A NOTE ON COLOUR-BIAS HAMILTON CYCLES IN DENSE GRAPHS

ANDREA FRESCHI, JOSEPH HYDE, JOANNA LADA AND ANDREW TREGLOWN

Abstract

Balogh, Csaba, Jing and Pluhár recently determined the minimum degree threshold that ensures a 2 -coloured graph G contains a Hamilton cycle of significant colour bias (i.e., a Hamilton cycle that contains significantly more than half of its edges in one colour). In this short note we extend this result, determining the corresponding threshold for r-colourings.

1. Introduction

The study of colour-biased structures in graphs concerns the following problem. Given graphs H and G, what is the largest t such that in any r-colouring of the edges of G, there is always a copy of H in G that has at least t edges of the same colour? Note if H is a subgraph of G, one can trivially ensure a copy of H with at least $|E(H)| / r$ edges of the same colour; so one is interested in when one can achieve a colour-bias significantly above this.

The topic was first raised by Erdős in the 1960s (see [4, 6]). Erdős, Füredi, Loebl and Sós [5] proved the following: for some constant $c>0$, given any 2 -colouring of the edges of K_{n} and any fixed spanning tree T_{n} with maximum degree Δ, K_{n} contains a copy of T_{n} such that at least $(n-1) / 2+c(n-1-\Delta)$ edges of this copy of T_{n} receive the same colour. In [1], Balogh, Csaba, Jing and Pluhár investigated the colour-bias problem in the case of spanning trees, paths and Hamilton cycles for various classes of graphs G. Note all their results concern 2-colourings and therefore were expressed in the equivalent language of graph discrepancy. The following result determines the minimum degree threshold for forcing a Hamilton cycle of significant colour bias in a 2-edge-coloured graph.

Theorem 1.1 (Balogh, Csaba, Jing and Pluhár [1]). Let $0<c<1 / 4$ and $n \in \mathbb{N}$ be sufficiently large. If G is an n-vertex graph with

$$
\delta(G) \geq(3 / 4+c) n,
$$

then given any 2-colouring of $E(G)$ there is a Hamilton cycle in G with at least $(1 / 2+c / 64) n$ edges of the same colour. Moreover, if 4 divides n, there is an n-vertex graph G^{\prime} with $\delta\left(G^{\prime}\right)=3 n / 4$ and a 2-colouring of $E\left(G^{\prime}\right)$ for which every Hamilton cycle in G^{\prime} has precisely $n / 2$ edges in each colour.

In [7], Gishboliner, Krivelevich and Michaeli considered colour-bias Hamilton cycles in the random graph $G(n, p)$. Roughly speaking, their result states that if p is such that with high probability (w.h.p.) $G(n, p)$ has a Hamilton cycle, then in fact w.h.p., given any r-colouring of the edges of $G(n, p)$, one can guarantee a Hamilton cycle that is essentially as colour-bias as possible (see [7, Theorem 1.1] for the precise statement). A discrepancy (therefore colour-bias) version of the Hajnal-Szemerédi theorem was proven in [2].

In this paper we give a very short proof of the following multicolour generalisation of Theorem 1.1. We require the following definition to state it.
Definition 1.2. Let $t, r \in \mathbb{N}$ and H be a graph. We say that an r-colouring of the edges of H is t-unbalanced if at least $|E(H)| / r+t$ edges are coloured with the same colour.
Theorem 1.3. Let $n, r, d \in \mathbb{N}$ with $r \geq 2$. Let G be an n-vertex graph with $\delta(G) \geq\left(\frac{1}{2}+\frac{1}{2 r}\right) n+6 d r^{2}$. Then for every r-colouring of $E(G)$ there exists a d-unbalanced Hamilton cycle in G.

Note that n, r and d may all be comparable in size. Further, Theorem 1.3 implies Theorem 1.1 with a slightly better bound on the colour-bias. In the following section we give constructions that show Theorem 1.3 is best possible; that is, there are n-vertex graphs G with minimum degree $\delta(G)=(1 / 2+1 / 2 r) n$ such that for some r-colouring of $E(G)$, every Hamilton cycle in G uses precisely n / r edges of each colour. The proof of Theorem 1.3 is constructive, producing the d unbalanced Hamilton cycle in time polynomial in n.

