On sum-free and solution-free sets of integers

Includes joint work with József Balogh, Hong Liu, Maryam Sharifzadeh; Robert Hancock; and Kitty Meeks.

Introduction

- A set $S \subseteq \mathbb{Z}$ is sum-free if no solutions to $x+y=z$ in S.
- Often we will be working in $[n]:=\{1, \ldots, n\}$.

Examples:

- $\{1,2,4\}$ is not sum-free.
- Set of odds is sum-free.
- $\{n / 2+1, n / 2+2, \ldots, n\}$ is sum-free.

Introduction

What do sum-free subsets of $[n]$ look like?

- Every sum-free subset of $[n]$ has size at most $\lceil n / 2\rceil$

```
Theorem (Deshouillers, Freiman, Sós and Temkin 1999)
If S\subset[n] is sum-free then at least one of the following holds:
    (i) }|S|\leq2n/5+1
    (ii) S consists of odds;
(iii) }|S|<\operatorname{min}(S)
Very recently, Tuan Tran refined this result.
```


Introduction

What do sum-free subsets of $[n]$ look like?

- Every sum-free subset of $[n]$ has size at most $\lceil n / 2\rceil$.
Theorem (Deshouillers, Freiman, Sós and Temkin 1999)If $S \subset[n]$ is sum-free then at least one of the following holds:(i) $|S| \leq 2 n / 5+1$;(ii) S consists of odds;(iii) $|S| \leq \min (S)$Very recently, Tuan Tran refined this result.

Introduction

What do sum-free subsets of $[n]$ look like?

- Every sum-free subset of $[n]$ has size at most $\lceil n / 2\rceil$.

Theorem (Deshouillers, Freiman, Sós and Temkin 1999)

If $S \subseteq[n]$ is sum-free then at least one of the following holds:
(i) $|S| \leq 2 n / 5+1$;
(ii) S consists of odds;
(iii) $|S| \leq \min (S)$.

Very recently, Tuan Tran refined this result.

Examples of sum-free sets:

- Set of odds is sum-free.
- $\{n / 2+1, n / 2+2, \ldots, n\}$ is sum-free.

These two examples show there are at least $2^{n / 2}$ sum-free subsets of $[n]$.

Conjecture (Cameron-Erdós 1990)

The number of sum-free subsets of $[n]$ is $\Theta\left(2^{n / 2}\right)$

Examples of sum-free sets:

- Set of odds is sum-free.
- $\{n / 2+1, n / 2+2, \ldots, n\}$ is sum-free.

These two examples show there are at least $2^{n / 2}$ sum-free subsets of [n].

Conjecture (Cameron-Erdős 1990)

The number of sum-free subsets of $[n]$ is $\Theta\left(2^{n / 2}\right)$.

Theorem (Green, Sapozhenko 2003)

There are constants c_{e} and c_{o}, s.t. the number of sum-free subsets of $[n]$ is

$$
(1+o(1)) c_{e} 2^{n / 2}, \text { or }(1+o(1)) c_{o} 2^{n / 2}
$$

depending on the parity of n.

- This result doesn't tell us anything about the distribution of the sum-free sets in [n].
- In particular, recall that $2^{n / 2}$ sum-free subsets of $[n]$ lie in a single maximal sum-free subset of $[n]$.

Conjecture (Cameron-Erdős 1999)

There is an absolute constant $c>0$, s.t. the number of maximal sum-free subsets of $[n]$ is $O\left(2^{n / 2-c n}\right)$.

They also showed there are at least $2^{\lfloor n / 4\rfloor}$ maximal sum-free subsets of $[n]$.

Lower bound construction

There are at least $2^{\lfloor n / 4\rfloor}$ maximal sum-free subsets of $[n]$.

- Suppose n is even. Let S consist of n together with precisely one number from each pair $\{x, n-x\}$ for odd $x<n / 2$.
- Notice distinct S lie in distinct maximal sum-free subsets of [n].
- Roughly $2^{n / 4}$ choices for S.

The number of maximal sum-free sets

Denote by $f_{\max }(n)$ the number of maximal sum-free subsets in $[n]$. Recall that $f_{\text {max }}(n) \geq 2^{\lfloor n / 4\rfloor}$.

