A NOTE ON COLOUR-BIAS HAMILTON CYCLES IN DENSE GRAPHS

ANDREA FRESCHI, JOSEPH HYDE, JOANNA LADA AND ANDREW TREGLOWN

ABSTRACT. Balogh, Csaba, Jing and Pluhár recently determined the minimum degree threshold that ensures a 2-coloured graph G contains a Hamilton cycle of significant colour bias (i.e., a Hamilton cycle that contains significantly more than half of its edges in one colour). In this short note we extend this result, determining the corresponding threshold for r-colourings.

1. Introduction

The study of colour-biased structures in graphs concerns the following problem. Given graphs H and G, what is the largest t such that in any r-colouring of the edges of G, there is always a copy of H in G that has at least t edges of the same colour? Note if H is a subgraph of G, one can trivially ensure a copy of H with at least |E(H)|/r edges of the same colour; so one is interested in when one can achieve a colour-bias significantly above this.

The topic was first raised by Erdős in the 1960s (see [4, 6]). Erdős, Füredi, Loebl and Sós [5] proved the following: for some constant c > 0, given any 2-colouring of the edges of K_n and any fixed spanning tree T_n with maximum degree Δ , K_n contains a copy of T_n such that at least $(n-1)/2 + c(n-1-\Delta)$ edges of this copy of T_n receive the same colour. In [1], Balogh, Csaba, Jing and Pluhár investigated the colour-bias problem in the case of spanning trees, paths and Hamilton cycles for various classes of graphs G. Note all their results concern 2-colourings and therefore were expressed in the equivalent language of graph discrepancy. The following result determines the minimum degree threshold for forcing a Hamilton cycle of significant colour bias in a 2-edge-coloured graph.

Theorem 1.1 (Balogh, Csaba, Jing and Pluhár [1]). Let 0 < c < 1/4 and $n \in \mathbb{N}$ be sufficiently large. If G is an n-vertex graph with

$$\delta(G) > (3/4 + c)n$$
,

then given any 2-colouring of E(G) there is a Hamilton cycle in G with at least (1/2+c/64)n edges of the same colour. Moreover, if 4 divides n, there is an n-vertex graph G' with $\delta(G') = 3n/4$ and a 2-colouring of E(G') for which every Hamilton cycle in G' has precisely n/2 edges in each colour.

In [7], Gishboliner, Krivelevich and Michaeli considered colour-bias Hamilton cycles in the random graph G(n,p). Roughly speaking, their result states that if p is such that with high probability (w.h.p.) G(n,p) has a Hamilton cycle, then in fact w.h.p., given any r-colouring of the edges of G(n,p), one can guarantee a Hamilton cycle that is essentially as colour-bias as possible (see [7, Theorem 1.1] for the precise statement). A discrepancy (therefore colour-bias) version of the Hajnal–Szemerédi theorem was proven in [2].

In this paper we give a very short proof of the following multicolour generalisation of Theorem 1.1. We require the following definition to state it.

Definition 1.2. Let $t, r \in \mathbb{N}$ and H be a graph. We say that an r-colouring of the edges of H is t-unbalanced if at least |E(H)|/r + t edges are coloured with the same colour.

Theorem 1.3. Let $n, r, d \in \mathbb{N}$ with $r \geq 2$. Let G be an n-vertex graph with $\delta(G) \geq \left(\frac{1}{2} + \frac{1}{2r}\right) n + 6dr^2$. Then for every r-colouring of E(G) there exists a d-unbalanced Hamilton cycle in G.

Note that n, r and d may all be comparable in size. Further, Theorem 1.3 implies Theorem 1.1 with a slightly better bound on the colour-bias. In the following section we give constructions that show Theorem 1.3 is best possible; that is, there are n-vertex graphs G with minimum degree $\delta(G) = (1/2 + 1/2r)n$ such that for some r-colouring of E(G), every Hamilton cycle in G uses precisely n/r edges of each colour. The proof of Theorem 1.3 is constructive, producing the d-unbalanced Hamilton cycle in time polynomial in n.

Remark: After making our manuscript available online, we learnt of simultaneous and independent work of Gishboliner, Krivelevich and Michaeli [8]. They prove an asymptotic version of Theorem 1.3 (i.e., for sufficiently large graphs G) via Szemerédi's regularity lemma. They also generalise a number of the results from [1].

2. The extremal constructions

Our first extremal example is a generalisation of a 2-colour construction from [1].

Extremal Example 1. Let $r, n \in \mathbb{N}$ where $r \geq 2$ and such that 2r divides n. Then there exists a graph G on n vertices with $\delta(G) = (\frac{1}{2} + \frac{1}{2r})n$, and an r-colouring of E(G), such that every Hamilton cycle uses precisely n/r edges of each colour.

