## Approaching Kelly's Conjecture

#### Andrew Treglown

#### University of Birmingham, School of Mathematics

1st July 2009

Joint work with Daniela Kühn and Deryk Osthus (University of Birmingham)

イロト イヨト イヨト イヨト

## Hamilton decompositions

Hamilton decomposition of a graph or digraph G: set of edge-disjoint Hamilton cycles covering E(G)

Theorem (Walecki 1892)

 $K_n$  has a Hamilton decomposition  $\iff$  n odd

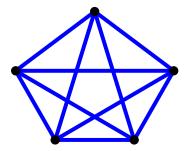
イロト イヨト イヨト イヨト

## Hamilton decompositions

Hamilton decomposition of a graph or digraph G: set of edge-disjoint Hamilton cycles covering E(G)

#### Theorem (Walecki 1892)

 $K_n$  has a Hamilton decomposition  $\iff$  n odd

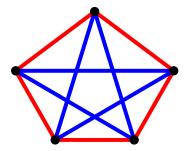


## Hamilton decompositions

Hamilton decomposition of a graph or digraph G: set of edge-disjoint Hamilton cycles covering E(G)

#### Theorem (Walecki 1892)

 $K_n$  has a Hamilton decomposition  $\iff$  n odd



#### Theorem (Tillson 1980)

Complete digraph on n vertices has Hamilton decomposition  $\iff n \neq 4, 6.$ 

- Tournament: orientation of a complete graph
- Tournament on *n* vertices is regular if every vertex has equal in- and outdegree (i.e. (n-1)/2)

イロン イヨン イヨン イヨン

#### Theorem (Tillson 1980)

Complete digraph on n vertices has Hamilton decomposition  $\iff n \neq 4, 6.$ 

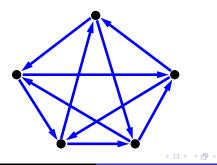
- Tournament: orientation of a complete graph
- Tournament on *n* vertices is regular if every vertex has equal in- and outdegree (i.e. (n-1)/2)

イロン イヨン イヨン イヨン

#### Theorem (Tillson 1980)

Complete digraph on n vertices has Hamilton decomposition  $\iff n \neq 4, 6.$ 

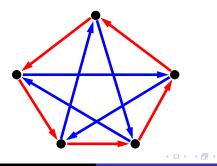
- Tournament: orientation of a complete graph
- Tournament on *n* vertices is regular if every vertex has equal in- and outdegree (i.e. (n-1)/2)



#### Theorem (Tillson 1980)

Complete digraph on n vertices has Hamilton decomposition  $\iff n \neq 4, 6.$ 

- Tournament: orientation of a complete graph
- Tournament on *n* vertices is regular if every vertex has equal in- and outdegree (i.e. (n-1)/2)



### Conjecture (Kelly)

All regular tournaments have Hamilton decompositions.

- There have been several partial results in this direction.
- A result of Keevash, Kühn and Osthus ⇒ large regular tournaments on *n* vertices contain ≥ n/8 edge-disjoint Hamilton cycles.

イロン イヨン イヨン イヨン

#### Theorem (Kühn, Osthus, T.)

 $\forall \eta > 0 \exists n_0 \text{ s.t all regular tournaments on } n \ge n_0 \text{ vertices contain} \ge (1/2 - \eta)n$  edge-disjoint Hamilton cycles.

• In fact, result holds for 'almost regular' tournaments.

イロン イ部ン イヨン イヨン 三日

## Naïve approach to theorem

- Remove a  $\gamma n$ -regular subgraph H from G ( $\gamma \ll 1$ ).
- Decompose rest of G into 1-factors  $F_1, \ldots, F_s$ .
- Use edges from *H* to piece together each *F<sub>i</sub>* into Hamilton cycles.
- Need *F<sub>i</sub>* to contain few cycles (a result of Frieze and Krivelevich implies this).
- If *H* 'quasi-random' could use it to merge cycles using method of 'rotation-extension'.
- Problem: can't necessarily find such H.
- But this approach is a useful starting point.

イロト イヨト イヨト イヨト

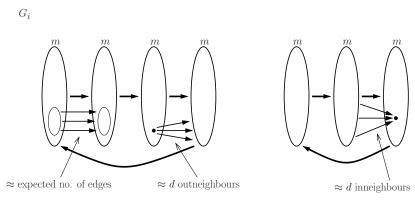
- Remove a  $\gamma n$ -regular subgraph H from G ( $\gamma \ll 1$ ).
- Decompose rest of G into 1-factors  $F_1, \ldots, F_s$ .
- Use edges from *H* to piece together each *F<sub>i</sub>* into Hamilton cycles.
- Need *F<sub>i</sub>* to contain few cycles (a result of Frieze and Krivelevich implies this).
- If *H* 'quasi-random' could use it to merge cycles using method of 'rotation-extension'.
- Problem: can't necessarily find such H.
- But this approach is a useful starting point.

イロン 不同と 不同と 不同と

- Remove a  $\gamma n$ -regular subgraph H from G ( $\gamma \ll 1$ ).
- Decompose rest of G into 1-factors  $F_1, \ldots, F_s$ .
- Use edges from *H* to piece together each *F<sub>i</sub>* into Hamilton cycles.
- Need *F<sub>i</sub>* to contain few cycles (a result of Frieze and Krivelevich implies this).
- If *H* 'quasi-random' could use it to merge cycles using method of 'rotation-extension'.
- Problem: can't necessarily find such H.
- But this approach is a useful starting point.