Conjecture (Cameron-Erdős 1999)

$$
\exists c>0, \quad f_{\max }(n)=O\left(2^{n / 2-c n}\right)
$$

Theorem (Łuczak-Schoen 2001)

$$
f_{\max }(n) \leq 2^{n / 2-2^{-28} n} \text { for large } n
$$

Theorem (Wolfovitz 2009)

$$
f_{\max }(n) \leq 2^{3 n / 8+o(n)} .
$$

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

$$
f_{\max }(n)=2^{n / 4+o(n)} .
$$

The number of maximal sum-free sets

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

$$
f_{\max }(n)=2^{n / 4+o(n)} .
$$

Theorem (Balogh-Liu-Sharifzadeh-T. 2015+)
For each $1 \leq i \leq 4$, there is a constant C_{i} such that, given any

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

$$
f_{\max }(n)=2^{n / 4+o(n)} .
$$

Theorem (Balogh-Liu-Sharifzadeh-T. 2015+)

For each $1 \leq i \leq 4$, there is a constant C_{i} such that, given any $n \equiv i \bmod 4,[n]$ contains $\left(C_{i}+o(1)\right) 2^{n / 4}$ maximal sum-free sets.

From additive number theory:

- Container lemma of Green.
- Removal lemma of Green.
- Structure of sum-free sets by Deshouillers, Freiman, Sós and Temkin.

From extremal graph theory: upper bound on the number of maximal independent sets for

- all graphs by Moon and Moser.
- triangle-free graphs by Hujter and Tuza.
- Not too sparse and almost regular graphs.

Sketch of the proof

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

$$
f_{\max }(n)=2^{n / 4+o(n)}
$$

Lemma (Container Lemma, Green)

There exists $\mathcal{F} \subseteq 2^{[n]}$, s.t.
(i) $|\mathcal{F}|=2^{o(n)}$;
(ii) $\forall S \subseteq[n]$ sum-free, $\exists F \in \mathcal{F}$, s.t. $S \subseteq F$;
(iii) $\forall F \in \mathcal{F},|F| \leq(1 / 2+o(1)) n$ and the number of Schur triples in F is $o\left(n^{2}\right)$.

By (i) and (ii), it suffices to show that for every container $A \in \mathcal{F}$,
$f_{\max }(A) \leq 2^{n / 4+o(n)}$

Sketch of the proof

Theorem (Balogh-Liu-Sharifzadeh-T. 2015)

$$
f_{\max }(n)=2^{n / 4+o(n)} .
$$

Lemma (Container Lemma, Green)

There exists $\mathcal{F} \subseteq 2^{[n]}$, s.t.
(i) $|\mathcal{F}|=2^{o(n)}$;
(ii) $\forall S \subseteq[n]$ sum-free, $\exists F \in \mathcal{F}$, s.t. $S \subseteq F$;
(iii) $\forall F \in \mathcal{F},|F| \leq(1 / 2+o(1)) n$ and the number of Schur triples in F is $o\left(n^{2}\right)$.

By (i) and (ii), it suffices to show that for every container $A \in \mathcal{F}$,

$$
f_{\max }(A) \leq 2^{n / 4+o(n)}
$$

Constructing maximal sum-free sets

Removal+Structural lemmas \Rightarrow classify containers $A \in \mathcal{F}$:

- Case 1: small container, $|A| \leq 0.45 n$;
- Case 2: 'interval' container, 'most' of A in $[n / 2+1, n]$.
- Case 3: 'odd' container, $|A \backslash O|=o(n)$.

Moreover, in all cases $A=B \cup C$ where B is sum-free and $|C|=o(n)$.

Crucial observation
 Every maximal sum-free subset in A can be built in two steps:
 (1) Choose a sum-free set S in C;
 (2) Extend S in B to a maximal one.

Constructing maximal sum-free sets

Removal+Structural lemmas \Rightarrow classify containers $A \in \mathcal{F}$:

- Case 1: small container, $|A| \leq 0.45 n$;
- Case 2: 'interval' container, 'most' of A in $[n / 2+1, n]$.
- Case 3: 'odd' container, $|A \backslash O|=o(n)$.

