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Theorem (Dirac, 1952)

Graph G of order n ≥ 3 and δ(G ) ≥ n/2 =⇒ G Hamiltonian.

Theorem (Ghouila-Houri, 1966)

Digraph G of order n ≥ 2 with δ+(G ), δ−(G ) ≥ n/2 =⇒ G
Hamiltonian.
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Theorem (Chvátal, 1972)

Let G be a graph with degree sequence d1 ≤ · · · ≤ dn. G has a
Hamilton cycle if

di ≥ i + 1 or dn−i ≥ n − i ∀ i < n/2.

The bound on the degrees in Chvátal’s theorem is best
possible.

degree sequence: k , . . . , k︸ ︷︷ ︸
k times

, n − k − 1, . . . , n − k − 1︸ ︷︷ ︸
n−2k times

, n − 1, . . . , n − 1︸ ︷︷ ︸
k times
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Nash-Williams raised the question of a digraph analogue of
Chvátal’s theorem.

Conjecture (Nash-Williams, 1975)

G strongly connected digraph whose out- and indegree sequences
d+
1 ≤ · · · ≤ d+

n and d−1 ≤ · · · ≤ d−n satisfy

(i) d+
i ≥ i + 1 or d−n−i ≥ n − i ∀i < n/2,

(ii) d−i ≥ i + 1 or d+
n−i ≥ n − i ∀i < n/2.

Then G contains a Hamilton cycle.

If true, the conjecture is much stronger than Ghouila-Houri’s
theorem.
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If the Nash-Williams conjecture is true then it is best possible.

N-W conjecture

(i) d+
i ≥ i + 1 or

d−n−i ≥ n − i

(ii) d−i ≥ i + 1 or
d+

n−i ≥ n − i

|K ′| = n − k − 2 and |K | = k − 1

outdegree sequence: k − 1, . . . , k − 1︸ ︷︷ ︸
k−1 times

, k , k , n − 1, . . . , n − 1︸ ︷︷ ︸
n−k−1 times

indegree sequence:

n − k − 2, . . . , n − k − 2︸ ︷︷ ︸
n−k−2 times

, n − k − 1, n − k − 1, n − 1, . . . , n − 1︸ ︷︷ ︸
k times
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Theorem (Kühn, Osthus, T.)

∀ η > 0 ∃ n0 = n0(η) s.t. if G is a digraph on n ≥ n0 vertices s.t.

d+
i ≥ i + ηn or d−n−i−ηn ≥ n − i ∀i < n/2,

d−i ≥ i + ηn or d+
n−i−ηn ≥ n − i ∀i < n/2,

then G contains a Hamilton cycle.

Corollary

The conditions in the above theorem imply G is pancyclic. That is,
G contains a cycle of length i ∀ 2 ≤ i ≤ |G |.
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The following result is an immediate corollary of Chvátal’s
theorem.

Theorem (Pósa, 1962)

Let G be a graph of order n ≥ 3 with degree sequence
d1 ≤ · · · ≤ dn. G has a Hamilton cycle if

di ≥ i + 1 ∀ i < (n − 1)/2

and if additionally ddn/2e ≥ dn/2e when n is odd.

Pósa’s theorem is much stronger than Dirac’s theorem.
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The following conjecture is a digraph analogue of Pósa’s
theorem.

Conjecture (Nash-Williams, 1968)

Let G be a digraph on n ≥ 3 vertices s.t.

d+
i , d

−
i ≥ i + 1 ∀ i < (n − 1)/2

and s.t. d+
dn/2e, d

−
dn/2e ≥ dn/2e when n is odd. Then G contains a

Hamilton cycle.

If true, this conjecture is much stronger than Ghoulia-Houri’s
theorem.
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Theorem (Kühn, Osthus, T.)
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Recent developments...

Christofides, Keevash, Kühn and Osthus gave a polynomial
time algorithm which finds a Hamilton cycle in those digraphs
considered in our result.

