On sum-free and solution-free sets of integers

Andrew Treglown

University of Birmingham

October 23rd 2017

Includes joint work with József Balogh, Hong Liu, Maryam Sharifzadeh; Robert Hancock; and Kitty Meeks.

- A set $S \subseteq \mathbb{Z}$ is sum-free if no solutions to x + y = z in S.
- Often we will be working in $[n] := \{1, \ldots, n\}.$

Examples:

- $\{1, 2, 4\}$ is not sum-free.
- Set of odds is sum-free.
- $\{n/2 + 1, n/2 + 2, ..., n\}$ is sum-free.

What do sum-free subsets of [n] look like?

• Every sum-free subset of [n] has size at most $\lceil n/2 \rceil$.

Theorem (Deshouillers, Freiman, Sós and Temkin 1999)

If S ⊆ [n] is sum-free then at least one of the following holds:
(i) |S| ≤ 2n/5 + 1;
(ii) S consists of odds:

- (ii) *S* consists of odds;
- (iii) $|S| \leq min(S)$.

Very recently, Tuan Tran refined this result.

・ 同 ト ・ ヨ ト ・ ヨ

What do sum-free subsets of [n] look like?

• Every sum-free subset of [n] has size at most $\lceil n/2 \rceil$.

Theorem (Deshouillers, Freiman, Sós and Temkin 1999)

If S ⊆ [n] is sum-free then at least one of the following holds:
(i) |S| ≤ 2n/5 + 1;
(ii) S consists of odds:

(iii) $|S| \leq min(S)$.

Very recently, Tuan Tran refined this result.

・ 同 ト ・ ヨ ト ・ ヨ ト

What do sum-free subsets of [n] look like?

• Every sum-free subset of [n] has size at most $\lceil n/2 \rceil$.

Theorem (Deshouillers, Freiman, Sós and Temkin 1999)

If $S \subseteq [n]$ is sum-free then at least one of the following holds: (i) $|S| \le 2n/5 + 1$; (ii) S consists of odds; (iii) $|S| \le 1 - 1 - 1 - 1 - 1 = 0$

(iii) $|S| \leq min(S)$.

Very recently, Tuan Tran refined this result.

Examples of sum-free sets:

- Set of odds is sum-free.
- $\{n/2 + 1, n/2 + 2, ..., n\}$ is sum-free.

These two examples show there are at least $2^{n/2}$ sum-free subsets of [n].

Conjecture (Cameron-Erdős 1990)

The number of sum-free subsets of [n] is $\Theta(2^{n/2})$.

- 4 回 2 - 4 □ 2 - 4 □

Examples of sum-free sets:

- Set of odds is sum-free.
- $\{n/2 + 1, n/2 + 2, ..., n\}$ is sum-free.

These two examples show there are at least $2^{n/2}$ sum-free subsets of [n].

Conjecture (Cameron-Erdős 1990)

The number of sum-free subsets of [n] is $\Theta(2^{n/2})$.

Theorem (Green, Sapozhenko 2003)

There are constants c_e and c_o , s.t. the number of sum-free subsets of [n] is

$$(1+o(1))c_e2^{n/2}, \,\, or \,\, (1+o(1))c_o2^{n/2}$$

depending on the parity of n.

- This result doesn't tell us anything about the distribution of the sum-free sets in [n].
- In particular, recall that 2^{n/2} sum-free subsets of [n] lie in a single maximal sum-free subset of [n].

Conjecture (Cameron-Erdős 1999)

There is an absolute constant c > 0, s.t. the number of maximal sum-free subsets of [n] is $O(2^{n/2-cn})$.

They also showed there are at least $2^{\lfloor n/4 \rfloor}$ maximal sum-free subsets of [n].

There are at least $2^{\lfloor n/4 \rfloor}$ maximal sum-free subsets of [n].