Moreover, in all cases $A=B \cup C$ where B is sum-free and $|C|=o(n)$.

Crucial observation

Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C;
(2) Extend S in B to a maximal one.

Maximal sum-free sets \Rightarrow maximal independent sets

Definition

Given $S, B \subseteq[n]$, the link graph of S on B is $L_{S}[B]$, where $V=B$ and $x \sim y$ iff $\exists z \in S$ s.t. $\{x, y, z\}$ is a Schur triple.
$L_{2}[1,3,4,5]$

Maximal sum-free sets \Rightarrow maximal independent sets

Definition

Given $S, B \subseteq[n]$, the link graph of S on B is $L_{S}[B]$, where $V=B$ and $x \sim y$ iff $\exists z \in S$ s.t. $\{x, y, z\}$ is a Schur triple.

Lemma

Given $S, B \subseteq[n]$ sum-free and $I \subseteq B$, if $S \cup I$ is a maximal sum-free subset of $[n]$, then I is a maximal independent set in $L_{S}[B]$.

Case 1: small container, $|A| \leq 0.45 n$.

Recall $A=B \cup C, B$ sum-free, $|C|=o(n)$.

Crucial observation

Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C;
(2) Extend S in B to a maximal one.

- Fix a sum-free $S \subseteq C$ (at most $2^{|C|}=2^{\circ(n)}$ choices)
- Consider link graph $L_{S}[B]$
- Moon-Moser: \forall graphs G, MIS $(G) \leq 3^{|G| / 3}$
- So \# extensions in (2) is at most $\operatorname{MIS}\left(L_{S}[B]\right)$, $\operatorname{MIS}\left(L_{S}[B]\right) \leq 3^{|B| / 3} \leq 3^{0.45 n / 3}<2^{0.249 n}$
- In total, A contains at most $2^{o(n)} \times 2^{0.249 n} \ll 2^{n / 4}$ maximal sum-free sets.

Case 1: small container, $|A| \leq 0.45 n$.

Recall $A=B \cup C, B$ sum-free, $|C|=o(n)$.

Crucial observation

Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C;
(2) Extend S in B to a maximal one.

- Fix a sum-free $S \subseteq C$ (at most $2^{|C|}=2^{o(n)}$ choices).
- Consider link graph $L_{S}[B]$.
- Moon-Moser: \forall graphs $G, \operatorname{MIS}(G) \leq 3^{|G| / 3}$.
- So \# extensions in (2) is at most $\operatorname{MIS}\left(L_{s}[B]\right)$,

$$
\operatorname{MIS}\left(L_{S}[B]\right) \leq 3^{|B| / 3} \leq 3^{0.45 n / 3} \ll 2^{0.249 n}
$$

- In total, A contains at most $2^{o(n)} \times 2^{0.249 n} \ll 2^{n / 4}$ maximal sum-free sets.

Cases 2 and 3.

- Now container A could be bigger than $0.45 n$.
- This means crude Moon-Moser bound doesn't give accurate bound on $f_{\max }(A)$.
- Instead we obtain more structural information about the link graphs.
- For example, when A 'close' to interval $[n / 2+1, n]$ link graphs are triangle-free
- Hujta-Tuza: $\operatorname{MIS}(G) \leq 2^{|G| / 2}$ for all triangle-free graphs G
- Gives better bound on $f_{\max }(A)$

Cases 2 and 3.

- Now container A could be bigger than $0.45 n$.
- This means crude Moon-Moser bound doesn't give accurate bound on $f_{\max }(A)$.
- Instead we obtain more structural information about the link graphs.
- For example, when A 'close' to interval $[n / 2+1, n]$ link graphs are triangle-free
- Hujta-Tuza: $\operatorname{MIS}(G) \leq 2^{|G| / 2}$ for all triangle-free graphs G.
- Gives better bound on $f_{\max }(A)$.