Remark: After making our manuscript available online, we learnt of simultaneous and independent work of Gishboliner, Krivelevich and Michaeli [8]. They prove an asymptotic version of Theorem 1.3 (i.e., for sufficiently large graphs G) via Szemerédi's regularity lemma. They also generalise a number of the results from [1].

2. The extremal constructions

Our first extremal example is a generalisation of a 2-colour construction from [1].
Extremal Example 1. Let $r, n \in \mathbb{N}$ where $r \geq 2$ and such that $2 r$ divides n. Then there exists a graph G on n vertices with $\delta(G)=\left(\frac{1}{2}+\frac{1}{2 r}\right) n$, and an r-colouring of $E(G)$, such that every Hamilton cycle uses precisely n / r edges of each colour.

Proof. The vertex set of G is partitioned into r sets V_{1}, \ldots, V_{r} such that $\left|V_{1}\right|=\ldots=\left|V_{r-1}\right|=$ $n / 2 r$, and $\left|V_{r}\right|=(r+1) n / 2 r$; the edge set of G consists of all edges with at least one endpoint in V_{r}. Now colour the edges of G with colours $1, \ldots, r$ as follows:

- For each $i \in[r-1]$, colour every edge with one endpoint in V_{i} and one endpoint in V_{r} with colour i.
- Colour every edge with both endpoints in V_{r} with colour r (see Figure 1).

Observe that $\delta(G)=\left(\frac{1}{2}+\frac{1}{2 r}\right) n$, which is attained by every vertex in $V_{1} \cup \ldots \cup V_{r-1}$. For each $i \in[r-1]$, every vertex in V_{i} is only adjacent to edges of colour $i,\left|V_{i}\right|=n / 2 r$ and $E\left(G\left[V_{1} \cup\right.\right.$ $\left.\left.\ldots \cup V_{r-1}\right]\right)=\emptyset$. Hence every Hamilton cycle in G must contain precisely n / r edges of each colour $i \in[r-1]$. Since a Hamilton cycle has n edges, every Hamilton cycle in G must also contain n / r edges of colour r. Thus every Hamilton cycle in G uses precisely n / r edges of each colour.

We also have an additional extremal example in the $r=3$ case.
Extremal Example 2. Let $n \in \mathbb{N}$ such that 3 divides n. Then there exists a graph G on n vertices with $\delta(G)=2 n / 3$, and a 3-colouring of $E(G)$, such that every Hamilton cycle uses precisely $n / 3$ edges of each colour and every vertex in G is incident to precisely two colours.

Proof. Let G be the n-vertex 3 -partite Turán graph. So G consists of three vertex sets V_{1}, V_{2} and V_{3}, such that $\left|V_{1}\right|=\left|V_{2}\right|=\left|V_{3}\right|=n / 3$, and all possible edges that go between distinct V_{i} and V_{j}. Colour all edges between V_{1} and V_{2} red; all edges between V_{2} and V_{3} blue; all edges between V_{3} and V_{1} green.

Clearly $\delta(G)=2 n / 3$ and every vertex is incident to precisely two colours. Let H be a Hamilton cycle in G and let r, b and g be the number of red, blue and green edges in H, respectively. Since all red and green edges in H are incident to vertices in $V_{1},\left|V_{1}\right|=n / 3$ and V_{1} is an independent set, we must have that $2 n / 3=r+g$. Applying similar reasoning to V_{2} and V_{3}, we have that $2 n / 3=b+r$ and $2 n / 3=g+b$. Hence $r=b=g=n / 3$. Thus every Hamilton cycle in G uses precisely $n / 3$ edges of each colour.

Figure 1. Extremal Example 1 for $r=3$

3. Proof of Theorem 1.3

As in [1], we require the following generalisation of Dirac's theorem.
Lemma 3.1 (Pósa [9]). Let $1 \leq t \leq n / 2, G$ be an n-vertex graph with $\delta(G) \geq \frac{n}{2}+t$ and E^{\prime} be a set of edges of a linear forest in G with $\left|E^{\prime}\right| \leq 2 t$. Then there is a Hamilton cycle in G containing E^{\prime}.
Proof of Theorem 1.3. Recall that G is a graph on n vertices with $\delta(G) \geq\left(\frac{1}{2}+\frac{1}{2 r}\right) n+6 d r^{2}$ for some integers $r \geq 2$ and $d \geq 1$. Consider any r-colouring of $E(G)$. Given a colour c we define the function $L_{c}: E(G) \rightarrow\{0,1\}$ as follows:

$$
L_{c}(e):= \begin{cases}1 & \text { if } e \text { is coloured with } c \\ 0 & \text { otherwise }\end{cases}
$$

