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Graph = collection of points (vertices) joined together by lines
(edges)

vertices

edges
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Suppose x vertex in graph G .
degree d(x) of x = # of edges incident to x
minimum degree δ(G ) = minimum value of d(x) amongst all
x in G

d(x) = 3

δ(G) = 2
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A hypergraph H is a set of vertices V (H) together with a
collection E (H) of subsets of V (H) (known as edges).

For example, consider the hypergraph H with

V (H) = {1, 2, 3, 4, 5};
E (H) = {{1, 2}, {1, 2, 3}, {2, 4}, {3, 4, 5}} .

1 2

3

4 5

H
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A k-uniform hypergraph H is hypergraph whose edges contain
precisely k vertices.

2-uniform hypergraphs are graphs.
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A matching in a hypergraph H is a collection of vertex-disjoint
edges.
A perfect matching is a matching covering all the vertices of H.
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A matching in a hypergraph H is a collection of vertex-disjoint
edges.
A perfect matching is a matching covering all the vertices of H.

matching
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A matching in a hypergraph H is a collection of vertex-disjoint
edges.
A perfect matching is a matching covering all the vertices of H.

not a matching
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A matching in a hypergraph H is a collection of vertex-disjoint
edges.
A perfect matching is a matching covering all the vertices of H.

perfect matching
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Theorem (Hall’s Marriage theorem)

G bipartite graph with equal size vertex classes X ,Y

G has perfect matching ⇐⇒ ∀ S ⊆ X , |N(S)| ≥ |S |

(N(S) = set of vertices that receive at least one edge from S)

no edges no edges

X Y
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Theorem (Hall’s Marriage theorem)

G bipartite graph with equal size vertex classes X ,Y

G has perfect matching ⇐⇒ ∀ S ⊆ X , |N(S)| ≥ |S |

(N(S) = set of vertices that receive at least one edge from S)

S N (S)

no perfect matching
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Characterising graphs with perfect matchings

Tutte’s Theorem characterises all those graphs with perfect
matchings.
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Perfect matchings in k-uniform hypergraphs

for k ≥ 3 decision problem NP-complete (Garey, Johnson ‘79)

Natural to look for simple sufficient conditions
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minimum `-degree conditions

H k-uniform hypergraph, 1 ≤ ` < k

dH(v1, . . . , v`) = # edges containing v1, . . . , v`

minimum `-degree δ`(H) = minimum over all dH(v1, . . . , v`)

δ1(H) = minimum vertex degree

δk−1(H) = minimum codegree
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minimum `-degree conditions

H k-uniform hypergraph, 1 ≤ ` < k

dH(v1, . . . , v`) = # edges containing v1, . . . , v`

minimum `-degree δ`(H) = minimum over all dH(v1, . . . , v`)

δ1(H) = minimum vertex degree

δk−1(H) = minimum codegree

δ1(H) = 2 and δ2(H) = 1

Andrew Treglown Perfect matchings in hypergraphs



minimum vertex degree results

Theorem (Daykin and Häggkvist 1981)

Suppose H k-uniform hypergraph, |H| = n where k |n

δ1(H) ≥ (1− 1/k)

(
n − 1

k − 1

)
=⇒ perfect matching

Condition on δ1(H) believed to be far from best possible.

Theorem (Hán, Person and Schacht 2009)

∀ ε > 0 ∃ n0 ∈ N s.t if H 3-uniform, n := |H| ≥ n0 and

δ1(H) >

(
n − 1

2

)
−
(

2n/3

2

)
+ εn2

=⇒ perfect matching
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Result best possible up to error term εn2

H
2n/3 + 1

n/3− 1

δ1(H) =
(n−1

2

)
−
(2n/3

2

)
no perfect matching
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Theorem (Kühn, Osthus and T.)

∃ n0 ∈ N s.t if H 3-uniform, n := |H| ≥ n0 and

δ1(H) >

(
n − 1

2

)
−
(

2n/3

2

)
then H contains a perfect matching.

Independently, Khan proved this result.

In fact, we prove a much stronger result. . .
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Theorem (Kühn, Osthus and T.)

∃ n0 ∈ N s.t if H 3-uniform, n := |H| ≥ n0, 1 ≤ d ≤ n/3 and

δ1(H) >

(
n − 1

2

)
−
(

n − d

2

)
then H contains a matching of size at least d.