- Suppose n is even. Let S consist of n together with precisely one number from each pair {x, n − x} for odd x < n/2.
- Notice distinct *S* lie in distinct maximal sum-free subsets of [*n*].
- Roughly $2^{n/4}$ choices for *S*.

The number of maximal sum-free sets

Denote by $f_{\max}(n)$ the number of maximal sum-free subsets in [n]. Recall that $f_{\max}(n) \ge 2^{\lfloor n/4 \rfloor}$.

Conjecture (Cameron-Erdős 1999)

$$\exists c > 0, \quad f_{\max}(n) = O(2^{n/2-cn}).$$

Theorem (Luczak-Schoen 2001)

$$f_{\max}(n) \leq 2^{n/2-2^{-28}n}$$
 for large n

Theorem (Wolfovitz 2009)

$$f_{\max}(n) \leq 2^{3n/8 + o(n)}$$

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

$$f_{\max}(n) = 2^{n/4 + o(n)}$$

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

$$f_{\max}(n) = 2^{n/4 + o(n)}$$

Theorem (Balogh-Liu-Sharifzadeh-T. 2015+)

For each $1 \le i \le 4$, there is a constant C_i such that, given any $n \equiv i \mod 4$, [n] contains $(C_i + o(1))2^{n/4}$ maximal sum-free sets.

→ 同 → → 三 →

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

$$f_{\max}(n) = 2^{n/4 + o(n)}$$

Theorem (Balogh-Liu-Sharifzadeh-T. 2015+)

For each $1 \le i \le 4$, there is a constant C_i such that, given any $n \equiv i \mod 4$, [n] contains $(C_i + o(1))2^{n/4}$ maximal sum-free sets.

Tools

TRP 40

From additive number theory:

- Container lemma of Green.
- Removal lemma of Green.
- Structure of sum-free sets by Deshouillers, Freiman, Sós and Temkin.

From extremal graph theory: upper bound on the number of maximal independent sets for

- all graphs by Moon and Moser.
- triangle-free graphs by Hujter and Tuza.
- Not too sparse and almost regular graphs.

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

 $f_{\max}(n)=2^{n/4+o(n)}.$

Lemma (Container Lemma, Green)

There exists $\mathcal{F} \subseteq 2^{[n]}$, s.t. (i) $|\mathcal{F}| = 2^{o(n)}$; (ii) $\forall S \subseteq [n]$ sum-free, $\exists F \in \mathcal{F}$, s.t. $S \subseteq F$; (iii) $\forall F \in \mathcal{F}$, $|F| \leq (1/2 + o(1))n$ and the number of Schur triples in F is $o(n^2)$.

By (i) and (ii), it suffices to show that for every container $A \in \mathcal{F}$,

$$f_{\max}(A) \leq 2^{n/4 + o(n)}.$$

イロン イヨン イヨン イヨン

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

 $f_{\max}(n)=2^{n/4+o(n)}.$

Lemma (Container Lemma, Green)

There exists
$$\mathcal{F} \subseteq 2^{[n]}$$
, s.t.
(i) $|\mathcal{F}| = 2^{o(n)}$;
(ii) $\forall S \subseteq [n]$ sum-free, $\exists F \in \mathcal{F}$, s.t. $S \subseteq F$;
(iii) $\forall F \in \mathcal{F}$, $|F| \leq (1/2 + o(1))n$ and the number of Schur
triples in F is $o(n^2)$.

By (i) and (ii), it suffices to show that for every container $A \in \mathcal{F}$,

$$f_{\max}(A) \leq 2^{n/4 + o(n)}.$$

イロト イヨト イヨト イヨト

Removal+Structural lemmas \Rightarrow classify containers $A \in \mathcal{F}$:

- Case 1: small container, $|A| \le 0.45n$;
- Case 2: 'interval' container, 'most' of A in [n/2 + 1, n].
- Case 3: 'odd' container, $|A \setminus O| = o(n)$.

Moreover, in all cases $A = B \cup C$ where B is sum-free and |C| = o(n).

