χ(H) =: r and h := |H|.
Set σ ∈ R such that σ(H) ≤ σ ≤ h/r and ω := (h− σ) /(r − 1). Then there exists an integer
n0 = n0(η, σ,H) ∈ N such that the following holds. Suppose G is a graph on n ≥ n0 vertices with
degree sequence d1 ≤ . . . ≤ dn such that

di ≥
(

1− ω + σ

h

)
n+

σ

ω
i for all 1 ≤ i ≤ ωn

h .

Then G contains an H-tiling covering all but at most ηn vertices.

4.4. Bézout’s Lemma. To prove Theorem 5.2 we will need the following elementary arithmetic
result.

Lemma 4.12 (Bézout’s Lemma). Let a1, a2, . . . , at ∈ Z. Then there exist integers y1, y2, . . . , yt ∈ Z
such that

t∑
i=1

yiai = hcf(a1, a2, . . . , at)

where hcf(a1, a2, . . . , at) is the highest common factor of a1, a2, . . . , at.

5. A tool for the proof of Theorem 1.9

In this section, we prove a theorem (Theorem 5.2) that will be used in Sections 7.3.1 and 7.3.2

of the proof of Theorem 1.9. At the beginning of Section 7.3, we will have a certain B̂-tiling
B̂ of a reduced graph R (the graph B̂ will be defined later). Denote the copies of B̂ in B̂ by

B̂1, B̂2, . . . , B̂k̂. For applications of Lemma 4.10 required at the end of our proof of Theorem 1.9,

we will need |VG(B̂i)| to be divisible by h for each 1 ≤ i ≤ k̂. The following theorem is the crucial
tool for ensuring we can remove copies of H from G to achieve this.

For a graph H with χ(H) = r, recall that CH is the set of all optimal colourings of H and that
given an optimal colouring c ∈ CH we let xc,1 ≤ xc,2 ≤ . . . ≤ xc,r denote the sizes of the colour
classes of c. We require the following definitions.
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Definition 5.1. Let H be a graph with χ(H) =: r. Fix 1 ≤ p ≤ r− 1. For each c ∈ CH , define Dc

to be the multiset [xc,1, xc,2, . . . , xc,r]. We say that A is a p-subset contained in Dc if A is a multiset,

|A| = p and A = [xc,j1 , xc,j2 , . . . , xc,jp ] where j1, j2, . . . , jp ∈ {1, . . . , r} are distinct. Let zp :=
(
r

p

)
be

the number of p-subsets contained in Dc. For each colouring c ∈ CH , label the p-subsets contained
in Dc by Ap,c,1, Ap,c,2, . . . , Ap,c,zp. Let Sp,c,J :=

∑
x∈Ap,c,J

x for each c ∈ CH , 1 ≤ J ≤ zp.

Theorem 5.2. Let H be an r-partite graph and let h := |H|. Fix 1 ≤ p ≤ r − 1. Let b be the
number of components of H and t1, . . . , tb be the sizes of the components of H. Then

• if r = 2 and hcfc(H) = 1, there exists a collection of non-negative integers {ai : 1 ≤ i ≤ b}
and ā ∈ N such that

ai ≤ ā for all 1 ≤ i ≤ b,
and

b∑
i=1

aiti ≡ 1 mod h.

• if r ≥ 3 and hcfχ(H) = 1, there exists a collection of non-negative integers {ap,c,i : c ∈
CH , 1 ≤ i ≤ zp} and ā ∈ N such that

ap,c,i ≤ ā for all c ∈ CH and 1 ≤ i ≤ zp,

and ∑
c∈CH

zp∑
i=1

ap,c,iSp,c,i ≡ 1 mod h.

For each 1 ≤ p ≤ r − 1, c ∈ CH and j ∈ {1, . . . , r}, let Zp,c,j be the multiset defined by the
following table:

Colour class size xc,1 · · · xc,j−1 xc,j xc,j+1 · · · xc,r
Multiplicity in Zp,c,j p · · · p p+ 1 p · · · p

The following fact will be useful in our proof of Theorem 5.2.

Fact 5.3. For any 1 ≤ J, L ≤ r, we can partition Zp,c,J into {xc,L} and r p-subsets contained in
Dc.

Proof of Theorem 5.2. Firstly, we will consider the case when r = 2 and hcfc(H) = 1. So
H must have multiple components. The sizes of these components of H are t1, t2, . . . , tb. Since
hcfc(H) = 1, by Bezout’s Lemma (Lemma 4.12) there exist integers a′1, . . . , a

′
b such that

b∑
i=1

a′iti = hcf(t1, . . . , tb) = 1.