Proof. The vertex set of G is partitioned into r sets V_1, \ldots, V_r such that $|V_1| = \ldots = |V_{r-1}| = n/2r$, and $|V_r| = (r+1)n/2r$; the edge set of G consists of all edges with at least one endpoint in V_r . Now colour the edges of G with colours $1, \ldots, r$ as follows:

- For each $i \in [r-1]$, colour every edge with one endpoint in V_i and one endpoint in V_r with colour i.
- Colour every edge with both endpoints in V_r with colour r (see Figure 1).

Observe that $\delta(G) = \left(\frac{1}{2} + \frac{1}{2r}\right)n$, which is attained by every vertex in $V_1 \cup \ldots \cup V_{r-1}$. For each $i \in [r-1]$, every vertex in V_i is only adjacent to edges of colour i, $|V_i| = n/2r$ and $E(G[V_1 \cup \ldots \cup V_{r-1}]) = \emptyset$. Hence every Hamilton cycle in G must contain precisely n/r edges of each colour $i \in [r-1]$. Since a Hamilton cycle has n edges, every Hamilton cycle in G must also contain n/r edges of colour r. Thus every Hamilton cycle in G uses precisely n/r edges of each colour.

We also have an additional extremal example in the r=3 case.

Extremal Example 2. Let $n \in \mathbb{N}$ such that 3 divides n. Then there exists a graph G on n vertices with $\delta(G) = 2n/3$, and a 3-colouring of E(G), such that every Hamilton cycle uses precisely n/3 edges of each colour and every vertex in G is incident to precisely two colours.

Proof. Let G be the n-vertex 3-partite Turán graph. So G consists of three vertex sets V_1 , V_2 and V_3 , such that $|V_1| = |V_2| = |V_3| = n/3$, and all possible edges that go between distinct V_i and V_j . Colour all edges between V_1 and V_2 red; all edges between V_2 and V_3 blue; all edges between V_3 and V_1 green.

Clearly $\delta(G) = 2n/3$ and every vertex is incident to precisely two colours. Let H be a Hamilton cycle in G and let r, b and g be the number of red, blue and green edges in H, respectively. Since all red and green edges in H are incident to vertices in V_1 , $|V_1| = n/3$ and V_1 is an independent set, we must have that 2n/3 = r + g. Applying similar reasoning to V_2 and V_3 , we have that 2n/3 = b + r and 2n/3 = g + b. Hence r = b = g = n/3. Thus every Hamilton cycle in G uses precisely n/3 edges of each colour.

FIGURE 1. Extremal Example 1 for r=3

3. Proof of Theorem 1.3

As in [1], we require the following generalisation of Dirac's theorem.

Lemma 3.1 (Pósa [9]). Let $1 \le t \le n/2$, G be an n-vertex graph with $\delta(G) \ge \frac{n}{2} + t$ and E' be a set of edges of a linear forest in G with $|E'| \le 2t$. Then there is a Hamilton cycle in G containing E'.

Proof of Theorem 1.3. Recall that G is a graph on n vertices with $\delta(G) \geq \left(\frac{1}{2} + \frac{1}{2r}\right)n + 6dr^2$ for some integers $r \geq 2$ and $d \geq 1$. Consider any r-colouring of E(G). Given a colour c we define the function $L_c: E(G) \to \{0,1\}$ as follows:

$$L_c(e) := \begin{cases} 1 & \text{if } e \text{ is coloured with } c, \\ 0 & \text{otherwise.} \end{cases}$$

Given a triangle xyz and a colour c, we define $Net_c(xyz, xy)$ as follows:

$$\operatorname{Net}_c(xyz, xy) := L_c(xz) + L_c(yz) - L_c(xy).$$

This quantity comes from an operation we will perform later where we extend a cycle H by a vertex z via deleting the edge xy from H and adding the edges xz and yz, to form a new cycle H'. One can see that $\operatorname{Net}_c(xyz,xy)$ is the change in the number of edges of colour c from H to H'.

Since $\delta(G) \geq \frac{1}{2}n$, by Dirac's theorem, G contains a Hamilton cycle C. If C is d-unbalanced we are done, so suppose it is not. Let $v \in V(G)$. Since $d(v) \geq \left(\frac{1}{2} + \frac{1}{2r}\right)n + 6dr^2$, there are at least $\frac{n}{r} + 12dr^2$ edges e in C such that v and e span a triangle.

This can be seen in the following way. Let X be the set of neighbours of v, and X^+ the set of vertices whose 'predecessors' on C are neighbours of v, having arbitrarily chosen an orientation for C. We have

$$n \ge |X \cup X^+| = |X| + |X^+| - |X \cap X^+| \ge n + \frac{n}{r} + 12dr^2 - |X \cap X^+|.$$

Hence $|X \cap X^+| \ge \frac{n}{r} + 12dr^2$. Clearly each element in $X \cap X^+$ yields a triangle containing v, thus giving the desired bound.