Crucial observation

Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C;
(2) Extend S in B to a maximal one.

(本間) (本語) (本語)

Removal+Structural lemmas \Rightarrow classify containers $A \in \mathcal{F}$:

- Case 1: small container, $|A| \le 0.45n$;
- Case 2: 'interval' container, 'most' of A in [n/2 + 1, n].
- Case 3: 'odd' container, $|A \setminus O| = o(n)$.

Moreover, in all cases $A = B \cup C$ where B is sum-free and |C| = o(n).

Crucial observation

Every maximal sum-free subset in A can be built in two steps: (1) Choose a sum-free set S in C; (2) Extend S in B to a maximal one.

▲ 御 ▶ ▲ 臣 ▶

Definition

Given $S, B \subseteq [n]$, the link graph of S on B is $L_S[B]$, where V = B and $x \sim y$ iff $\exists z \in S$ s.t. $\{x, y, z\}$ is a Schur triple.

 $L_2[1,3,4,5]$

A (1) > (1) > (1)

Definition

Given $S, B \subseteq [n]$, the link graph of S on B is $L_S[B]$, where V = B and $x \sim y$ iff $\exists z \in S$ s.t. $\{x, y, z\}$ is a Schur triple.

Lemma

Given $S, B \subseteq [n]$ sum-free and $I \subseteq B$, if $S \cup I$ is a maximal sum-free subset of [n], then I is a maximal independent set in $L_S[B]$.

・ロト ・回ト ・ヨト

Case 1: small container, $|A| \leq 0.45n$.

Recall $A = B \cup C$, B sum-free, |C| = o(n).

Crucial observation

Every maximal sum-free subset in A can be built in two steps:

- (1) Choose a sum-free set S in C;
- (2) Extend S in B to a maximal one.
 - Fix a sum-free $S \subseteq C$ (at most $2^{|C|} = 2^{o(n)}$ choices).
 - Consider link graph $L_S[B]$.
 - Moon-Moser: \forall graphs G, $MIS(G) \leq 3^{|G|/3}$.
 - So # extensions in (2) is at most $MIS(L_S[B])$,

 $MIS(L_S[B]) \le 3^{|B|/3} \le 3^{0.45n/3} \ll 2^{0.249n}$

• In total, A contains at most $2^{o(n)} \times 2^{0.249n} \ll 2^{n/4}$ maximal sum-free sets.

・ロト ・同ト ・ヨト ・ヨト

Case 1: small container, $|A| \leq 0.45n$.

Recall $A = B \cup C$, B sum-free, |C| = o(n).

Crucial observation

Every maximal sum-free subset in A can be built in two steps:

- (1) Choose a sum-free set S in C;
- (2) Extend S in B to a maximal one.
 - Fix a sum-free $S \subseteq C$ (at most $2^{|C|} = 2^{o(n)}$ choices).
 - Consider link graph L_S[B].
 - Moon-Moser: \forall graphs G, $MIS(G) \leq 3^{|G|/3}$.
 - So # extensions in (2) is at most $MIS(L_S[B])$,

$$MIS(L_{S}[B]) \le 3^{|B|/3} \le 3^{0.45n/3} \ll 2^{0.249n}$$

• In total, A contains at most $2^{o(n)} \times 2^{0.249n} \ll 2^{n/4}$ maximal sum-free sets.

向下 イヨト イヨト

- Now container A could be bigger than 0.45*n*.
- This means crude Moon-Moser bound doesn't give accurate bound on f_{max}(A).
- Instead we obtain more structural information about the link graphs.

- For example, when A 'close' to interval [n/2 + 1, n] link graphs are triangle-free
- Hujta-Tuza: $MIS(G) \le 2^{|G|/2}$ for all triangle-free graphs G.
- Gives better bound on $f_{\max}(A)$.

イロン イヨン イヨン イヨン

- Now container A could be bigger than 0.45*n*.
- This means crude Moon-Moser bound doesn't give accurate bound on f_{max}(A).
- Instead we obtain more structural information about the link graphs.