Since
∑b

i=1 ti = h, there exists â ∈ N ∪ {0} such that

b∑
i=1

(a′i + â)ti ≡ 1 mod h

and

a′i + â ≥ 0 for all 1 ≤ i ≤ b.
For each 1 ≤ i ≤ b, take ai := a′i + â and ā := max

i=1,...,b
ai.
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Next consider when r ≥ 3. Instead of explicitly calculating ap,c,i for each c ∈ CH , 1 ≤ i ≤ zp,
we will construct for each c ∈ CH a multiset Xc of bounded size which can be partitioned into
p-subsets contained in Dc. Further, we will construct our multisets Xc such that∑

c∈CH

∑
x∈Xc

x ≡ 1 mod h.

Observe that constructing such multisets Xc immediately yields a collection of non-negative integers
{ap,c,i : c ∈ CH , 1 ≤ i ≤ zp} that satisfy the conditions in Theorem 5.2. Indeed, for each c ∈ CH
and 1 ≤ i ≤ zp, we take ap,c,i to be precisely the number of times Ap,c,i occurs in the partition of
Xc into p-subsets.

In order to start constructing our multisets Xc, we define the following multiset:

D∗(H) :=
⋃
c∈CH

[xc,j+1 − xc,j | j = 1, . . . , r − 1].

As hcfχ(H) = 1 we can apply Lemma 4.12 to the multiset D∗(H) to get for each c ∈ CH ,
1 ≤ j ≤ r − 1 integers bc,j such that the following holds:

(1)
∑
c∈CH

r−1∑
j=1

bc,j(xc,j+1 − xc,j) ≡ 1 mod h.

We now construct our multisets Xc. Fix c ∈ CH . Choose tc ∈ N to be the smallest natural
number such that

ptc ≥ max{|bc,1|, |bc,1 − bc,2|, |bc,2 − bc,3|, . . . , |bc,r−2 − bc,r−1|, |bc,r−1|}.

Then ptc− bc,1, ptc + bc,1− bc,2, ptc + bc,2− bc,3, . . . , ptc + bc,r−2− bc,r−1, ptc + bc,r−1 are non-negative
integers. Let Yc be the multiset defined by the following table:

Colour class size xc,1 xc,2 xc,3 · · · xc,r−1 xc,r

Multiplicity in Yc ptc − bc,1
ptc + bc,1 −
bc,2

ptc + bc,2 −
bc,3

· · · ptc + bc,r−2 −
bc,r−1

ptc + bc,r−1

Then |Yc| = rptc. If we can partition Yc into p-subsets contained in Dc then we take Xc := Yc.
Assume we cannot. Then the multiplicities of xc,1, . . . , xc,r in Yc must be sufficiently different from
one another. We employ the following algorithm which transforms Yc into a multiset which can be
partitioned into p-subsets contained in Dc using Fact 5.3. To state the algorithm we require the
following definition.

Definition 5.4. For each c ∈ CH , 1 ≤ i ≤ r, let mc,i be the multiplicity of xc,i in Yc. Let

J, L ∈ {1, . . . , r} such that J 6= L; mc,J ≥
∑r

i=1mc,i

r ; mc,L ≤
∑r

i=1mc,i

r ; mc,L+1 6= mc,J ; mc,L 6= mc,J .

Let Y ′c := Yc − {xc,J}+ {xc,L}.2 Then we say that Y ′c is more balanced than Yc.

Algorithm.

1) Let Q := ∅.
2) If |mc,i−mc,j | = 0 for all 1 ≤ i, j ≤ r, output Yc and Q. Otherwise, choose J, L ∈ {1, . . . , r}

such that Y ′c := Yc − {xc,J}+ {xc,L} is more balanced than Yc.
3) Add p copies of H with colouring c to Yc. That is, xc,i now has multiplicity mc,i + p in Yc

for each 1 ≤ i ≤ r.
4) Take Zp,c,J to be the union of {xc,J} and these p copies of H. By Fact 5.3 there exists a

partition of Zp,c,J into {xc,L} and r p-subsets contained in Dc.
5) Place into Q these r p-subsets contained in Dc.

2That is, Y ′
c is the multiset Yc except with xc,J having multiplicity mc,J −1 and xc,L having multiplicity mc,L + 1.
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6) Take Yc := Y ′c and update the value of each mc,i (that is, mc,J has decreased by 1 and mc,L

has increased by 1). Go to Step 2.

Therefore, at the end of the algorithm |Yc| = rptc and |mc,i −mc,j | = 0 for all 1 ≤ i, j ≤ r. In
particular, it is easy to see that Yc now has a partition QYc into p-subsets contained in Dc. Let t′c
be the number of collections of p copies of H added during the algorithm and t̂c := tc + t′c. Then

the multiset Ŷc, defined by the table below, can be partitioned into p-subsets contained in Dc using
the partition Q ∪QYc :

Colour class size xc,1 xc,2 xc,3 · · · xc,r−1 xc,r

Multiplicity in Ŷc pt̂c − bc,1
pt̂c + bc,1 −
bc,2

pt̂c + bc,2 −
bc,3

· · · pt̂c + bc,r−2 −
bc,r−1

pt̂c + bc,r−1

Take Xc := Ŷc. We now confirm that our multisets Xc satisfy∑
c∈CH

∑
x∈Xc

x ≡ 1 mod h.