Given a triangle $x y z$ and a colour c, we $\operatorname{define}^{\operatorname{Net}_{c}(x y z, x y)}$ as follows:

$$
\operatorname{Net}_{c}(x y z, x y):=L_{c}(x z)+L_{c}(y z)-L_{c}(x y)
$$

This quantity comes from an operation we will perform later where we extend a cycle H by a vertex z via deleting the edge $x y$ from H and adding the edges $x z$ and $y z$, to form a new cycle H^{\prime}. One can see that $\operatorname{Net}_{c}(x y z, x y)$ is the change in the number of edges of colour c from H to H^{\prime}.

Since $\delta(G) \geq \frac{1}{2} n$, by Dirac's theorem, G contains a Hamilton cycle C. If C is d-unbalanced we are done, so suppose it is not. Let $v \in V(G)$. Since $d(v) \geq\left(\frac{1}{2}+\frac{1}{2 r}\right) n+6 d r^{2}$, there are at least $\frac{n}{r}+12 d r^{2}$ edges e in C such that v and e span a triangle.

This can be seen in the following way. Let X be the set of neighbours of v, and X^{+}the set of vertices whose 'predecessors' on C are neighbours of v, having arbitrarily chosen an orientation for C. We have

$$
n \geq\left|X \cup X^{+}\right|=|X|+\left|X^{+}\right|-\left|X \cap X^{+}\right| \geq n+\frac{n}{r}+12 d r^{2}-\left|X \cap X^{+}\right|
$$

Hence $\left|X \cap X^{+}\right| \geq \frac{n}{r}+12 d r^{2}$. Clearly each element in $X \cap X^{+}$yields a triangle containing v, thus giving the desired bound.

This property, together with the fact that C is not d-unbalanced (so contains fewer than $n / r+d$ edges of each colour) immediately implies the following.

Fact 3.2. Let $v \in V(G), Y \subseteq V(G)$ with $|Y| \leq 5 d r^{2}$, and xy be any edge in G that forms a triangle with v and is disjoint to $Y .{ }^{1}$ Then there is an edge $z w$ on C vertex-disjoint to $x y$, and distinct colours c_{1} and c_{2} such that vzw induces a triangle; xy has colour $c_{1} ; z w$ has colour $c_{2} ; z, w \notin Y$.

Initially set $A:=\emptyset$. Consider an arbitrary $v \in V(G)$ and let x, y, z, w, c_{1}, c_{2} be as in Fact 3.2 (where $Y:=\emptyset$), where $x y$ is chosen to be an edge of C that forms a triangle with v.

If there exists a colour c such that $\operatorname{Net}_{c}(v x y, x y) \neq \operatorname{Net}_{c}(v z w, z w)$ then add the pair $(x y, z w)$ to the set A, and define $v_{1}:=v$. If there is no such colour then we must have that $\operatorname{Net}_{c_{1}}(v x y, x y)=$ $\operatorname{Net}_{c_{1}}(v z w, z w)$ and so

$$
\begin{aligned}
L_{c_{1}}(v x)+L_{c_{1}}(v y)-L_{c_{1}}(x y) & =L_{c_{1}}(v w)+L_{c_{1}}(v z)-L_{c_{1}}(w z), \\
L_{c_{1}}(v x)+L_{c_{1}}(v y)-1 & =L_{c_{1}}(v w)+L_{c_{1}}(v z) \geq 0,
\end{aligned}
$$

as $x y$ has colour $c_{1}, w z$ has colour c_{2} and $c_{1} \neq c_{2}$. Hence $v x$ or $v y$ is coloured with c_{1}. Without loss of generality, let $v x$ be coloured with c_{1}. By the same argument with colour c_{2}, we may assume that, without loss of generality, $v w$ is coloured c_{2}. Let c_{3} be the colour of $v y$. Then $\operatorname{Net}_{c_{3}}(v x y, x y)=\operatorname{Net}_{c_{3}}(v z w, z w)$ and so

$$
\begin{gathered}
L_{c_{3}}(v x)+L_{c_{3}}(v y)-L_{c_{3}}(x y)=L_{c_{3}}(v w)+L_{c_{3}}(v z)-L_{c_{3}}(w z), \\
1=L_{c_{3}}(v z),
\end{gathered}
$$

as $v x$ and $x y$ are both coloured with c_{1} and $v w$ and $w z$ are both coloured with c_{2}. Hence c_{3} is also the colour of $v z$ (see Figure 2). Since $c_{1} \neq c_{2}$, we may assume, without loss of generality, $c_{1} \neq c_{3}$.