They also showed one can relax the condition in our result to

d+
i ≥ min{i + ηn, n/2} or d−n−i−ηn ≥ n − i ∀i < n/2,

d−i ≥ min{i + ηn, n/2} or d+
n−i−ηn ≥ n − i ∀i < n/2,.
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Hamilton cycles in oriented graphs

Theorem (Keevash, Kühn, Osthus, 2009)

∃n0 s.t. every oriented graph G on n ≥ n0 vertices with

δ+(G ), δ−(G ) ≥ 3n−4
8

contains a Hamilton cycle.

Question

Can we strengthen this theorem in the same way as Pósa’s
theorem strengthens Dirac’s theorem?
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Let 0 < α < 3/8, |G | = n sufficiently large, c = c(α) constant.

A B C D

E

n/4 n/8 n/8− 1 n/4 + 1

n/4

Both in- and outdegree sequences dominate
αn, . . . , αn︸ ︷︷ ︸

c times

, 3n/8, . . . , 3n/8
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Robustly expanding digraphs

To prove the approximate version of the Nash-Williams
conjecture we in fact showed that...

“Robustly expanding digraphs of large enough minimum
degree are Hamiltonian”

This implies approximate version of the theorem of Keevash,
Kühn and Osthus.

Used in proof of approximate Sumner’s Universal Tournament
conjecture by Kühn, Mycroft and Osthus.
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Hamilton decompositions

Hamilton decomposition of a graph or digraph G :
set of edge-disjoint Hamilton cycles covering E (G )

Theorem (Walecki 1892)

Kn has a Hamilton decomposition ⇐⇒ n odd
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Hamilton decompositions

Hamilton decomposition of a graph or digraph G :
set of edge-disjoint Hamilton cycles covering E (G )

Theorem (Walecki 1892)

Kn has a Hamilton decomposition ⇐⇒ n odd
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Hamilton decompositions in digraphs

Theorem (Tillson 1980)

Complete digraph on n vertices has Hamilton decomposition
⇐⇒ n 6= 4, 6.

Tournament: orientation of a complete graph
Tournament on n vertices is regular if every vertex has equal
in- and outdegree (i.e. (n-1)/2)
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Conjecture (Kelly 1968)

All regular tournaments have Hamilton decompositions.

There have been several partial results in this direction.

Keevash, Kühn and Osthus: G oriented graph

δ+(G ), δ−(G ) ≥ (3|G | − 4)/8 =⇒ H.C .

So regular tournament G contains ≥ |G |/8 edge-disjoint
Hamilton cycles
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Conjecture (Thomassen 1982)

Suppose G regular tournament on n vertices and A ⊆ E (G ) s.t
|A| < (n − 1)/2. Then G − A contains a Hamilton cycle.

Theorem (Kühn, Osthus, T.)

Conjecture true for large n
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Theorem (Kühn, Osthus, T.)

∀ η > 0 ∃ n0 s.t all regular tournaments on n ≥ n0 vertices
contain ≥ (1/2− η)n edge-disjoint Hamilton cycles.

In fact, result holds for ‘almost regular’ tournaments.
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Näıve approach to theorem

Remove a γn-regular oriented spanning subgraph H from G
(γ � 1).

Decompose rest of G into 1-factors F1, . . . ,Fs .

Use edges from H to piece together each Fi into Hamilton
cycles.

Need Fi to contain few cycles (a result of Frieze and
Krivelevich implies this).

If H ‘quasi-random’ could use it to merge cycles using method
of ‘rotation-extension’.

Problem: can’t necessarily find such H.

But this approach is a useful starting point.
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Open problems

Kelly’s conjecture!

Theorem (Kühn, Osthus, T.)

‘Almost regular’ oriented graphs G with
δ+(G ), δ−(G ) ≥ (3/8 + o(1))|G | can be ‘almost decomposed’ into
edge-disjoint Hamilton cycles.

Question

What minimum degree ensures a regular oriented graph has a
Hamilton decomposition?
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Open problems cont.

Conjecture (Jackson)

All regular bipartite tournaments have Hamilton decompositions.

Almost regular bipartite tournaments may not even contain a
Hamilton cycle.

No Hamilton cycle
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Open problems cont.

Problem of Erdős: Do almost all tournaments T have
min{δ+(T ), δ−(T )} edge-disjoint Hamilton cycles?

Conjecture (Bang-Jansen, Yeo 2004)

Every k-edge-connected tournament has a decomposition into k
spanning strong digraphs.
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