Theorem (Balogh-Liu-Sharifzadeh-T. 2015+)

For each $1 \leq i \leq 4$, there is a constant C_{i} such that, given any $n \equiv i \bmod 4,[n]$ contains $\left(C_{i}+o(1)\right) 2^{n / 4}$ maximal sum-free sets.
(i) Count by hand the maximal sum-free sets S that are 'extremal':

- S that contain precisely one even number.
- S where $\min (S) \approx n / 4, \min _{2}(S) \approx n / 2$.
(ii) Count remaining maximal sum-free sets using the container method.

Let \mathcal{L} denote the equation $a_{1} x_{1}+\cdots+a_{k} x_{k}=b$ where $a_{1}, \ldots, a_{k}, b \in \mathbb{Z}$.

Definitions:

(1) \mathcal{L} is translation-invariant if $\sum a_{i}=b=0$.
(2) A subset $A \subseteq[n]$ is \mathcal{L}-free if it does not contain any 'non-trivial' solutions to \mathcal{L}.
(3) A subset $A \subseteq[n]$ is a maximal \mathcal{L}-free set if it is \mathcal{L}-free, and if the addition of any further $x \in[n] \backslash A$ would make it no longer \mathcal{L}-free.

Fundamental Questions

- Q1: What is the size of the largest \mathcal{L}-free subset of $[n]$?
- Q2: How many \mathcal{L}-free subsets of $[n]$ are there?
- Q3: How many maximal \mathcal{L}-free subsets of $[n]$ are there?

Q1: What is the size of the largest \mathcal{L}-free subset of $[n]$

Let $\mu_{\mathcal{L}}(n)$ be the size of the largest \mathcal{L}-free subset of $[n]$.

\mathcal{L}	$\mu_{\mathcal{L}}(n)$	Comment
$x+y=z$	$\lceil n / 2\rceil$	odds or interval
$x+y=2 z$	$o(n)$	Roth's theorem (1953)
$p(x+y)=r z, r>2 p$	$n-\lfloor 2 n / r\rfloor$	union (Hegarty 2007)

In general.

Q1: What is the size of the largest \mathcal{L}-free subset of $[n]$

Let $\mu_{\mathcal{L}}(n)$ be the size of the largest \mathcal{L}-free subset of $[n]$.

\mathcal{L}	$\mu_{\mathcal{L}}(n)$	Comment
$x+y=z$	$\lceil n / 2\rceil$	odds or interval
$x+y=2 z$	$o(n)$	Roth's theorem (1953)
$p(x+y)=r z, r>2 p$	$n-\lfloor 2 n / r\rfloor$	union (Hegarty 2007)

In general...

\mathcal{L}	$\mu_{\mathcal{L}}(n)$
translation-invariant	$o(n)$
not translation-invariant	$\Omega(n)$

Q1: What is the size of the largest \mathcal{L}-free subset of $[n]$

Theorem (Hancock-T. 2017)

Let \mathcal{L} be $p x+q y=z$ where $p \geq q$ and $p \geq 2, p, q \in \mathbb{N}$. If n is sufficiently large then $\mu_{\mathcal{L}}(n)=n-\lfloor n /(p+q)\rfloor$.

- We have also determined $\mu_{\mathcal{L}}(n)$ for a range of different equations \mathcal{L} of the form $p x+q y=r z$ where $p \geq q \geq r$.
- In each case, the extremal examples are 'intervals' or unions of 'congruency classes'.

Q2: How many \mathcal{L}-free subsets of $[n]$?

Let $f(n, \mathcal{L})$ be the number of \mathcal{L}-free subsets of [n].
Clearly for any \mathcal{L}, we have $f(n, \mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.

```
Theorem (Green, Sapozhenko 2003)
There are constants }\mp@subsup{c}{e}{}\mathrm{ and }\mp@subsup{c}{o}{}\mathrm{ , s.t. the number of sum-free subsets
of [n] is
\[
(1+o(1)) c_{e} 2^{n / 2}, \text { or }(1+o(1)) c_{o} 2^{n / 2}
\]
```

depending on the parity of n.