Now we apply Fact 3.2 with x playing the role of v; $v y$ playing the role of $x y ; Y=\emptyset$. We thus obtain a colour $c_{4} \neq c_{3}$ and an edge $w^{\prime} z^{\prime}$ on C that is vertex-disjoint from $v y$, so that $w^{\prime} z^{\prime}$ forms a triangle with x, and $w^{\prime} z^{\prime}$ is coloured c_{4}. Note that by construction $\operatorname{Net}_{c_{3}}(x v y, v y)=-1$ whilst, as $c_{4} \neq c_{3}$, by definition $\operatorname{Net}_{c_{3}}\left(x w^{\prime} z^{\prime}, w^{\prime} z^{\prime}\right)=L_{c_{3}}\left(x w^{\prime}\right)+L_{c_{3}}\left(x z^{\prime}\right)-0 \geq 0$. In this case we define $v_{1}:=x$ and add the pair $\left(v y, w^{\prime} z^{\prime}\right)$ to A.

Repeated applications of this argument thus yield sets $B:=\left\{v_{1}, v_{2}, \ldots, v_{d r^{2}}\right\}$ and a set A whose elements are pairs of edges from G so that:

- All vertices lying in B and in edges in pairs from A are vertex-disjoint.
- For each $u=v_{i}$ in B there is a pair $(x y, z w) \in A$ associated with u, and a colour c_{u} so that (i) $u x y$ and $u z w$ are triangles in G; (ii) $\operatorname{Net}_{c_{u}}(u x y, x y) \neq \operatorname{Net}_{c_{u}}(u z w, z w)$. We call c_{u} the colour associated with u.
Note that it is for the first of these two conditions that we require the set Y in Fact 3.2. At a given step of our argument, Y will be the set of vertices that have previously been added to B or lie in an edge previously selected for inclusion in a pair from A.

There is some colour c^{*} for which c^{*} is the colour associated with (at least) $d r$ of the vertices in B. Let B^{\prime} denote the set of such vertices of B; without loss of generality we may assume $B^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{d r}\right\}$. Let A^{\prime} denote the subset of A that corresponds to B^{\prime}. For each $i \in[d r]$, let $\left(x_{i} y_{i}, z_{i} w_{i}\right)$ denote the element of A^{\prime} associated with v_{i}. We may assume that for each $i \in[d r]$,

$$
\begin{equation*}
\operatorname{Net}_{c^{*}}\left(v_{i} x_{i} y_{i}, x_{i} y_{i}\right)>\operatorname{Net}_{c^{*}}\left(v_{i} z_{i} w_{i}, z_{i} w_{i}\right) . \tag{1}
\end{equation*}
$$

Consider the induced subgraph G^{\prime} of G obtained from G by removing the vertices from B^{\prime}. Let E^{\prime} be the set of all edges which appear in some pair in A^{\prime}. As $\delta\left(G^{\prime}\right) \geq n / 2+d r$, Lemma 3.1 implies

[^0]

Figure 2. A Hamilton cycle C for G, with a vertex v which is good for C. There is no colour c with $\operatorname{Net}_{c}(v x y, x y) \neq \operatorname{Net}_{c}(v z w, z w)$ implying the colour arrangement above.
that there exists a Hamilton cycle C^{\prime} in G^{\prime} which contains E^{\prime}. Let C_{1} be the Hamilton cycle of G obtained from C^{\prime} by inserting each v_{i} from B^{\prime} between x_{i} and y_{i}; let C_{2} be the Hamilton cycle of G obtained from C^{\prime} by inserting each v_{i} from B^{\prime} between z_{i} and w_{i}. For $j=1,2$, write E_{j} for the number of edges in C_{j} of colour c^{*}. Note that (1) implies that $E_{1}-E_{2} \geq d r$. It is easy to see that this implies one of C_{1} and C_{2} contains at least $n / r+d$ edges in the same colour, ${ }^{2}$ thereby completing the proof.