By (1) and the definition of Xc for each c ∈ CH we have∑
c∈CH

∑
x∈Xc

x

=
∑
c∈CH

r−1∑
j=1

bc,j(xc,j+1 − xc,j) + pt̂c

 r∑
j=1

xc,j


=

∑
c∈CH

r−1∑
j=1

bc,j(xc,j+1 − xc,j)

+

p ∑
c∈CH

t̂c

h

(1)
≡ 1 mod h.

Therefore, recalling the discussion earlier in this proof, there must exist the desired collection of
non-negative integers {ap,c,i : c ∈ CH , 1 ≤ i ≤ zp}, and we take ā to be the maximum element in
this collection. �

6. Proof Overview

The rest of this paper will be devoted to proving Theorem 1.9 and here we outline the proof. As
noted in Section 1.2, our proof follows closely Kühn and Osthus’ proof of Theorem 1.5 in [14].

Let H, G, η and σ be as in the statement of the theorem. In particular, h := |H| and ω :=
(h− σ)/(r − 1). Note that it suffices to prove the result in the case when σ ∈ Q. First we define a
bottle graph B that contains a perfect H-tiling.

Definition 6.1. Let a, b ∈ N such that σ = a/b. Let ω(H) := (h − σ(H))/(r − 1) and ĉ :=
b(r − 1)(ω(H)− σ(H)). Define B to be the r-partite bottle graph with neck σĉ and width ωĉ (note
that σĉ, ωĉ ∈ N). Observe that |B| = hĉ; σ(B) = σĉ; ω(B) = ωĉ. Further,

χcr(B) = r − 1 + σ/ω = h/ω.

Since |B| = hĉ; σ(B) = σĉ; ω(B) = ωĉ, we have that G satisfies the hypothesis of the degree
sequence Komlós theorem (Theorem 4.11) with B, σ(B) and ω(B) playing the roles of H, σ and ω
respectively. That is, G contains an almost perfect B-tiling. In fact, as the reduced graph R of G
almost inherits the degree sequence of G, Theorem 4.11 ensures that R contains an almost perfect
B-tiling B. Further note that the choice of ĉ implies that B has a perfect H-tiling consisting of ĉ
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copies of H. Indeed, this follows as B has a perfect tiling of a−σ(H)b copies of Kh,...,h and hb−ar
copies of H, where Kh,...,h is the complete r-partite graph with each vertex class having size h.

Ideally one would like to use B as a framework to build the perfect H-tiling in G. However, as
explained shortly, we need more flexibility in our tiling in R. Therefore, we introduce the following
‘modified’ version of B.

Definition 6.2. Let s ∈ N be sufficiently large and λ ∈ R+ be sufficiently small where σ(1+λ)s/ω ∈
N. Recall that σ < ω. Let B̂ be the r-partite bottle graph with neck σ(1 + λ)s/ω and width s.3

Moreover, we choose λ and s such that B̂ contains a perfect B-tiling. Hence B̂ contains a perfect
H-tiling. Note that

χcr(B̂) = r − 1 + σ(1 + λ)/ω.

Since λ is chosen to be small (and so χcr(B̂) is very close to χcr(B)), one can still apply Theo-

rem 4.11 on inputs B̂ and R. That is, R contains an almost perfect B̂-tiling B̂. Denote the copies
of B̂ in B̂ by B̂1, B̂2, . . . , B̂k̂. By removing a small number of vertices from each cluster in R, we can

ensure the edges of each B̂i correspond to superregular pairs. Let V0 denote the set of all vertices
in G not contained in the clusters lying in the tiling B̂.

For each 1 ≤ i ≤ k̂, let Ĝi be the r-partite subgraph of G whose jth vertex class is the union of
all those clusters contained in the jth vertex class of B̂i, for each 1 ≤ j ≤ r. Let G∗i be the complete

r-partite graph on the same vertex set as Ĝi. We introduce the graph B̂ (rather than just working

with B) since B̂ has the following crucial property: For each 1 ≤ i ≤ k̂ we can arbitrarily delete a

small number of vertices from G∗i (and correspondingly Ĝi) and, provided |V (G∗i )| is now divisible
by h, the resulting graph satisfies the hypothesis of Lemma 4.10. That is, this graph contains a
perfect H-tiling. Then the Blow-up lemma (Lemma 4.8) implies that each Ĝi contains a perfect
H-tiling.