Bollobás, Daykin and Erdős (1976) proved result in case when
d < n/54

Result is tight
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H

n− d + 1

d− 1

δ1(H) =
(n−1

2

)
−
(n−d

2

)
no d-matching
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More recent developments

Khan (2011+) determined the exact minimum vertex degree
which forces a perfect matching in a 4-uniform hypergraph.

Alon, Frankl, Huang, Rödl, Ruciński, Sudakov (2012) gave
asymptotically exact threshold for 5-uniform hypergraphs.

No other exact vertex degree results are known. (Best known
general bounds are due to Markström and Ruciński (2011).)
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minimum codegree conditions

Theorem (Rödl, Ruciński and Szemerédi 2009)

H k-uniform hypergraph, |H| = n sufficiently large, k|n

δk−1(H) ≥ n/2 =⇒ perfect matching

In fact, they gave exact minimum codegree threshold that
forces a perfect matching.
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edges hit A in even no. of vertices

|A| oddA

B |A| ≈ |B|

δk−1(H) ≈ |H|/2 but no perfect matching
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minimum `-degree conditions

Theorem (Pikhurko 2008)

Suppose H k-uniform hypergraph on n vertices and
k/2 ≤ ` ≤ k − 1.

δ`(H) ≥ (1/2 + o(1))

(
n − `
k − `

)
=⇒ perfect matching

Previous example shows result essentially best-possible.

Theorem (T. and Zhao)

We made Pikhurko’s result exact for k-uniform hypergraphs where
4 divides k.

a
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minimum `-degree conditions

Theorem (Pikhurko 2008)

Suppose H k-uniform hypergraph on n vertices and
k/2 ≤ ` ≤ k − 1.

δ`(H) ≥ (1/2 + o(1))

(
n − `
k − `

)
=⇒ perfect matching

Previous example shows result essentially best-possible.

Theorem (T. and Zhao)

We have made Pikhurko’s result exact for all k.

Our result implies the theorem of Rödl, Ruciński and
Szemerédi.
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Theorem (Kühn, Osthus and T.)

∃ n0 ∈ N s.t if H 3-uniform, n := |H| ≥ n0 and

δ1(H) >

(
n − 1

2

)
−
(

2n/3

2

)
then H contains a perfect matching.
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Outline of proof

Theorem

δ1(H) >
(n−1

2

)
−
(2n/3

2

)
=⇒ perfect matching

General strategy: show that either

1) H has a perfect matching or;
2) H is ‘close’ to the extremal example.

H
2n/3

n/3

most of these edges
are in H

Then one can show that in 2) we must also have a perfect
matching.
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M = largest matching in H

Absorbing lemma (Hán, Person, Schacht) =⇒
(1− η)n ≤ |M| ≤ (1− γ)n where 0 < γ � η � 1.

H

M
V0

γn ≤ |V0| ≤ ηn
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Let v ∈ V0 and E ,F ∈ M

Consider ‘link graph’ Lv (EF )

E F

v

δ1(H) >
(n−1

2

)
−
(2n/3

2

)
≈ 5

9

(n
2

)
≈ 5

(|M|
2

)
So ‘on average’ there are 5 edges in Lv (EF )
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We use the link graphs to build a picture as to what H looks
like.

Fact

Let B be a balanced bipartite graph on 6 vertices. Then either

B contains a perfect matching;

B ∼= B023,B033,B113 or;

e(B) ≤ 4.

B023 B033 B113
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Suppose ∃ v1, v2, v3 ∈ V0 and E ,F ∈ M s.t
Lv1(EF ) = Lv2(EF ) = Lv3(EF ) and contains a p.m.

Lv1(EF )

E F

v1 v2 v3

Replace E and F with these edges in M.
We get a larger matching, a contradiction.
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Suppose ∃ v1, v2, v3 ∈ V0 and E ,F ∈ M s.t
Lv1(EF ) = Lv2(EF ) = Lv3(EF ) and contains a p.m.

Lv1(EF )

E F
v1

v1

v2

v2

v3

v3

Replace E and F with these edges in M.
We get a larger matching, a contradiction.
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So @ v1, v2, v3 ∈ V0 and E ,F ∈ M s.t
Lv1(EF ) = Lv2(EF ) = Lv3(EF ) and contains a p.m.