This property, together with the fact that C is not d-unbalanced (so contains fewer than n/r + d edges of each colour) immediately implies the following.

Fact 3.2. Let $v \in V(G)$, $Y \subseteq V(G)$ with $|Y| \le 5dr^2$, and xy be any edge in G that forms a triangle with v and is disjoint to Y. Then there is an edge zw on C vertex-disjoint to xy, and distinct colours c_1 and c_2 such that vzw induces a triangle; xy has colour c_1 ; zw has colour c_2 ; $z, w \notin Y$.

Initially set $A := \emptyset$. Consider an arbitrary $v \in V(G)$ and let x, y, z, w, c_1, c_2 be as in Fact 3.2 (where $Y := \emptyset$), where xy is chosen to be an edge of C that forms a triangle with v.

If there exists a colour c such that $\operatorname{Net}_c(vxy, xy) \neq \operatorname{Net}_c(vzw, zw)$ then add the pair (xy, zw) to the set A, and define $v_1 := v$. If there is no such colour then we must have that $\operatorname{Net}_{c_1}(vxy, xy) = \operatorname{Net}_{c_1}(vzw, zw)$ and so

$$L_{c_1}(vx) + L_{c_1}(vy) - L_{c_1}(xy) = L_{c_1}(vw) + L_{c_1}(vz) - L_{c_1}(wz),$$

$$L_{c_1}(vx) + L_{c_1}(vy) - 1 = L_{c_1}(vw) + L_{c_1}(vz) \ge 0,$$

as xy has colour c_1 , wz has colour c_2 and $c_1 \neq c_2$. Hence vx or vy is coloured with c_1 . Without loss of generality, let vx be coloured with c_1 . By the same argument with colour c_2 , we may assume that, without loss of generality, vw is coloured c_2 . Let c_3 be the colour of vy. Then $\operatorname{Net}_{c_3}(vxy, xy) = \operatorname{Net}_{c_3}(vzw, zw)$ and so

$$L_{c_3}(vx) + L_{c_3}(vy) - L_{c_3}(xy) = L_{c_3}(vw) + L_{c_3}(vz) - L_{c_3}(wz),$$

$$1 = L_{c_3}(vz),$$

as vx and xy are both coloured with c_1 and vw and wz are both coloured with c_2 . Hence c_3 is also the colour of vz (see Figure 2). Since $c_1 \neq c_2$, we may assume, without loss of generality, $c_1 \neq c_3$.

Now we apply Fact 3.2 with x playing the role of v; vy playing the role of xy; $Y = \emptyset$. We thus obtain a colour $c_4 \neq c_3$ and an edge w'z' on C that is vertex-disjoint from vy, so that w'z' forms a triangle with x, and w'z' is coloured c_4 . Note that by construction $\operatorname{Net}_{c_3}(xvy,vy) = -1$ whilst, as $c_4 \neq c_3$, by definition $\operatorname{Net}_{c_3}(xw'z',w'z') = L_{c_3}(xw') + L_{c_3}(xz') - 0 \geq 0$. In this case we define $v_1 := x$ and add the pair (vy, w'z') to A.

Repeated applications of this argument thus yield sets $B := \{v_1, v_2, \dots, v_{dr^2}\}$ and a set A whose elements are pairs of edges from G so that:

- All vertices lying in B and in edges in pairs from A are vertex-disjoint.
- For each $u = v_i$ in B there is a pair $(xy, zw) \in A$ associated with u, and a colour c_u so that (i) uxy and uzw are triangles in G; (ii) $\operatorname{Net}_{c_u}(uxy, xy) \neq \operatorname{Net}_{c_u}(uzw, zw)$. We call c_u the colour associated with u.

Note that it is for the first of these two conditions that we require the set Y in Fact 3.2. At a given step of our argument, Y will be the set of vertices that have previously been added to B or lie in an edge previously selected for inclusion in a pair from A.

There is some colour c^* for which c^* is the colour associated with (at least) dr of the vertices in B. Let B' denote the set of such vertices of B; without loss of generality we may assume $B' = \{v_1, v_2, \ldots, v_{dr}\}$. Let A' denote the subset of A that corresponds to B'. For each $i \in [dr]$, let $(x_i y_i, z_i w_i)$ denote the element of A' associated with v_i . We may assume that for each $i \in [dr]$,

(1)
$$\operatorname{Net}_{c^*}(v_i x_i y_i, x_i y_i) > \operatorname{Net}_{c^*}(v_i z_i w_i, z_i w_i).$$

Consider the induced subgraph G' of G obtained from G by removing the vertices from B'. Let E' be the set of all edges which appear in some pair in A'. As $\delta(G') \geq n/2 + dr$, Lemma 3.1 implies

¹Note sometimes in an application of this fact, xy will be an edge of C, but other times not.