We make use of this property of B̂ as follows: In Section 7.2 we remove copies of H from G
that cover all vertices in V0, as well as a small (possibly zero) number of vertices from each Ĝi; call

this H-tiling (formed from these copies of H) H1. Deleting these covered vertices from each Ĝi, if

|V (Ĝi)| (= |V (G∗i )|) is still divisible by h for each 1 ≤ i ≤ k̂ then each Ĝi now contains a perfect

H-tiling (by our argument above). However, for some i, we may have that |V (Ĝi)| is not divisible
by h. So in Section 7.3 we remove a further bounded number of copies of H, forming an H-tiling
H2, to ensure |V (Ĝi)| (= |V (G∗i )|) is divisible by h for each 1 ≤ i ≤ k̂. Thus, we now have that

each Ĝi contains a perfect H-tiling Ĥi. Combining the tilings H1,H2, Ĥ1, . . . , Ĥk̂ yields a perfect
H-tiling in G, as desired.

Our argument in Section 7.3 will split into two cases, the first being when χ(H) ≥ 3 and the
latter when H is bipartite. This is where our proof differs the most from that in [14] as we must

make use of Theorem 5.2 to find suitable copies of H to ensure each |V (Ĝi)| is divisible by h.

7. Proof of Theorem 1.9

7.1. Applying the regularity lemma. Note that it suffices to prove the theorem in the case
when σ ∈ Q. Let n be sufficiently large and fix constants that satisfy the following hierarchy

(2) 0 < 1/n� 1/M ′ � ε� d� η1 � β � α� λ� η, σ/ω, 1− σ/ω, 1/h.
As discussed in Section 6, we choose s ∈ N sufficiently large and define B̂ to be the r-partite bottle
graph with neck σ(1 + λ)s/ω and width s. As before, we choose λ and s such that B̂ contains a

perfect B-tiling, which implies that B̂ contains a perfect H-tiling. Note again that

χcr(B̂) = r − 1 + σ(1 + λ)/ω.

3We have that σ(1 + λ)/ω < 1 by our choice of λ and that σ < ω.
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Moreover, choose η1 and M ′ such that

η1 � 1/|B̂| and M ′ ≥ n0(η1, σ(B̂), B̂),

where n0 is defined as in Theorem 4.11. Let G be an n-vertex graph as in the statement of
Theorem 1.9. Apply Lemma 4.3 with parameters ε, d and M ′ to G to obtain clusters V1, . . . , Vk,
an exceptional set V0 and a pure graph G′, where q := |V1| = . . . = |Vk| and k ≥ M ′. Let
R be the corresponding reduced graph. Using (2), we may apply Lemma 4.6 with parameters
M ′, n, ε, d, η, h, ω, σ to conclude that R has degree sequence dR,1 ≤ dR,2 ≤ . . . ≤ dR,k where

(3) dR,i ≥
(

1− ω + σ

h

)
k +

σ

ω
i+

ηk

2
for all 1 ≤ i ≤ ωk

h .

For a graph F , recall that σ(F ) denotes the size of the smallest possible colour class in any χ(F )-
colouring of F and ω(F ) := (|F | − σ(F ))/(χ(F )− 1). Since λ� η, we have that

(4) dR,i ≥

(
1− ω(B̂) + σ(B̂)

|B̂|

)
k +

σ(B̂)

ω(B̂)
i for all 1 ≤ i ≤ ω(B̂)k

|B̂|
.

Since |V (R)| = k ≥ M ′ ≥ n0(η1, σ(B̂), B̂) and (4) holds, we apply Theorem 4.11 to find a B̂-

tiling B̂ covering all but at most η1k vertices in R. Denote the copies of B̂ in B̂ by B̂1, B̂2, . . . , B̂k̂.

Now delete all clusters not contained in some B̂i from R and add the vertices in these clusters to
V0. Therefore now

|V0| ≤ εn+ η1n ≤ 2η1n.

From now on, we denote by R the subgraph of the reduced graph induced by all the remaining
clusters and redefine k := |V (R)|. Since η1 � η, (3) implies that R has degree sequence dR,1 ≤
dR,2 ≤ . . . ≤ dR,k where

(5) dR,i ≥
(

1− ω + σ

h

)
k +

σ

ω
i+

ηk

4
for all 1 ≤ i ≤ ωk

h .

For each B̂i in B̂, let Bi be a perfect B-tiling in B̂i (recall that earlier we chose s and λ such

that B̂ contains a perfect B-tiling). Let B :=
⋃
Bi and observe that B is a perfect B-tiling in R.

To aid with calculations we will sometimes work with B instead of B̂.
Let q′ := (1−ε|B̂|)q. By Proposition 4.7, for all 1 ≤ i ≤ k̂ we can remove ε|B̂|q vertices from each

cluster Va belonging to B̂i so that each edge VaVb in B̂i now corresponds to a (2ε, d/2)-superregular

pair (Va, Vb)G′ . Further, all clusters now have size q′ and for each edge VaVb in B̂i the pair (Va, Vb)G′

is a 2ε-regular pair with density at least d/2 (by Fact 4.4). Add all the vertices we removed from

the clusters to V0 and observe that now, since ε� η1, 1/|B̂|,

(6) |V0| ≤ 3η1n.