Theorem (Green 2005)

Let \mathcal{L} be $a_{1} x_{1}+\cdots+a_{k} x_{k}=0$ where $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. Then $f(n, \mathcal{L})=2^{\mu_{\mathcal{L}}(n)+o(n)}$ (where $o(n)$ depends on $\left.\mathcal{L}\right)$.

Together with Hancock (2017) we replaced the term o(n) with a constant in some cases.

Q2: How many \mathcal{L}-free subsets of $[n]$?

Let $f(n, \mathcal{L})$ be the number of \mathcal{L}-free subsets of $[n]$.
Clearly for any \mathcal{L}, we have $f(n, \mathcal{L}) \geq 2^{\mu_{\mathcal{L}}(n)}$.

Theorem (Green, Sapozhenko 2003)

There are constants c_{e} and c_{o}, s.t. the number of sum-free subsets of $[n]$ is

$$
(1+o(1)) c_{e} 2^{n / 2}, \text { or }(1+o(1)) c_{o} 2^{n / 2}
$$

depending on the parity of n.

Theorem (Green 2005)

Let \mathcal{L} be $a_{1} x_{1}+\cdots+a_{k} x_{k}=0$ where $a_{1}, \ldots, a_{k} \in \mathbb{Z}$. Then $f(n, \mathcal{L})=2^{\mu_{\mathcal{L}}(n)+o(n)}$ (where $o(n)$ depends on \mathcal{L}).

Together with Hancock (2017) we replaced the term o(n) with a constant in some cases.

Q3: How many maximal \mathcal{L}-free subsets?

Let $f_{\max }(n, \mathcal{L})$ be the number of maximal \mathcal{L}-free subsets of $[n]$. We have already seen:

```
Theorem (Balogh-Liu-Sharifzadeh-T. 2015+)
For each \(1 \leq i \leq 4\), there is a constant \(C_{i}\) such that, given any \(n \equiv i \bmod 4,[n]\) contains \(\left(C_{i}+o(1)\right) 2^{n / 4}\) maximal sum-free sets.
```


Q3: How many maximal \mathcal{L}-free subsets?

Theorem (Hancock-T. 2017)

Let \mathcal{L} be $p x+q y=r z$ where $p, q, r \in \mathbb{Z}$.
Then $f_{\max }(n, \mathcal{L}) \leq 3^{\mu_{\mathcal{L}}(n) / 3+o(n)}$.
Bound close to best possible for some equations \mathcal{L}. For others way off:

Theorem (Hancock-T. 2017)

Let \mathcal{L} be $q x+q y=z$ where $q \geq 2$ is an integer.
Then $f_{\max }(n, \mathcal{L})=2^{n / 2 q+o(n)}$.

Some complexity

Sum-Free Subset

Input: A finite set $A \subseteq \mathbb{Z}$ and $k \in \mathbb{N}$.
Question: Does there exist a sum-free subset $A^{\prime} \subseteq A$ such that $\left|A^{\prime}\right|=k$?

Theorem (Meeks and T. 2017
 Sum-Free Subset is NP-complete
 Proof extends to all equations \mathcal{L} of form $a_{1} x_{1}+\cdots+a_{\ell} x_{\ell}=$ by where each $a_{i} \in \mathbb{N}$ and $b \in \mathbb{N}$ are fixed and $\ell \geq 2$

Theorem (Meeks and T 2017 H)

Sum-Free Subset is APX-hard.
i.e. there is only a polynomial-time approximation scheme if $P=N P$

Sum-Free Subset

Input: A finite set $A \subseteq \mathbb{Z}$ and $k \in \mathbb{N}$.
Question: Does there exist a sum-free subset $A^{\prime} \subseteq A$ such that $\left|A^{\prime}\right|=k$?

Theorem (Meeks and T. 2017+)

Sum-Free Subset is NP-complete.
Proof extends to all equations \mathcal{L} of form $a_{1} x_{1}+\cdots+a_{\ell} x_{\ell}=$ by where each $a_{i} \in \mathbb{N}$ and $b \in \mathbb{N}$ are fixed and $\ell \geq 2$

Theorem (Meeks and T. 2017 +)
Sum-Free Subset is APX-hard.
i.e. there is only a polynomial-time approximation scheme if $\underset{\underline{P}=N \underline{P}, ~}{\underline{\underline{P}}}$

Some complexity

Sum-Free Subset
 Input: A finite set $A \subseteq \mathbb{Z}$ and $k \in \mathbb{N}$.
 Question: Does there exist a sum-free subset $A^{\prime} \subseteq A$ such that $\left|A^{\prime}\right|=k$?