FIGURE 2. A Hamilton cycle C for G, with a vertex v which is good for C. There is no colour c with $\mathrm{Net}_c(vxy,xy) \neq \mathrm{Net}_c(vzw,zw)$ implying the colour arrangement above.

that there exists a Hamilton cycle C' in G' which contains E'. Let C_1 be the Hamilton cycle of G obtained from C' by inserting each v_i from B' between x_i and y_i ; let C_2 be the Hamilton cycle of G obtained from C' by inserting each v_i from B' between z_i and w_i . For j = 1, 2, write E_j for the number of edges in C_j of colour c^* . Note that (1) implies that $E_1 - E_2 \ge dr$. It is easy to see that this implies one of C_1 and C_2 contains at least n/r + d edges in the same colour, thereby completing the proof.

4. Concluding remarks

As mentioned in [5, Section 7] there are many possible directions for future research. One natural extension of our work is to seek an analogue of Theorem 1.3 in the setting of digraphs.

Question 4.1. Given any digraph G on n vertices with minimum in- and outdegree at least (1/2 + 1/2r + o(1))n, and any r-colouring of E(G), can one always ensure a Hamilton cycle in G of significant colour-bias?

Note that the natural digraph analogues of our extremal constructions for Theorem 1.3 show that one cannot lower the minimum degree condition in Question 4.1.

Given an r-coloured n-vertex graph G and non-negative integers d_1, \ldots, d_r , we say that G contains a (d_1, \ldots, d_r) -coloured Hamilton cycle if there is a Hamilton cycle in G with precisely d_i edges of the ith colour (for every $i \in [r]$). Note that the proof of Theorem 1.3 (more precisely (1)) ensures that given a graph G as in the theorem, one can obtain at least dr distinct vectors (d_1, \ldots, d_r) such that G has a (d_1, \ldots, d_r) -coloured Hamilton cycle. It would be interesting to investigate this problem further. That is, given an r-coloured n-vertex graph G of a given minimum degree, how many distinct vectors (d_1, \ldots, d_r) can we guarantee so that G contains a (d_1, \ldots, d_r) -coloured Hamilton cycle?

In [2], the question of determining the minimum degree threshold that ensures a colour-bias kth power of a Hamilton cycle was raised; it would be interesting to establish whether a variant of the

²This colour may not necessarily be c^* .

switching method from the proof of Theorem 1.3 can be used to resolve this problem (for all $k \geq 2$ and r-colourings where $r \geq 2$).

Remark: Since a version of this paper first appeared online, Bradač [3] has used the regularity method to resolve this problem asymptotically for all $k \ge 2$ when r = 2.

ACKNOWLEDGEMENT

The authors are grateful to the referee for their careful review.

References

- J. Balogh, B. Csaba, Y. Jing and A. Pluhár, On the discrepancies of graphs, Electron. J. Combin., 27 (2020), P2.12.
- [2] J. Balogh, B. Csaba, A. Pluhár and A. Treglown, A discrepancy version of the Hajnal–Szemerédi theorem, Combin. Probab. Comput., to appear.
- [3] D. Bradač, Powers of Hamilton cycles of high discrepancy are unavoidable, arXiv:2102.10912.
- [4] P. Erdős, Ramsey és Van der Waerden tételével Kapcsolatos Kombinatorikai Kédésekröl, Mat. Lapok., 14 (1963), 29–37.
- [5] P. Erdős, Z. Füredi, M. Loebl and V.T. Sós, Discrepancy of Trees, Stud. Sci. Math., 30 (1995), 47–57.
- [6] P. Erdős and J.H. Spencer, Imbalances in k-colorations, Networks, 1 (1971/72), 379–385.
- [7] L. Gishboliner, M. Krivelevich and P. Michaeli, Colour-biased Hamilton cycles in random graphs, arXiv:2007.12111.
- [8] L. Gishboliner, M. Krivelevich and P. Michaeli, Discrepancies of spanning trees and Hamilton cycles, arXiv:2012.05155.
- [9] L. Pósa, On the circuits of finite graphs, Magyar. Tud. Akad. Mat. Kutat Int. Közl. 8 (1963/1964), 355–361.

Andrea Freschi, Joseph Hyde & Andrew Treglown
School of Mathematics
University of Birmingham
Birmingham
B15 2TT
UK

Joanna Lada
Merton College
University of Oxford
Oxford
OXford
OX1 2JD
UK

E-mail addresses: {axf079, jfh337, a.c.treglown}@bham.ac.uk, joanna.lada@merton.ox.ac.uk