From now on, we will refer to the subclusters of size q′ as the clusters of R.

By considering a random partition of each cluster Va, and applying a Chernoff bound, one can
obtain the following partition of each cluster.

Claim 7.1. Let Va be a cluster. Then there exists a partition of Va into a red part V red
a and a blue

part V blue
a such that

||V red
a | − |V blue

a || ≤ εq′

and

||NG(x) ∩ V red
a | − |NG(x) ∩ V blue

a || < εq′ for all x ∈ V (G).
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Apply Claim 7.1 to every cluster to yield a partition of V (G) − V0 into red and blue vertices.
In the next section, we will remove vertices of particular copies of H in G from their respective
clusters and do so in such a way that we avoid all the red vertices of G. After removing these
vertices, we will be able to conclude that each (modified) pair (Va, Vb)G′ is (5ε, d/5)-superregular4

since V red
a and V red

b had no vertices removed from them. After the next section, we will only remove
a bounded number of vertices from the clusters, which will not affect the superregularity of pairs
of clusters in any significant way.

7.2. Covering the exceptional vertices. As in [14], given x ∈ V0, we call a copy of B ∈ B useful
for x if there exist r − 1 clusters in B, each belonging to a different vertex class of B, such that x
has at least αq′ neighbours in each cluster. Denote by kx the number of copies of B in B that are
useful for x. The following calculation demonstrates that

kxβq
′ ≥ |V0|.

By (2) and (6), we have that

kx|B|q′ + (|B| − kx)(|B|q′ − (1− α)q′ĉ(ω + σ))

≥ dG(x)− |V0|

≥
(

1− ω + σ

h
+
η

2

)
q′|B||B|,

which implies

(|B| − kx)(−(1− α)q′ĉ(ω + σ)) ≥
(
−ω + σ

h
+
η

2

)
q′hĉ|B|.

Rearranging, we get

kx ≥
|B|
(
hη
2 − α(ω + σ)

)
(ω + σ)(1− α)

.

Since α� η, we have that

kx ≥
η|B|

4
.

Now as |B|q′ ≥ n
2|B| and η1 � β, η, 1/h we have that

kxβq
′ ≥ η|B|βq′/4 > 3η1n ≥ |V0|.

Hence we can assign greedily each vertex x ∈ V0 to a copy Bx that is useful for x and do so in such
a way that at most βq′ vertices in V0 are assigned to the same copy B ∈ B. Then for each copy
Bx ∈ B that is useful for some x ∈ V0 we can apply Lemma 4.5 to find a copy of H containing x
which contains no red vertices. We do this as follows:

For each x, since ε� α and x has at least αq′ neighbours in r− 1 clusters belonging to different
vertex classes of Bx, Claim 7.1 implies that x has at least αq′/4 blue neighbours in each of these
r− 1 clusters. Further, we can find αq′/4 blue vertices in a cluster belonging to the vertex class of
Bx that does not necessarily contain any neighbours of x. Then it is easy to see that we can find
subclusters S1, . . . , Sr of r clusters in Bx such that: all vertices in S1 ∪ . . . ∪ Sr are blue vertices;
|Si| = αq′/4 for each i; every vertex in S1 ∪ . . . ∪ Sr−1 is a neighbour of x in G. By Fact 4.4, each
pair (Si, Sj), 1 ≤ i < j ≤ r, corresponds to an (8ε/α)-regular pair in G′ with density at least d/3.
Using Lemma 4.5 with parameters 8ε/α, d/3, αq′/4, h− 1, we find a copy of H containing x. Since
each B ∈ B has been assigned to at most βq′ vertices in V0 and β � α (from (2)), we may repeat
the above argument to find copies of H that contain each exceptional vertex in such a way that the
copies are disjoint and contain no red vertices. Denote the H-tiling induced by these copies of H

4Where VaVb is any edge in any B̂i in B̂.
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by H1. Remove all the vertices lying in these copies of H from their respective clusters. Observe
that currently

(1− βh)q′ ≤ |Vi| ≤ q′

for each i.

7.3. Making the blow-up of each B ∈ B divisible by h. For a subgraph S ⊆ R, let VG(S)

denote the union of the clusters in S. We aim to apply Lemma 4.8 to each B̂i in B̂ to find an
H-tiling that covers every vertex of VG(B̂i). Combining these H-tilings with H1 will result in a

perfect H-tiling in G as desired. Recall that, for each 1 ≤ i ≤ k̂, Ĝi is the r-partite subgraph of G′

whose jth vertex class is the union of all those clusters contained in the jth vertex class of B̂i, for
each 1 ≤ j ≤ r. Further, recall that G∗i is the complete r-partite graph on the same vertex set as

Ĝi. To apply Lemma 4.8 to each B̂i in B̂ we require that each G∗i contains a perfect H-tiling. To
guarantee the existence of these perfect H-tilings we will apply Lemma 4.10. To use Lemma 4.10
on G∗i we require that |V (Ĝ∗i )| is divisible by h. When we first chose our B̂-tiling this was the case.