- For example, when A 'close' to interval [n/2 + 1, n] link graphs are triangle-free
- Hujta-Tuza: $MIS(G) \le 2^{|G|/2}$ for all triangle-free graphs G.
- Gives better bound on $f_{\max}(A)$.

イロン イヨン イヨン イヨン

Theorem (Balogh-Liu-Sharifzadeh-T. 2015+)

For each $1 \le i \le 4$, there is a constant C_i such that, given any $n \equiv i \mod 4$, [n] contains $(C_i + o(1))2^{n/4}$ maximal sum-free sets.

- (i) Count by hand the maximal sum-free sets S that are 'extremal':
 - *S* that contain precisely one even number.
 - S where $\min(S) \approx n/4$, $\min_2(S) \approx n/2$.
- (ii) Count remaining maximal sum-free sets using the container method.

(本間) (本語) (本語)

Let \mathcal{L} denote the equation $a_1x_1 + \cdots + a_kx_k = b$ where $a_1, \ldots, a_k, b \in \mathbb{Z}$.

Definitions:

- \mathcal{L} is translation-invariant if $\sum a_i = b = 0$.
- ② A subset $A \subseteq [n]$ is *L*-free if it does not contain any 'non-trivial' solutions to *L*.
- A subset A ⊆ [n] is a maximal L-free set if it is L-free, and if the addition of any further x ∈ [n] \ A would make it no longer L-free.

イロト イヨト イヨト イヨト

Fundamental Questions

- **Q1:** What is the size of the largest \mathcal{L} -free subset of [n]?
- **Q2:** How many \mathcal{L} -free subsets of [n] are there?
- Q3: How many maximal \mathcal{L} -free subsets of [n] are there?

< 🗇 > < 🖃 >

Let $\mu_{\mathcal{L}}(n)$ be the size of the largest \mathcal{L} -free subset of [n].

L	$\mu_{\mathcal{L}}(n)$	Comment
x + y = z	$\lceil n/2 \rceil$	odds or interval
x + y = 2z	<i>o</i> (<i>n</i>)	Roth's theorem (1953)
p(x+y)=rz, r>2p	$n - \lfloor 2n/r \rfloor$	union (Hegarty 2007)

In general...

同 とくほ とくほと

Let $\mu_{\mathcal{L}}(n)$ be the size of the largest \mathcal{L} -free subset of [n].

\mathcal{L}	$\mu_{\mathcal{L}}(n)$	Comment
x + y = z	$\lceil n/2 \rceil$	odds or interval
x + y = 2z	<i>o</i> (<i>n</i>)	Roth's theorem (1953)
p(x+y)=rz, r>2p	$n - \lfloor 2n/r \rfloor$	union (Hegarty 2007)

In general...

\mathcal{L}	$\mu_{\mathcal{L}}(n)$
translation-invariant	<i>o</i> (<i>n</i>)
not translation-invariant	$\Omega(n)$

Theorem (Hancock–T. 2017)

Let \mathcal{L} be px + qy = z where $p \ge q$ and $p \ge 2, p, q \in \mathbb{N}$. If n is sufficiently large then $\mu_{\mathcal{L}}(n) = n - \lfloor n/(p+q) \rfloor$.

- We have also determined µ_L(n) for a range of different equations L of the form px + qy = rz where p ≥ q ≥ r.
- In each case, the extremal examples are 'intervals' or unions of 'congruency classes'.

Q2: How many \mathcal{L} -free subsets of [n]?

Let $f(n, \mathcal{L})$ be the number of \mathcal{L} -free subsets of [n]. Clearly for any \mathcal{L} , we have $f(n, \mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.

Theorem (Green, Sapozhenko 2003)

There are constants c_e and c_o , s.t. the number of sum-free subsets of [n] is

$$(1+o(1))c_e2^{n/2}$$
, or $(1+o(1))c_o2^{n/2}$

depending on the parity of n.