・ロン ・回と ・ヨン・

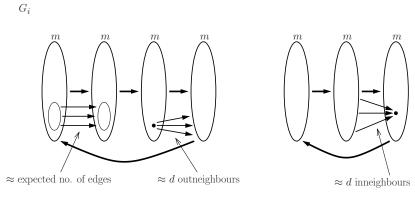
• Use regularity lemma to obtain edge-disjoint oriented spanning subgraphs  $G_1, \ldots, G_r$ .





イロン イヨン イヨン イヨン

• Aim: find  $\approx d$  Hamilton cycles per  $G_i$ . Use  $H_i$  and H to do this.

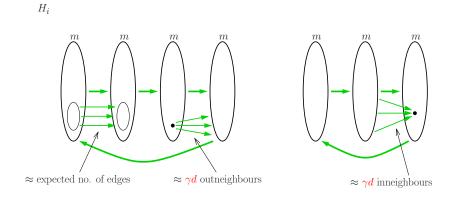




∢ ≣ ≯

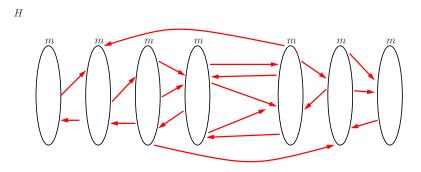
・ロト ・回ト ・ヨト

• Aim: find  $\approx d$  Hamilton cycles per  $G_i$ . Use  $H_i$  and H to do this.



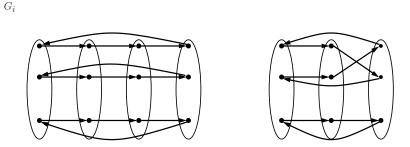
イロト イヨト イヨト イヨト

• *H* only contains a small number of edges.



イロト イヨト イヨト イヨト

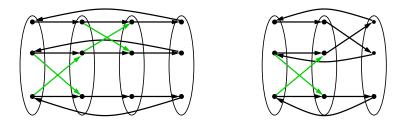
• Almost decompose each G<sub>i</sub> into 1-factors.



イロン イヨン イヨン イヨン

• Merge cycles using 'green edges' so that each component is covered by a single cycle.

 $G_i$ 

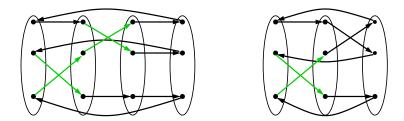


æ

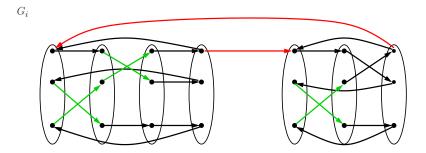
-≣->

• Merge cycles using 'green edges' so that each component is covered by a single cycle.

 $G_i$ 

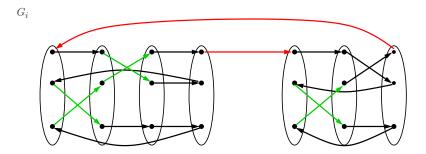


• Use 'red edges' to obtain Hamilton cycle.



<ロ> (日) (日) (日) (日) (日)

• Use 'red edges' to obtain Hamilton cycle.



イロト イヨト イヨト イヨト

Key points:

- The structure of *H<sub>i</sub>* allows us to merge cycles in each component.
- Only a constant number of components in each *G<sub>i</sub>*, so only need to use a small number of red edges.

< 17 b

★ 문 ► ★ 문 ►

### • Kelly's conjecture!

 Problem of Erdős: Do almost all tournaments T have δ<sup>0</sup>(T) edge-disjoint Hamilton cycles?

#### Conjecture (Jackson)

All regular bipartite tournaments have Hamilton decompositions.

• Almost regular bipartite tournaments may not even contain a Hamilton cycle.

・ロト ・日本 ・モート ・モート

#### • Kelly's conjecture!

 Problem of Erdős: Do almost all tournaments T have δ<sup>0</sup>(T) edge-disjoint Hamilton cycles?

#### Conjecture (Jackson)

All regular bipartite tournaments have Hamilton decompositions.

• Almost regular bipartite tournaments may not even contain a Hamilton cycle.

・ロト ・日本 ・モート ・モート

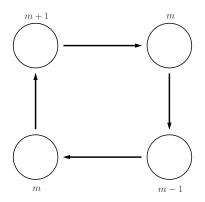
#### • Kelly's conjecture!

 Problem of Erdős: Do almost all tournaments T have δ<sup>0</sup>(T) edge-disjoint Hamilton cycles?

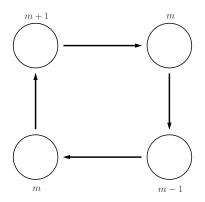
#### Conjecture (Jackson)

All regular bipartite tournaments have Hamilton decompositions.

• Almost regular bipartite tournaments may not even contain a Hamilton cycle.



#### No Hamilton cycle



#### No Hamilton cycle