
A NOTE ON COLOUR-BIAS PERFECT MATCHINGS IN HYPERGRAPHS

JÓZSEF BALOGH, ANDREW TREGLOWN AND CAMILA ZÁRATE-GUERÉN

Abstract. A result of Balogh, Csaba, Jing and Pluhár yields the minimum degree threshold that
ensures a 2-coloured graph contains a perfect matching of significant colour-bias (i.e., a perfect
matching that contains significantly more than half of its edges in one colour). In this note we
prove an analogous result for perfect matchings in k-uniform hypergraphs. More precisely, for each
2 ≤ ℓ < k and r ≥ 2 we determine the minimum ℓ-degree threshold for forcing a perfect matching
of significant colour-bias in an r-coloured k-uniform hypergraph.

1. Introduction

A perfect matching in a hypergraph H is a collection of vertex-disjoint edges of H which covers
the vertex set V (H) of H. In recent decades there has been significant interest in the problem of
establishing minimum degree conditions that force a perfect matching in a k-uniform hypergraph.
More precisely, given a k-uniform hypergraph H and an ℓ-element vertex set S ⊆ V (H) (where
ℓ ∈ [k− 1]) we define dH(S) to be the number of edges containing S. The minimum ℓ-degree δℓ(H)
of H is the minimum of dH(S) over all ℓ-element sets of vertices in H. We refer to δ1(H) as the
minimum vertex degree of H and δk−1(H) as the minimum codegree of H.

Suppose that ℓ, k, n ∈ N such that ℓ ≤ k − 1 and k divides n. Let mℓ(k, n) denote the smallest
integer m such that every k-uniform hypergraph H on n vertices with δℓ(H) ≥ m contains a perfect
matching.

A simple consequence of Dirac’s theorem is that m1(2, n) = n/2 for all even n ∈ N. Improving
earlier asymptotically exact bounds given in [12, 17], Rödl, Ruciński and Szemerédi [18] determined
the minimum codegree threshold for perfect matchings in k-uniform hypergraphs. That is, they
showed that if n ∈ N is sufficiently large, then mk−1(k, n) = n/2−k+C, where C ∈ {3/2, 2, 5/2, 3}
depends on the values of n and k.

The value of mℓ(k, n) is known for various pairs (k, ℓ) when n is sufficiently large. For example,
after an earlier asymptotic result of Pikhurko [15], Treglown and Zhao [19] determined the value
of mℓ(k, n) for ℓ ≥ k/2 and n sufficiently large. However, the minimum vertex degree case of the
problem is wide open in general, and the only cases where the asymptotic or exact value of m1(k, n)
is known is when k = 2, 3, 4, 5. See, e.g., [16, 21] for discussions on further results in the area.

Given any 1 ≤ ℓ < k it is known that

mℓ(k, n) ≥ max

{
1

2
− o(1), 1−

(
k − 1

k

)k−ℓ

− o(1)

}(
n

k − ℓ

)
.(1)

See, e.g., the introduction of [20] for the two families of hypergraphs that demonstrate (1). It is
widely believed that the inequality in (1) is asymptotically sharp for all choices of k, ℓ, see [11, 13].
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Moreover, Treglown and Zhao [20] gave a conjecture on the exact value of mℓ(k, n) for sufficiently
large n ∈ kN.

The aim of this paper is to study the colour-bias version of this problem. The topic of colour-bias
structures in graphs was first raised by Erdős in the 1960s (see [5, 6]). Sparked by work of Balogh,
Csaba, Jing and Pluhár [1], there has been renewed interest in the topic, particularly in establishing
minimum degree conditions that force a colour-bias copy of a graph F . More precisely, if a graph
G contains a copy of F , then however the edges of G are 2-coloured, one can clearly ensure that G
contains a copy of F with at least e(F )/2 edges of the same colour. The question then is how large
does the minimum degree δ(G) of G need to be to guarantee that G contains a copy of F with
significantly more than e(F )/2 edges of the same colour, no matter how one 2-colours the edges of
G? The following result resolves this problem in the case when F is a Hamilton cycle.

Theorem 1.1 (Balogh, Csaba, Jing and Pluhár [1]). Let 0 < c < 1/4 and n ∈ N be sufficiently
large. If G is an n-vertex graph with

δ(G) ≥ (3/4 + c)n,

then given any 2-colouring of E(G) there is a Hamilton cycle in G with at least n/2 + cn/32 edges
of the same colour. Moreover, if n ∈ 4N, there is an n-vertex graph G′ with δ(G′) = 3n/4 and a
2-colouring of E(G′) for which every Hamilton cycle in G′ has precisely n/2 edges in each colour.