Indeed, as each B̂i contained a perfect H-tiling and every cluster Vi was the same size, |V (G∗i )| was
divisible by h. However, in the last section we took out vertices from G in a greedy way, changing
the sizes of the clusters in R. Hence we cannot guarantee that |V (G∗i )| is still divisible by h for
each i. Now we will take out a further bounded number of copies of H in G to ensure |V (G∗i )| is

divisible by h for each 1 ≤ i ≤ k̂. In fact, we will ensure |VG(B)| is divisible by h for each B ∈ B.
We now split into two cases: when r ≥ 3 and when r = 2. When r ≥ 3 we have that hcfχ(H) = 1

and this property will be central to our argument. For r = 2, we have that hcfc(H) = 1 and
hcfχ(H) ≤ 2. The former property will provide us an easy way of removing copies of H from
V (G) to ensure |VG(B)| is divisible by h for each B ∈ B. Further, we will not need to use the
property that hcfχ(H) ≤ 2 in our argument. The only time we (implicitly) use the property that
hcfχ(H) ≤ 2 will be when we apply Lemma 4.10.

7.3.1. Case 1: r ≥ 3. For a subgraph S of R, let VR(S) denote the vertex set of S. To assist
in our argument, we define an auxiliary graph F whose vertices are the copies of B in B and for
B1, B2 ∈ V (F ), we let B1B2 be an edge in F if and only if there exists a vertex x in VR(B1) and
r − 1 vertices in VR(B2), all in different vertex classes of B2, (or vice versa) such that these r
vertices induce a Kr in R. Assume F is connected and let B1B2 be an edge in F . Then we may
apply Lemma 4.5 to find h− 1 disjoint copies of H which each have one vertex in VG(B1) and all
other vertices in VG(B2) (or vice versa). This means that we can remove at most h − 1 copies of
H to ensure VG(B1) is divisble by h. Continuing in this way we can ‘shift the remainders mod h’
along a spanning tree of F to ensure |VG(B)| is divisible by h for each B ∈ B. (Indeed, since n is
divisible by h we have that

∑
B∈B |VG(B)| is divisible by h.)

So assume F is not connected. Let C be the set of all components of F . For C ∈ C we will write
VR(C) for the set of vertices in R belonging to copies of B in C and VG(C) for the union of the
clusters corresponding to the vertices in VR(C). In what follows our aim is to remove a bounded
number of copies of H to ensure that for each component C ∈ C we have that |VG(C)| is divisible
by h. Then we can apply our previous argument to spanning trees of each component to achieve
that |VG(B)| is divisible by h for each B ∈ B.

Call vertices in R of degree at least

(7) (1− ω/h+ η/4)k

big. If a vertex is not big, call it small. Note by (5) that all but at most ωk/h− 1 vertices in R are
big.
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Claim 7.2. Let C1, C2 ∈ C, C1 6= C2 and let a ∈ VR(C2). Then

|NR(a) ∩ VR(C1)| <
(

1− ω + σ

h
+
η

4

)
|VR(C1)|.

Proof. Recall that B has width ωĉ. Suppose Claim 7.2 is false. Then there exists some B0 ∈ B
such that B0 ∈ C1 and

|NR(a) ∩B0| ≥
(

1− ω + σ

h
+
η

4

)
|B0| = (r − 2)ωĉ+

ηhĉ

4
.

Thus a must have neighbours in at least r − 1 vertex classes of B0. We can therefore construct a
copy of Kr in R which consists of a together with r−1 of its neighbours in B0. But by definition of
the auxiliary graph F , we must have that B0 is adjacent in F to the copy of B in B that contains
a. This contradicts that C1 and C2 were different components of F . Thus Claim 7.2 holds. �

Claim 7.3. There exist components C1, C2 ∈ C, C1 6= C2, a big vertex x1 ∈ V (R) and another (not
necessarily big) vertex x2 ∈ V (R) such that x1 ∈ V (C1), x2 ∈ V (C2) and x1x2 ∈ E(R).

Proof. Take some big vertex x ∈ V (R). Then x is in VR(Cx) for some component Cx of F . We
have |Cx| ≥ (1− ω/h+ η/4)k, as otherwise x has a neighbour in R outside of Cx and we are done.
Since r ≥ 3,

|R \ VR(Cx)| ≤ (ω/h− η/4)k < (1− ω/h+ η/4)k.