Theorem (Green 2005)

Let \mathcal{L} be $a_1x_1 + \cdots + a_kx_k = 0$ where $a_1, \ldots, a_k \in \mathbb{Z}$. Then $f(n, \mathcal{L}) = 2^{\mu_{\mathcal{L}}(n) + o(n)}$ (where o(n) depends on \mathcal{L}).

Together with Hancock (2017) we replaced the term o(n) with a constant in *some* cases.

イロン イヨン イヨン イヨ

Q2: How many \mathcal{L} -free subsets of [n]?

TRP AL

Let $f(n, \mathcal{L})$ be the number of \mathcal{L} -free subsets of [n]. Clearly for any \mathcal{L} , we have $f(n, \mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.

Theorem (Green, Sapozhenko 2003)

There are constants c_e and c_o , s.t. the number of sum-free subsets of [n] is

$$(1+o(1))c_e2^{n/2}$$
, or $(1+o(1))c_o2^{n/2}$

depending on the parity of n.

Theorem (Green 2005)

Let \mathcal{L} be $a_1x_1 + \cdots + a_kx_k = 0$ where $a_1, \ldots, a_k \in \mathbb{Z}$. Then $f(n, \mathcal{L}) = 2^{\mu_{\mathcal{L}}(n) + o(n)}$ (where o(n) depends on \mathcal{L}).

Together with Hancock (2017) we replaced the term o(n) with a constant in *some* cases.

<ロ> (日) (日) (日) (日) (日)

PRA 40

Let $f_{\max}(n, \mathcal{L})$ be the number of maximal \mathcal{L} -free subsets of [n]. We have already seen:

Theorem (Balogh-Liu-Sharifzadeh-T. 2015+)

For each $1 \le i \le 4$, there is a constant C_i such that, given any $n \equiv i \mod 4$, [n] contains $(C_i + o(1))2^{n/4}$ maximal sum-free sets.

|田・ (日) (日)

Theorem (Hancock-T. 2017)

Let \mathcal{L} be px + qy = rz where $p, q, r \in \mathbb{Z}$. Then $f_{\max}(n, \mathcal{L}) \leq 3^{\mu_{\mathcal{L}}(n)/3 + o(n)}$.

Bound close to best possible for some equations $\mathcal{L}.$ For others way off:

Theorem (Hancock–T. 2017)

Let \mathcal{L} be qx + qy = z where $q \ge 2$ is an integer. Then $f_{\max}(n, \mathcal{L}) = 2^{n/2q+o(n)}$.

→ 同 → → 三 →

SUM-FREE SUBSET Input: A finite set $A \subseteq \mathbb{Z}$ and $k \in \mathbb{N}$. Question: Does there exist a sum-free subset $A' \subseteq A$ such that |A'| = k?

Theorem (Meeks and T. 2017+)

SUM-FREE SUBSET *is NP-complete*.

Proof extends to all equations \mathcal{L} of form $a_1x_1 + \cdots + a_\ell x_\ell = by$ where each $a_i \in \mathbb{N}$ and $b \in \mathbb{N}$ are fixed and $\ell \geq 2$

Theorem (Meeks and T. 2017+)

SUM-FREE SUBSET *is APX-hard*.

i.e. there is only a polynomial-time approximation scheme if P=NP

PR AL

SUM-FREE SUBSET Input: A finite set $A \subseteq \mathbb{Z}$ and $k \in \mathbb{N}$. Question: Does there exist a sum-free subset $A' \subseteq A$ such that |A'| = k?

Theorem (Meeks and T. 2017+)

SUM-FREE SUBSET is NP-complete.