Note that Theorem 1.1 shows that the minimum degree threshold for forcing a colour-bias Hamil-
ton cycle in a graph is significantly higher than the threshold for just forcing a Hamilton cycle.
Indeed, Dirac’s theorem tells us that any n-vertex graph G with δ(G) ≥ n/2 contains a Hamilton
cycle.

Since a Hamilton cycle on an even number of vertices is the union of two perfect matchings,
Theorem 1.1 implies the following result.

Theorem 1.2 (Balogh, Csaba, Jing and Pluhár [1]). Let 0 < c < 1/4 and n ∈ 2N be sufficiently
large. If G is an n-vertex graph with

δ(G) ≥ (3/4 + c)n,

then given any 2-colouring of E(G) there is a perfect matching in G with at least n/4+ cn/64 edges
of the same colour. Moreover, if n ∈ 4N, there is an n-vertex graph G′ with δ(G′) = 3n/4 and a
2-colouring of E(G′) for which every perfect matching in G′ has precisely n/4 edges in each colour.

Let n ∈ 4N. We define the graph G′ in Theorem 1.2 as follows: V (G′) consists of the disjoint
union of two vertex classes A and B of sizes n/4 and 3n/4, respectively; E(G′) contains all possible
red edges whose endpoints are both in B and all possible blue edges with one endpoint in A and
one endpoint in B. Thus, δ(G′) = 3n/4 and every perfect matching in G′ has precisely n/4 edges
in each colour.

Since [1] appeared, a number of analogues of Theorem 1.1 have been established for other types
of spanning structures. Given graphs G and F , an F -factor in G is a collection of vertex-disjoint
copies of F in G that together cover V (G). In [2], the minimum degree threshold for forcing a
colour-bias Kr-factor was determined.1 More recently, this result was extended to F -factors for
every fixed graph F ; see [4]. For k ≥ 2, the minimum degree threshold for forcing a colour-bias kth
power of a Hamilton cycle in a graph was established in [3].

Other variants of the problem have also been studied. In [7, 10] an r-colour version of Theorem 1.1
was proven: in this setting now one r-colours E(G) and seeks a Hamilton cycle with significantly
more than n/r edges of the same colour. Colour-bias problems have also been considered for random
graphs [9]. Recently, Mansilla Brito [14] gave a minimum codegree result for forcing a colour-bias

1Recall Kr denotes the complete graph on r vertices.
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copy of a tight Hamilton cycle in a 3-uniform hypergraph. We remark that all of these colour-bias
results can be phrased in the equivalent language of discrepancy ; see, e.g., [1, 2, 3, 4, 10].

Our main result determines the minimum ℓ-degree threshold for forcing a colour-bias perfect
matching in a k-uniform hypergraph for all ℓ ≥ 2 and k ≥ 3. To state our result we need the
following definitions. Given integers 1 ≤ ℓ < k, let Ck,ℓ be the set of all c > 0 such that mℓ(k, n) ≤
c
(

n
k−ℓ

)
for all sufficiently large n ∈ kN. Set ck,ℓ to be the infimum of Ck,ℓ. In particular, note that

the general conjecture on the asymptotic value of mℓ(k, n) equivalently states that

ck,ℓ = max

{
1

2
, 1−

(
k − 1

k

)k−ℓ
}
.

Theorem 1.3. Let k, ℓ, r ∈ N where 2 ≤ ℓ < k and r ≥ 2. Given any η > 0 where ck,ℓ + η < 1,
there exists an n0 ∈ N such that the following holds. Let H be a k-uniform hypergraph on n ≥ n0

vertices, where n ∈ kN. If

δℓ(H) ≥ (ck,ℓ + η)

(
n

k − ℓ

)
,

then given any r-colouring of E(H) there is a perfect matching in H with at least n
rk+

ηn
8r(r−1)kk(k2+k)

edges of the same colour.

We remark that Theorem 1.3 holds even in the cases in which we do not know the value of ck,ℓ.
By definition of ck,ℓ, the minimum ℓ-degree condition in Theorem 1.3 is essentially best possible.
Indeed, for c < ck,ℓ, a minimum ℓ-degree condition of δℓ(H) ≥ c

(
n

k−ℓ

)
does not even guarantee

a perfect matching, let alone one of significant colour-bias. So in this sense the colour-bias and
‘standard’ versions of the problem are aligned when ℓ ≥ 2.