If R \ VR(Cx) contains any big vertex y, then y has a neighbour in VR(Cx) since |R \ VR(Cx)| <
(1− ω/h+ η/4)k and we are done. Hence assume all big vertices are in VR(Cx). Then all vertices
in R \ VR(Cx) are small vertices. Let z be a small vertex in R \ VR(Cx). Since r ≥ 3,

dR(z) ≥ (1− (ω + σ)/h+ η/4)k ≥ (ω/h+ η/4)k.

Since there are at most ωk/h− 1 small vertices in R, we have that z has a neighbour w which is a
big vertex. But then w ∈ VR(Cx). Thus Claim 7.3 holds. �

Claim 7.4. There exists a copy K ′ of Kr in R which has vertices in at least two components of F .

Proof. By Claim 7.3, there exist components C1, C2 ∈ C, a big vertex x1 ∈ V (R) and another
vertex x2 ∈ V (R) such that x1 ∈ VR(C1), x2 ∈ VR(C2) and x1x2 ∈ E(R). By (5) and (7), x1 and
x2 have a common neighbourhood of size at least

((r − 3)ω/h+ η/2)k.

If r = 3, then we choose x3 in the common neighbourhood of x1 and x2, and we are done. So
assume r ≥ 4. Since there are at most ωk/h small vertices, we can choose a big vertex x3 in the
common neighbourhood of x1 and x2. Then x1, x2 and x3 have a common neighbourhood of size
at least

((r − 4)ω/h+ 3η/4)k.

If r = 4, then we choose x4 in the common neighbourhood of x1, x2 and x3 and we are done.
Otherwise r ≥ 5 and we continue as before. Thus Claim 7.4 holds. �
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For such a copy K ′ of Kr in R, we now show that we can take out a bounded number of copies
of H from the clusters corresponding to the vertices of K ′ in such a way that that leaves one of the
components C ∈ C with |VG(C)| divisible by h. We use Theorem 5.2 and Lemma 4.5 to achieve
this. We will then repeat this process to ensure |VG(B)| is divisible by h for each B ∈ B.

Claim 7.5. There exists t ∈ N such that by removing at most t + (|B| − |C|)(h − 1) copies of H
from G we can ensure |VG(B)| is divisible by h for each B ∈ B.

Proof. Firstly, for each component C ∈ C we will remove copies of H to ensure |VG(C)| is
divisible by h. Apply Claim 7.4 to find a copy K ′ of Kr in R which has vertices in at least two
components of F . Let C∗ be a component of F which contains at least one vertex of K ′. Let p be
the number of vertices of K ′ contained in C∗ and observe that 1 ≤ p ≤ r − 1. Let 0 ≤ g ≤ h − 1
such that |VG(C∗)| ≡ g mod h. If g = 0 then |VG(C∗)| is divisible by h and we consider the graphs
F1 := F − V (C∗) and R1 := R − VR(C∗). So assume 1 ≤ g ≤ h − 1. Observe that we can apply
Lemma 4.5 to find any bounded number of disjoint copies of H in G in the clusters of K ′ (see the
end of Section 7.2). For any copy H ′ of H in G in the clusters of K ′ there are precisely p colour
classes of some colouring c of H ′ contained in the clusters of K ′ in VG(C∗). Moreover, given any
colouring c of H and p-subset P contained in Dc (recall Definition 5.1) we can find any bounded
number of disjoint copies H ′ of H in G with colouring c in the clusters of K ′ so that the colour
classes of H ′ in VG(C∗) correspond to the p-subset P . So there exists j ∈ {1, . . . , zp} such that
P = Ap,c,j (recall this notation from Definition 5.1). Thus, removing such a copy H ′ of H from
G would result in removing precisely Sp,c,j vertices from VG(C∗). By Theorem 5.2, there exist a
collection of non-negative integers {ap,c,i : c ∈ CH , 1 ≤ i ≤ zp} and ā ∈ N such that

ap,c,i ≤ ā for all c ∈ CH , 1 ≤ i ≤ zp,

and

g ·
∑
c∈CH

zp∑
i=1

ap,c,iSp,c,i ≡ g mod h.

Hence we can remove

g ·
∑
c∈CH

zp∑
i=1

ap,c,i ≤ (h− 1)ā|CH |zp

suitable disjoint copies of H in G in the clusters of K ′ to make |VG(C∗)| divisible by h.
Next we consider graphs F1 := F − V (C∗) and R1 := R − VR(C∗). Let k1 := |R1|. Claim 7.2

and (5) together give us that R1 has degree sequence dR1,1 ≤ . . . ≤ dR1,k1 where

dR1,i ≥
(

1− ω + σ

h

)
k1 +

σ

ω
i+

ηk1

4
for all 1 ≤ i ≤ ωk1

h .