4. Concluding remarks

As mentioned in [5, Section 7] there are many possible directions for future research. One natural extension of our work is to seek an analogue of Theorem 1.3 in the setting of digraphs.

Question 4.1. Given any digraph G on n vertices with minimum in- and outdegree at least $(1 / 2+$ $1 / 2 r+o(1)) n$, and any r-colouring of $E(G)$, can one always ensure a Hamilton cycle in G of significant colour-bias?

Note that the natural digraph analogues of our extremal constructions for Theorem 1.3 show that one cannot lower the minimum degree condition in Question 4.1.

Given an r-coloured n-vertex graph G and non-negative integers d_{1}, \ldots, d_{r}, we say that G contains a $\left(d_{1}, \ldots, d_{r}\right)$-coloured Hamilton cycle if there is a Hamilton cycle in G with precisely d_{i} edges of the i th colour (for every $i \in[r]$). Note that the proof of Theorem 1.3 (more precisely (1)) ensures that given a graph G as in the theorem, one can obtain at least $d r$ distinct vectors $\left(d_{1}, \ldots, d_{r}\right)$ such that G has a $\left(d_{1}, \ldots, d_{r}\right)$-coloured Hamilton cycle. It would be interesting to investigate this problem further. That is, given an r-coloured n-vertex graph G of a given minimum degree, how many distinct vectors $\left(d_{1}, \ldots, d_{r}\right)$ can we guarantee so that G contains a $\left(d_{1}, \ldots, d_{r}\right)$-coloured Hamilton cycle?

In [2], the question of determining the minimum degree threshold that ensures a colour-bias k th power of a Hamilton cycle was raised; it would be interesting to establish whether a variant of the

[^1]switching method from the proof of Theorem 1.3 can be used to resolve this problem (for all $k \geq 2$ and r-colourings where $r \geq 2$).

Remark: Since a version of this paper first appeared online, Bradač [3] has used the regularity method to resolve this problem asymptotically for all $k \geq 2$ when $r=2$.

Acknowledgement

The authors are grateful to the referee for their careful review.

References

[1] J. Balogh, B. Csaba, Y. Jing and A. Pluhár, On the discrepancies of graphs, Electron. J. Combin., 27 (2020), P2.12.
[2] J. Balogh, B. Csaba, A. Pluhár and A. Treglown, A discrepancy version of the Hajnal-Szemerédi theorem, Combin. Probab. Comput., to appear.
[3] D. Bradač, Powers of Hamilton cycles of high discrepancy are unavoidable, arXiv:2102.10912.
[4] P. Erdős, Ramsey és Van der Waerden tételével Kapcsolatos Kombinatorikai Kédésekröl, Mat. Lapok., 14 (1963), 29-37.
[5] P. Erdős, Z. Füredi, M. Loebl and V.T. Sós, Discrepancy of Trees, Stud. Sci. Math., 30 (1995), 47-57.
[6] P. Erdős and J.H. Spencer, Imbalances in k-colorations, Networks, 1 (1971/72), 379-385.
[7] L. Gishboliner, M. Krivelevich and P. Michaeli, Colour-biased Hamilton cycles in random graphs, arXiv:2007.12111.
[8] L. Gishboliner, M. Krivelevich and P. Michaeli, Discrepancies of spanning trees and Hamilton cycles, arXiv:2012.05155.
[9] L. Pósa, On the circuits of finite graphs, Magyar. Tud. Akad. Mat. Kutat Int. Közl. 8 (1963/1964), 355-361.

Andrea Freschi, Joseph Hyde \& Andrew Treglown	Joanna Lada
School of Mathematics	Merton College
University of Birmingham	University of Oxford
Birmingham	Oxford
B15 2TT	OX1 2JD
UK	UK
E-mail addresses: \{axf079, jfh337, a.c.treglown\}@bham.ac.uk,	
joanna.lada@merton.ox.ac.uk	

[^0]: ${ }^{1}$ Note sometimes in an application of this fact, $x y$ will be an edge of C, but other times not.

[^1]: ${ }^{2}$ This colour may not necessarily be c^{*}.