In contrast, the same phenomenon does not occur for the minimum vertex degree version of the
problem. Indeed, Theorem 1.2 tells us that the minimum degree threshold for a colour-bias perfect
matching in a graph is different to the minimum degree threshold for a perfect matching in a graph.
Furthermore, in Section 4 we describe a similar phenomenon in the 3-uniform hypergraph setting.

Remark. Whilst finalising a manuscript that gave the proof of Theorem 1.3 in the case when
ℓ = k − 1 and r = 2, we learnt of simultaneous and independent work of Gishboliner, Glock and
Sgueglia [8]. In [8] they determine the minimum codegree threshold for forcing a tight Hamilton
cycle of significant colour-bias in an r-coloured k-uniform hypergraph (where r ≥ 2 and k ≥ 3). As
an immediate consequence of their result they also establish the corresponding minimum codegree
threshold for perfect matchings.

We therefore decided to seek a generalisation of our minimum codegree result to other degree
conditions, i.e., Theorem 1.3. In doing so, we found an argument much cleaner than our original
approach.

Notation. Let H be a hypergraph. The neighbourhood NH(X) of a set X ⊆ V (H) is the family
of sets S ⊆ V (H) \X such that S ∪X ∈ E(H). If X = {x} we define NH(x) := NH(X). Given
a vertex x ∈ V (H) and set Y ⊆ V (H) we sometimes write xY or Y x to denote {x} ∪ Y . Given
a colouring c of E(H), we call an edge e ∈ E(H) a C-edge if e is coloured C in c. Given a set
X ⊆ V (H), we write H[X] for the induced subhypergraph of H with vertex set X. We define
H \X := H[V (H) \X].

Given a hypergraph F with an r-colouring c : E(F ) → {C1, . . . , Cr}, its colour profile is
(x1, . . . , xr) where xi is the number of Ci-edges in F for each i ∈ [r]. Two colour profiles (x1, . . . , xr),
(y1, . . . , yr) are said to be different with respect to the colour Ci if xi ̸= yi.
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2. Preliminaries and useful results

2.1. Proof overview and key definitions. Throughout this section, we will suppose that H is
a k-uniform hypergraph on n vertices with an r-colouring c : E(H) → {C1, . . . , Cr}.

Our general strategy for the proof of Theorem 1.3 is as follows. Our aim is to find certain gadgets
inside of H. A gadget is just a subhypergraph of H with some given structure. A gadget G is
good if G contains two perfect matchings that have different colour profiles with respect to the
r-colouring c.

For a certain well chosen t ∈ N, we will prove that there are t vertex-disjoint good gadgets
G1, . . . , Gt in H and a j ∈ [r] so that, for each good gadget Gi, the two perfect matchings Mi and
M ′

i in Gi have colour profiles that are different with respect to the colour Cj .
We will then be able to easily find a perfect matching in H of significant colour-bias. Indeed,

removing the vertices of G1, . . . , Gt from H will result in a k-uniform hypergraph H ′ that contains
a perfect matching M . The flexibility of the good gadgets then allows us to extend M into a perfect
matching in H with significant colour-bias, whatever the colour profile of M is.

We next state the definitions required to formally introduce the notion of a good gadget.

Definition 2.1. Let u, v ∈ V (H) be distinct and T ∈ NH(u) ∩NH(v). We say uTv is

• S if c(T ∪ {u}) = c(T ∪ {v}); or
• CiCj if c(T ∪ {u}) = Ci and c(T ∪ {v}) = Cj.

Let CiCj(uv) denote the collection of sets T ∈ NH(u)∩NH(v) for which uTv is CiCj. Define S(uv)
analogously.

Note that CiCj(uv) = CjCi(vu) for all distinct u, v ∈ V (H).

Definition 2.2. Let D > 0 and let u, v ∈ V (H) be distinct. We say that NH(u) ∩NH(v) is

• type S(D) if |S(uv)| ≥ Dnk−2;
• type CiCj(D) if i ̸= j and |CiCj(uv)| ≥ Dnk−2.

We remark that it may be the case that NH(u) ∩NH(v) has more than one type.

Definition 2.3. Let e = {e1, . . . , ek} and f = {f1, . . . , fk} be two edges in H. A (k2 + k, e, f)-
gadget G is a subhypergraph of H on k2 + k vertices so that:

• V (G) is the disjoint union of e, f and T1, . . . , Tk where Ti ∈ NH(ei) ∩ NH(fi) for each
i ∈ [k];

• e, f ∈ E(G);
• eiTi, fiTi ∈ E(G) for all i ∈ [k].