Lv1(EF )

E F
v1

v1

v2

v2

v3

v3

Replace E and F with these edges in M.
We get a larger matching, a contradiction.
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So @ v1, v2, v3 ∈ V0 and E ,F ∈ M s.t
Lv1(EF ) = Lv2(EF ) = Lv3(EF ) and contains a p.m.

Lv1(EF )

E F
v1

v1

v2

v2

v3

v3

=⇒ for most v ∈ V0, most Lv (EF ) don’t contain a p.m. =⇒
for most v ∈ V0, most L(EF )
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Suppose ∃ v1, . . . , v6 ∈ V0 and E1, . . . ,E5 ∈ M s.t:

E1 E2 E3 E4 E5

v1 v2 v3 v4 v5 v6

This 6-matching corresponds to a 6-matching in H.
Can extend M, a contradiction.
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Suppose ∃ v1, . . . , v6 ∈ V0 and E1, . . . ,E5 ∈ M s.t:

E1 E2 E3 E4 E5

v1 v2 v3 v4 v5 v6

This 6-matching corresponds to a 6-matching in H.
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Suppose ∃ v1, . . . , v6 ∈ V0 and E1, . . . ,E5 ∈ M s.t:

E1 E2 E3 E4 E5

v1 v2 v3 v4 v5 v6

This 6-matching corresponds to a 6-matching in H.
Can extend M, a contradiction.
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Each of the link graphs in the previous configuration were of the
form:

W

A ‘bad’ configuration occurs unless for most v ∈ V0, most link
graphs Lv (EF ) � B023,B033.
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Both B023 and B033 contain W .
form:

W B023 B033

A ‘bad’ configuration occurs unless for most v ∈ V0, most link
graphs Lv (EF ) � B023,B033.
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Fact

Let B be a balanced bipartite graph on 6 vertices. Then either

B contains a perfect matching;

B ∼= B023,B033,B113 or;

e(B) ≤ 4.

So for most v ∈ V0, most of the link graphs Lv (EF ) are s.t
• Lv (EF ) ∼= B113 or
• e(Lv (EF )) ≤ 4

But recall ‘typically’ Lv (EF ) contains 5 edges.

So if ‘many’ Lv (EF ) contain ≤ 4 edges, ‘many’ contain ≥ 6
edges, a contradiction.
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Fact

Let B be a balanced bipartite graph on 6 vertices. Then either

B contains a perfect matching;

B ∼= B023,B033,B113 or;

e(B) ≤ 4.

So for most v ∈ V0, most of the link graphs Lv (EF ) are s.t
• Lv (EF ) ∼= B113

B113
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H
2n/3

n/3

most of these edges
are in H
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E F

v
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E
E

F
F

v
Lv(EF ) ∼= B113
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For most v ∈ V0, most of the link graphs Lv (EF ) are s.t
• Lv (EF ) ∼= B113

top vertices

bottom vertices

B113

Similar arguments imply for each top vertex x , Lx(EF ) ∼= B113 for
most E ,F ∈ M
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For most v ∈ V0, most of the link graphs Lv (EF ) are s.t
• Lv (EF ) ∼= B113

H ≈ 2n/3

≈ n/3

top vertices

bottom vertices

Similar arguments imply for each top vertex x , Lx(EF ) ∼= B113 for
most E ,F ∈ M
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For most v ∈ V0, most of the link graphs Lv (EF ) are s.t
• Lv (EF ) ∼= B113

H ≈ 2n/3

≈ n/3

top vertices

bottom vertices

x

E F

Similar arguments imply for each top vertex x , Lx(EF ) ∼= B113 for
most E ,F ∈ M =⇒ H ‘close’ to extremal example
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Summary of ideas

Split proof into non-extremal and extremal case analysis.

Applying the absorbing method so we only need to look for an
almost perfect matching.

Analyse the link graphs to obtain information about the
hypergraph.
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Open problems

Characterise the minimum vertex degree that forces a perfect
matching in a k-uniform hypergraph for k ≥ 5.

What about minimum `-degree conditions for k-uniform H
where 1 < ` < k/2?
(Alon, Frankl, Huang, Rödl, Ruciński, Sudakov have some
such results.)

Establish k-partite analogues of the known results.
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