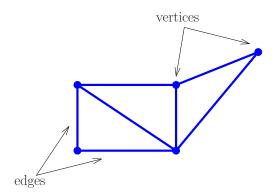
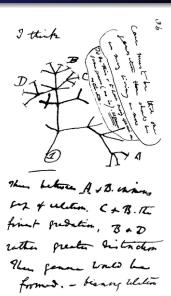
Graph Theory for Biologists

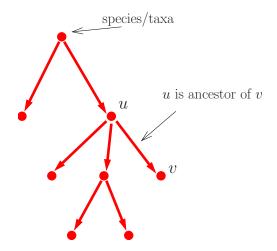

Andrew Treglown

University of Birmingham, School of Mathematics

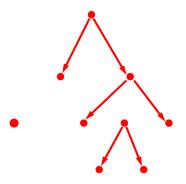

24th June 2010


What is a graph?

Graph = collection of points (vertices) joined together by lines (edges)

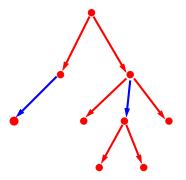


Darwin's tree of life


Phylogenetic trees

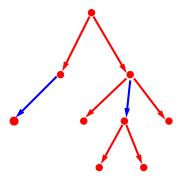
What kind of problems do mathematical biologists look at?

Graph reconstruction/Hereditary properties


• Given some information about our tree can we obtain more information (or even work out what the entire tree looks like)

What kind of problems do mathematical biologists look at?

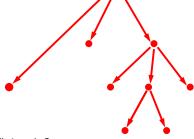
Graph reconstruction/Hereditary properties


• Given some information about our tree can we obtain more information (or even work out what the entire tree looks like)

What kind of problems do mathematical biologists look at?

Graph reconstruction/Hereditary properties

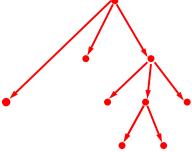
• Given some information about our tree can we obtain more information (or even work out what the entire tree looks like)


• Stephen Willson (Iowa State) works on such problems

The tree space

Given different pieces of information we may obtain different 'candidates' for our phylogenetic tree

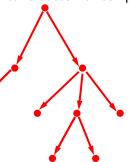


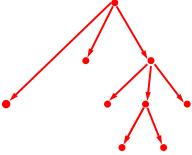


• Can we compute the tree space efficiently?

The tree space

Given different pieces of information we may obtain different 'candidates' for our phylogenetic tree





- Can we compute the tree space efficiently?
- Can we find the optimal tree ("tree of best fit")?

The tree space

Given different pieces of information we may obtain different 'candidates' for our phylogenetic tree

- Can we compute the tree space efficiently?
- Can we find the optimal tree ("tree of best fit")?
- Katherine St. John (New York) works on such problems