A (k2 + k, e, f)-gadget in which every eiTifi is S will be called an S-(k2 + k, e, f)-gadget.
A (3k, e, f)-gadget G is a subhypergraph of H on 3k vertices so that:

• ei = fi, for all i ∈ {3, . . . , k};
• V (G) is the disjoint union of e, f1, f2, T1 and T2, where Ti ∈ NH(ei) ∩ NH(fi) for each
i ∈ [2];

• e, f ∈ E(G);
• e1T1, f1T1, e2T2, f2T2 ∈ E(G).

Given t ∈ {3k, k2 + k}, we say that a (t, e, f)-gadget G is good if it contains two perfect matchings
with different colour profiles (with respect to the r-colouring of G induced by the r-colouring c of
H).

Note that e and f are vertex-disjoint in a (k2 + k, e, f)-gadget but intersect in k − 2 vertices in
a (3k, e, f)-gadget; see Figure 1.
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Figure 1. On the left, a (12, e, f)-gadget. On the right, a (9, e, f)-gadget.

2.2. Tools for the proof of Theorem 1.3. The following well-known result allows one to deduce
a lower bound on δℓ(H) given a lower bound on δℓ′(H), for any ℓ ≤ ℓ′.

Proposition 2.4. Let 1 ≤ ℓ ≤ ℓ′ < k and H be a k-uniform hypergraph on n vertices. If δℓ′(H) ≥
x
(
n−ℓ′

k−ℓ′

)
for some 0 ≤ x ≤ 1, then δℓ(H) ≥ x

(
n−ℓ
k−ℓ

)
. □

The next result gives a sufficient condition for finding a good (3k, e, f)-gadget in a k-uniform
hypergraph of large minimum 2-degree.

Lemma 2.5. Let k ≥ 3 and D := 3k. Let H be a k-uniform hypergraph on n vertices with an
r-colouring c : E(H) → {C1, . . . , Cr}. Suppose there exists i ̸= j ∈ [r] and distinct v1, v2, v3, v4 ∈
V (H) such that NH(v1) ∩NH(v2) and NH(v3) ∩NH(v4) are both type CiCj(D). If

δ2(H) >
1

2

(
n

k − 2

)
,

then there exists a good (3k, e, f)-gadget in H, for some e, f ∈ E(H).

Proof. By the minimum 2-degree condition, there exists a set X ⊆ V (H) of size k − 2 such
that A = X ∪ {v1, v3} and B = X ∪ {v2, v4} are both in E(H). We show that we can construct a
(3k,A,B)-gadget and afterwards we prove that it is good.

Given that NH(v1) ∩ NH(v2) is type CiCj(D), there are at least 3knk−2 sets T1,2 ∈ NH(v1) ∩
NH(v2) such that c(v1T1,2) = Ci and c(v2T1,2) = Cj . As |A∪B| = k+2 < 3k, we may choose such a
set T1,2 so that it is also vertex-disjoint from A∪B. Similarly, there is a set T3,4 ∈ NH(v3)∩NH(v4)
such that c(v3T3,4) = Ci, c(v4T3,4) = Cj and T3,4 is vertex-disjoint from A, B and T1,2.

Then, define a gadget G as follows:

• V (G) is the union of A, B, T1,2 and T3,4;
• A, B, v1T1,2, v2T1,2, v3T3,4 and v4T3,4 are in E(G).

By definition, G is a (3k,A,B)-gadget.
To prove that G is good, we need to find two perfect matchings in G with different colour

profiles. Define MA := {A, v2T1,2, v4T3,4} and MB := {B, v1T1,2, v3T3,4}. Both MA and MB are
perfect matchings in G. While MA has at least two Cj-edges (v2T1,2 and v4T3,4), MB has at least
two Ci-edges (v1T1,2 and v3T3,4). Thus, MA and MB have different colour profiles, as desired. □

The next lemma ensures a hypergraph H as in Theorem 1.3 contains a good gadget or a perfect
matching of huge colour-bias.

Lemma 2.6. Let 2 ≤ ℓ < k and η > 0. There exists an n0 ∈ N such that the following holds
for all n ≥ n0 with n ∈ kN. Let H be a k-uniform hypergraph on n vertices with an r-colouring
c : E(H) → {C1, . . . , Cr} and

δℓ(H) ≥ (ck,ℓ + η)

(
n

k − ℓ

)
.
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Suppose that H does not have a perfect matching containing at least n/k −
(
r
2

)
edges of the same

colour. Then

• there exists a good (3k, e, f)-gadget in H, for some e, f ∈ E(H); or
• there exists a good (k2 + k, e, f)-gadget in H, for some e, f ∈ E(H).