Theorem (Meeks and T. 2017+)

Sum-Free Subset is NP-complete.
Proof extends to all equations \mathcal{L} of form $a_{1} x_{1}+\cdots+a_{\ell} x_{\ell}=b y$ where each $a_{i} \in \mathbb{N}$ and $b \in \mathbb{N}$ are fixed and $\ell \geq 2$

Theorem (Meeks and T. 2017+)

Sum-Free Subset is APX-hard.

i.e. there is only a polynomial-time approximation scheme if $\mathrm{P}=\mathrm{NP}$

Some complexity

- Erdős (1965) proved that any set of n non-zero integers contains a sum-free subset of size at least $n / 3$.
- Improved to $(n+1) / 3$ by Alon and Kleitman (1990) and $(n+2) / 3$ by Bourgain (1997)
- Eberhard, Green and Manners (2014) proved that there are sets of n integers whose largest sum-free subset has size $n / 3+o(n)$

Some complexity

- Erdős (1965) proved that any set of n non-zero integers contains a sum-free subset of size at least $n / 3$.
- Improved to $(n+1) / 3$ by Alon and Kleitman (1990) and $(n+2) / 3$ by Bourgain (1997)
- Eberhard, Green and Manners (2014) proved that there are sets of n integers whose largest sum-free subset has size $n / 3+o(n)$.

Some complexity

```
\varepsilon-Sum-Free Subset
Input: A finite set A\subseteq\mathbb{Z}
Question: Does there exist a sum-free subset }\mp@subsup{A}{}{\prime}\subseteqA\mathrm{ such that
|A'\\geq\varepsilon|A|?
```


Theorem (Meeks and T. 2017+)
 Given any rational $1 / 3<\varepsilon<1, \varepsilon$-Sum-Free Subset is NP-complete.

Question

Is there an fpt-algorithm (parameterised by k) s.t. given a set $A \subset \mathbb{Z}$ it determines whether A has a sum-free set of size $n / 3+k$?

Some complexity

ε-Sum-Free Subset
Input: A finite set $A \subseteq \mathbb{Z}$.
Question: Does there exist a sum-free subset $A^{\prime} \subseteq A$ such that $\left|A^{\prime}\right| \geq \varepsilon|A| ?$

Theorem (Meeks and T. 2017+)

Given any rational $1 / 3<\varepsilon<1, \varepsilon$-Sum-Free Subset is NP-complete.

Question
Is there an fpt-algorithm (parameterised by k) s.t. given a set
$A \subset \mathbb{Z}$ it determines whether A has a sum-free set of size $n / 3+k$?

Some complexity

ε-Sum-Free Subset
Input: A finite set $A \subseteq \mathbb{Z}$.
Question: Does there exist a sum-free subset $A^{\prime} \subseteq A$ such that $\left|A^{\prime}\right| \geq \varepsilon|A| ?$

Theorem (Meeks and T. 2017+)

Given any rational $1 / 3<\varepsilon<1, \varepsilon$-Sum-Free Subset is NP-complete.

Question

Is there an fpt-algorithm (parameterised by k) s.t. given a set $A \subset \mathbb{Z}$ it determines whether A has a sum-free set of size $n / 3+k$?

Open problem

Given an abelian group G let $\mu(G)$ denote the size of the largest sum-free subset of G.

Theorem (Green-Ruzsa 2005)

There are $2^{\mu(G)+o(|G|)}$ sum-free subsets of G.

Conjecture (Balogh-Liu-Sharifzadeh-T.)

There are at most $2^{\mu(G) / 2+o(|G|)}$ maximal sum-free subsets of G.

- Easy to prove $3^{\mu(G) / 3+o(|G|)}$ as an upper bound.

