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Motivation 1: Characterising graphs with perfect
matchings

Hall’s Theorem characterises all those bipartite graphs with
perfect matchings.

Tutte’s Theorem characterises all those graphs with perfect
matchings.
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Motivation 2: Finding a (small) graph H in G

Theorem (Erdős, Stone ‘46)

Given η > 0, if G graph on sufficiently large n number of vertices
and

e(G ) ≥
(

1− 1

χ(H)− 1
+ η

)
n2

2

then H ⊆ G .

Corollary

δ(G ) ≥
(

1− 1

χ(H)− 1
+ η

)
n =⇒ H ⊆ G

Erdős-Stone Theorem best possible (up to error term).
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Other types of degree condition

Ore-type degree conditions:
Consider the sum of the degrees of non-adjacent vertices.

x

y

z

d(x) + d(y) = 2 + 2 = 4

d(y) + d(z) = 2 + 1 = 3
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Properties of Ore-type conditions

δ(G ) ≥ a ⇒ d(x) + d(y) ≥ 2a ∀ x , y ∈ V (G ) s.t. xy 6∈ E (G ).

d(x) + d(y) ≥ 2a ∀ . . . ⇒ d(G ) ≥ a.

Corollary

Given η > 0, if G has sufficiently large order n and

d(x) + d(y) ≥ 2

(
1− 1

χ(H)− 1
+ η

)
n ∀ . . .

then H ⊆ G .
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Perfect packings in graphs

An H-packing in G is a collection of vertex-disjoint copies of
H in G .

An H-packing is perfect if it covers all vertices in G .

If H = K2 then perfect H-packing ⇐⇒ perfect matching.

Decision problem NP-complete (Hell and Kirkpatrick ‘83).

Sensible to look for simple sufficient conditions.
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Perfect Kr -packings

Theorem (Hajnal, Szemerédi ‘70)

G graph, |G | = n where r |n and

δ(G ) ≥
(

1− 1

r

)
n

⇒ G contains a perfect Kr -packing.
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Hajnal-Szemerédi Theorem best possible.

G |G| = mr

m mm + 1m − 1
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Hajnal-Szemerédi Theorem best possible.

G |G| = mr

m mm + 1m − 1

δ(G) = m(r − 1) − 1 = (1 − 1/r)|G| − 1

Andrew Treglown An Ore-type theorem for perfect packings in graphs



Hajnal-Szemerédi Theorem best possible.

G |G| = mr

m mm + 1m − 1

δ(G) = m(r − 1) − 1 = (1 − 1/r)|G| − 1

no perfect Kr-packing
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perfect H-packings for arbitrary H

Given H, the critical chromatic number χcr (H) of H is

χcr (H) := (χ(H)− 1)
|H|

|H| − σ(H)

where σ(H) is the size of the smallest possible colour class in
a χ(H)-colouring of H.

χ(H)− 1 < χcr (H) ≤ χ(H) ∀ H
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Theorem (Kühn, Osthus)

∀ H, ∃ C s.t. if |H| divides |G | and

δ(G ) ≥
(

1− 1

χ∗(H)

)
|G |+ C

then G contains a perfect H-packing.
Here,

χ∗(H) =

{
χ(H) for some H (including Kr );

χcr (H) otherwise.

Result best possible up to constant term C .
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Ore-type conditions

What Ore-type degree condition ensures a graph G contains a
perfect H-packing?

Theorem (Kierstead, Kostochka ‘08)

G graph, |G | = n where r |n and

d(x) + d(y) ≥ 2

(
1− 1

r

)
n − 1 ∀ . . .

⇒ G contains a perfect Kr -packing.

Result implies Hajnal-Szemerédi Theorem.

Theorem best possible.
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What about perfect H-packings for arbitrary H?
An example:

H

χ(H) = 3 χcr(H) = 8/3

Kühn-Osthus Theorem tells us that

δ(G ) ≥
(

1− 1

χcr (H)

)
|G |+ C ⇒ perfect H-packing.
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complete

G

complete bipartite

2m − 1

m

z

|G| = 3m

H

no perfect
H-packing

d(x) + d(y) ≥ 4m − 2 = 2(1− 1/χ(H))|G | − 2 ∀ . . .

“Something else is going on!”
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Theorem (Kühn, Osthus, T. ‘08)

We characterised, asymptotically, the Ore-type degree condition
which ensures that a graph contains a perfect H-packing.

There are some graphs H for which this Ore-type condition
depends on χ(H) and some for which it depends on χcr (H).

However, for some graphs H it depends on a parameter
strictly between χcr (H) and χ(H).

This parameter in turn depends on the so-called ‘colour
extension number’.
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Open problem

Pósa-Seymour Conjecture

G on n vertices, δ(G ) ≥ r
r+1n =⇒ G contains rth power of a

Hamilton cycle

Conjecture true for large graphs (Komlós, Sarközy and
Szemerédi ’98)

What Ore-type degree condition ensures a graph contains the rth
power of a Hamilton cycle?
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Szemerédi ’98)

What Ore-type degree condition ensures a graph contains the rth
power of a Hamilton cycle?

Andrew Treglown An Ore-type theorem for perfect packings in graphs