Proof. Let H and c be as in the lemma and suppose n is sufficiently large. Let D := k2+k ≥ 3k.
Note that, given our minimum ℓ-degree condition, Proposition 2.4 implies that

δ1(H) ≥ (ck,ℓ + η)

(
n− 1

k − 1

)
>

(
1

2
+

η

2

)(
n

k − 1

)
and δ2(H) ≥ (ck,ℓ + η)

(
n− 2

k − 2

)
>

1

2

(
n

k − 2

)
.

(2)

Here the inequalities follow as ck,ℓ ≥ 1/2 by (1).
As n is sufficiently large, and by definition of ck,ℓ, the minimum ℓ-degree condition ensures a

perfect matching M in H.
Let L :=

(
r
2

)
+ 1. By the hypothesis of the lemma, M does not contain n/k −

(
r
2

)
edges of the

same colour; so there exist distinct edges e1, . . . , eL, f1, . . . , fL ∈ M such that c(ei) ̸= c(fi) for each
i ∈ [L].

Given any distinct x, y ∈ V (H), (2) implies that |NH(x) ∩NH(y)| ≥ η
(

n
k−1

)
. In particular, this

means that NH(x) ∩NH(y) is of type S(D) or of type CiCj(D) for some distinct i, j ∈ [r].
Suppose there exists i ̸= j ∈ [r] and distinct x, y, z, w ∈ V (H) such that NH(x) ∩ NH(y) and

NH(z)∩NH(w) are both type CiCj(D). Then by Lemma 2.5, there exists a good (3k, e, f)-gadget
in H, for some e, f ∈ E(H).

So we may assume no such i ̸= j ∈ [r] and x, y, z, w ∈ V (H) exist. In particular, for each of the(
r
2

)
= L− 1 choices for i ̸= j ∈ [r], there is at most one pair (es, fs) such that there exists a u ∈ es

and v ∈ fs so that either NH(u) ∩NH(v) or NH(v) ∩NH(u) is type CiCj(D). Thus, the following
claim holds.

Claim 2.7. There is a pair (es, fs) such that for each u ∈ es and v ∈ es we have that NH(u)∩NH(v)
is type S(D).

Let es = {u1, . . . , uk} and fs = {v1, . . . , vk}. For each i ∈ [k], we choose a set Ti so that

(i) Ti ∈ S(uivi);
(ii) T1, . . . , Tk, es, fs are all vertex-disjoint.

Note we can guarantee (ii) since |S(uivi)| ≥ Dnk−2 = (k2 + k)nk−2 for each i ∈ [k].
We construct a (k2 + k, es, fs)-gadget G as follows:

• V (G) is the union of es, fs, T1, . . . , Tk;
• es and fs are edges in G;
• uiTi, viTi are edges in G for all i ∈ [k].

By definition, G is an S-(k2 + k, es, fs)-gadget with c(es) ̸= c(fs). This implies that G is a good
(k2 + k, es, fs)-gadget. Indeed, Me := {es, v1T1, . . . , vkTk} and Mf := {fs, u1T1, . . . , ukTk} are
perfect matchings in G with different colour profiles. □

3. Proof of Theorem 1.3

Let H be a sufficiently large n-vertex k-uniform hypergraph as in the statement of the theorem.
Let c : E(H) → {C1, . . . , Cr} be an r-colouring of E(H). If H contains a perfect matching with at
least n/k −

(
r
2

)
edges of the same colour, then we are done.

So, suppose no perfect matching in H contains at least n/k −
(
r
2

)
edges of the same colour. By

Lemma 2.6, we can find either a good (3k, e, f)-gadget or a good (k2 + k, e, f)-gadget in H. Call
this gadget G1.
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Next consider H1 := H \ V (G1). Clearly δℓ(H1) ≥ (ck,ℓ + η/2)
(

n
k−ℓ

)
. Suppose H1 contains a

perfect matching M1 with at least |H1|/k −
(
r
2

)
edges of the same colour. Thus, by taking any

perfect matching in G1 and adding it to M1, we obtain a perfect matching in H containing at least
|H1|/k −

(
r
2

)
≥ n/k − |G1|/k −

(
r
2

)
≥ n/k − k − 1−

(
r
2

)
edges of the same colour, as desired.