Suppose |C| ≥ 3. Arguing as in Claims 7.3 and 7.4 we can find a copy K ′1 of Kr in R1 which has
vertices in at least two components of F1. Let C∗∗ be a component of F which contains at least
one vertex of K ′1. As before by removing at most (h − 1)ā|CH |zp copies of H from the clusters
of K ′1 we can make |VG(C∗)| divisible by h. Since |G| is divisible by h, we can continue in this
way to make |VG(C)| divisible by h for each component C ∈ C. We then apply the ‘shifting the
remainders mod h’ argument mentioned earlier during the ‘F connected’ case to guarantee that
|B| is divisible by h for each B ∈ B. In this process we removed at most (|C| − 1)(h − 1)ā|CH |zp
disjoint copies of H from G. Each time we use the ‘shifting the remainders mod h’ argument on a
connected component C ∈ C we remove at most (|C| − 1)(h− 1) disjoint copies of H in G. Hence
overall we remove at most (|C| − 1)(h − 1)ā|CH |zp + (|B| − |C|)(h − 1) disjoint copies of H in G.
Denote this H-tiling (formed from these copies of H) by H2. �
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Observe that now

(1− 2hβ)q′ ≤ |Vi| ≤ q′

for each i since we only removed a bounded number of vertices from G.

7.3.2. Case 2: r = 2. As in the statement of Theorem 5.2, let b be the number of components of
H and t1, . . . , tb be the sizes of the components of H. By Theorem 5.2, there exists a collection of
non-negative integers {ai : 1 ≤ i ≤ b} and ā ∈ N such that

ai ≤ ā for all 1 ≤ i ≤ b,

and
b∑
i=1

aiti ≡ 1 mod h.

Let B1, B2 ∈ B. If |VG(B1)| ≡ 0 mod h, define B1 := B \ B1. If not, let p ∈ {1, . . . , h − 1} such

that |VG(B1)| ≡ p mod h. Remove p
∑b

i=1 ai copies of H from VG(B1) ∪ VG(B2) in the following
way: For each 1 ≤ i ≤ b, remove pai copies of H from VG(B1) ∪ VG(B2) such that the component

of order ti is in VG(B1) and all other components are in VG(B2).5 Since p
∑b

i=1 aiti ≡ p mod h, by

removing these p
∑b

i=1 ai copies of H from VG(B1)∪VG(B2) we now have that |VG(B1)| is divisible
by h. Define B1 := B \B1.

Let B′1, B
′
2 ∈ B1. If |VG(B′1)| ≡ 0 mod h, define B2 := B1 \ B′1. If not, let p′ ∈ {1, . . . , h − 1}

such that |VG(B′1)| ≡ p′ mod h. Remove p′
∑b

i=1 ai copies of H from VG(B′1)∪VG(B′2) in the same
way as before. Define B2 := B1 \B′1. Continuing in the same way, we see that by removing at most

(8) (|B| − 1)(h− 1)bā

copies of H we can ensure that |B| is divisible by h for each B ∈ B. Denote this H-tiling (formed
from these copies of H) by H2.

Observe that now

(1− 2hβ)q′ ≤ |Vi| ≤ q′

for each i since we only removed a bounded number of vertices.

7.4. Completing the perfect tiling. As we related at the beginning of Section 7.3, we aim to
apply Lemma 4.8 to each B̂i ⊆ R (1 ≤ i ≤ k̂) where the vertices of R are the now modified clusters

– modified by the removing of copies of H in previous sections. Recall that, for each 1 ≤ i ≤ k̂, Ĝi
is the r-partite subgraph of G′ whose jth vertex class is the union of all those clusters contained in
the jth vertex class of B̂i, for each 1 ≤ j ≤ r. Observe that in Section 7.3 we made |Ĝi| = |VG(B̂i)|
divisible by h for each i. Further,

(1− 2hβ)q′ ≤ |Vi| ≤ q′

for each i. Recall that G∗i is the complete r-partite graph on the same vertex set as Ĝi. Since
0 < 2hβ � σ/ω, 1− σ/ω, 1/h by (2), we can apply Lemma 4.10 to conclude that each G∗i contains
a perfect H-tiling.

Furthermore, pairs of clusters that correspond to edges of B̂i are still (6ε, d/6)-superregular.
Indeed, in Section 7.2 we removed copies of H which avoided red vertices, resulting in each pair
of clusters (in a copy of H) being (5ε, d/5)-superregular. Then, in Section 7.3.1, or Section 7.3.2
if r = 2, we removed only a constant number of vertices from each cluster. Hence each pair of
clusters (in a copy of H) is (6ε, d/6)-superregular.

5We use Lemma 4.5 to do this.
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We now have all we need to apply Lemma 4.8 to find a perfect H-tiling Ĥi in Ĝi for each
1 ≤ i ≤ k̂. Then

H1 ∪H2 ∪ Ĥ1 ∪ . . . ∪ Ĥk̂
is a perfect H-tiling in G. Hence we have proved Theorem 1.9.
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