Proof extends to all equations \mathcal{L} of form $a_1x_1 + \cdots + a_\ell x_\ell = by$ where each $a_i \in \mathbb{N}$ and $b \in \mathbb{N}$ are fixed and $\ell \ge 2$

Theorem (Meeks and T. 2017+)

SUM-FREE SUBSET *is APX-hard*.

i.e. there is only a polynomial-time approximation scheme if P = NP

PR AL

SUM-FREE SUBSET Input: A finite set $A \subseteq \mathbb{Z}$ and $k \in \mathbb{N}$. Question: Does there exist a sum-free subset $A' \subseteq A$ such that |A'| = k?

Theorem (Meeks and T. 2017+)

SUM-FREE SUBSET is NP-complete.

Proof extends to all equations \mathcal{L} of form $a_1x_1 + \cdots + a_\ell x_\ell = by$ where each $a_i \in \mathbb{N}$ and $b \in \mathbb{N}$ are fixed and $\ell \ge 2$

Theorem (Meeks and T. 2017+)

SUM-FREE SUBSET *is APX-hard*.

i.e. there is only a polynomial-time approximation scheme if P=NP

- Erdős (1965) proved that any set of n non-zero integers contains a sum-free subset of size at least n/3.
- Improved to (n+1)/3 by Alon and Kleitman (1990) and (n+2)/3 by Bourgain (1997)
- Eberhard, Green and Manners (2014) proved that there are sets of n integers whose largest sum-free subset has size n/3 + o(n).

(人間) (人) (人) (人)

- Erdős (1965) proved that any set of n non-zero integers contains a sum-free subset of size at least n/3.
- Improved to (n+1)/3 by Alon and Kleitman (1990) and (n+2)/3 by Bourgain (1997)
- Eberhard, Green and Manners (2014) proved that there are sets of *n* integers whose largest sum-free subset has size n/3 + o(n).

(4月) イヨト イヨト

 ε -SUM-FREE SUBSET Input: A finite set $A \subseteq \mathbb{Z}$. Question: Does there exist a sum-free subset $A' \subseteq A$ such that $|A'| \ge \varepsilon |A|$?

Theorem (Meeks and T. 2017+)

Given any rational $1/3 < \varepsilon < 1$, ε -SUM-FREE SUBSET is NP-complete.

Question

Is there an fpt-algorithm (parameterised by k) s.t. given a set $A \subset \mathbb{Z}$ it determines whether A has a sum-free set of size n/3 + k?

(D) (A) (A) (A) (A)

 ε -SUM-FREE SUBSET Input: A finite set $A \subseteq \mathbb{Z}$. Question: Does there exist a sum-free subset $A' \subseteq A$ such that $|A'| \ge \varepsilon |A|$?

Theorem (Meeks and T. 2017+)

Given any rational $1/3 < \varepsilon < 1$, ε -SUM-FREE SUBSET is NP-complete.

Question

Is there an fpt-algorithm (parameterised by k) s.t. given a set $A \subset \mathbb{Z}$ it determines whether A has a sum-free set of size n/3 + k?

- (同) - (三)

 ε -SUM-FREE SUBSET Input: A finite set $A \subseteq \mathbb{Z}$. Question: Does there exist a sum-free subset $A' \subseteq A$ such that $|A'| \ge \varepsilon |A|$?

Theorem (Meeks and T. 2017+)

Given any rational $1/3 < \varepsilon < 1$, ε -SUM-FREE SUBSET is NP-complete.

Question

Is there an fpt-algorithm (parameterised by k) s.t. given a set $A \subset \mathbb{Z}$ it determines whether A has a sum-free set of size n/3 + k?

Given an abelian group G let $\mu(G)$ denote the size of the largest sum-free subset of G.

Theorem (Green-Ruzsa 2005)

There are $2^{\mu(G)+o(|G|)}$ sum-free subsets of G.

Conjecture (Balogh-Liu-Sharifzadeh-T.)

There are at most $2^{\mu(G)/2+o(|G|)}$ maximal sum-free subsets of G.

• Easy to prove $3^{\mu(G)/3+o(|G|)}$ as an upper bound.