Hence, we may assume H1 does not contain such a perfect matching M1. By Lemma 2.6, we can
find either a good (3k, e, f)-gadget or a good (k2 + k, e, f)-gadget in H1. Call this gadget G2 and
set H2 := H1 \ V (G2).

Repeating this argument, we either obtain a perfect matching in H of significant colour-bias, or
a collection of t := ηn

4kk(k2+k)
vertex-disjoint gadgets G1, . . . , Gt where, given any i ∈ [t], Gi is either

a good (3k, e, f)-gadget or a good (k2 + k, e, f)-gadget in H. In particular, note that each gadget
we select has size at most k2 + k, and if one removes t(k2 + k) vertices from H one still has that
δℓ(H) ≥ (1/2 + η)

(
n

k−ℓ

)
− t(k2 + k)nk−ℓ−1 ≥ (1/2 + η/2)

(
n

k−ℓ

)
. Thus, we can indeed repeatedly

apply Lemma 2.6 to obtain these gadgets G1, . . . , Gt.
Set G := {G1, . . . , Gt}. For each colour Ci, consider the set Gi of all the gadgets in G that contain

two perfect matchings with different colour profiles with respect to the colour Ci. Clearly there
exists some j ∈ [r] such that Gj contains at least t/r gadgets.

For each gadget Gi in Gj consider the perfect matching Mi in Gi with the largest possible number
of edges coloured Cj ; let M

′
i be the perfect matching in Gi with the fewest possible edges coloured

Cj . So Mi has at least one more Cj-edge than M ′
i .

Let M+ denote the union of all these Mi and let M− denote the union of all these M ′
i . So M+

contains at least t/r = ηn
4rkk(k2+k)

more Cj-edges than M−.

Let V (Gj) denote the set of vertices in H that lie in one of the gadgets in Gj . Note that
δℓ(H \ V (Gj)) ≥ (ck,ℓ + η/2)

(
n

k−ℓ

)
so there exists a perfect matching M in H \ V (Gj). Thus,

M ∪M+ and M ∪M− are both perfect matchings in H.
If M ∪M− contains at least n

rk +
ηn

8r(r−1)kk(k2+k)
edges of the same colour then the theorem holds.

Thus, we may assume this is not the case. This immediately implies the following claim.

Claim 3.1. For every i ∈ [r], the number of Ci-edges in M ∪M− is at least n
rk − ηn

8rkk(k2+k)
.

In particular, M∪M− contains at least n
rk−

ηn
8rkk(k2+k)

Cj-edges. Since there are at least
ηn

4rkk(k2+k)

more Cj-edges inM+ than inM−, we obtain thatM∪M+ contains at least n
rk+

ηn
8rkk(k2+k)

Cj-edges,

as desired. □

4. Concluding Remarks

In this paper we have determined the minimum ℓ-degree threshold for forcing a colour-bias
perfect matching in a k-uniform hypergraph for all 2 ≤ ℓ < k. The only remaining open case of the
problem is the minimum vertex degree version.

A result of Hàn, Person and Schacht [11] yields that m1(3, n) = (5/9+o(1))
(
n−1
2

)
. The following

example shows that the corresponding colour-bias problem has a significantly higher minimum
vertex degree threshold.

Example 4.1. Given any n ∈ 6N, there exists an n-vertex 3-uniform hypergraph H with

δ1(H) ≥ 3

4

(
n− 1

2

)
and a 2-colouring of E(H) so that every perfect matching in H has precisely n/6 edges in each
colour.

Proof. Define H so that (i) V (H) is the disjoint union of two vertex classes A and B, both of
size n/2; (ii) E(H) consists of all those 3-uniform edges containing at least one vertex from each
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of A and B. Thus,

δ1(H) =

(
n/2

2

)
+

n

2

(n
2
− 1

)
≥ 3

4

(
n− 1

2

)
.

Colour each edge containing 2 vertices from A red; each edge containing 2 vertices from B blue. It
is easy to see that every perfect matching in H uses the same number of red and blue edges. □

We suspect that this example is extremal for the minimum vertex degree problem in 3-uniform
hypergraphs.

Question 4.2. Given any η > 0 does there exists a γ > 0 so that the following holds for all
sufficiently large n ∈ 3N? Suppose that H is an n-vertex 3-uniform hypergraph with

δ1(H) ≥
(
3

4
+ η

)(
n− 1

2

)
.

Then given any 2-colouring of E(H) there is a perfect matching in H with at least n/6 + γn edges
of the same colour.
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