An Ore-type theorem for perfect packings in graphs

Andrew Treglown

University of Birmingham, School of Mathematics

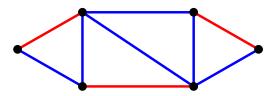
9th July 2009

Joint work with Daniela Kühn and Deryk Osthus (University of Birmingham)

イロト イポト イヨト イヨト

Motivation 1: Characterising graphs with perfect matchings

- Hall's Theorem characterises all those bipartite graphs with perfect matchings.
- Tutte's Theorem characterises all those graphs with perfect matchings.



Theorem (Erdős, Stone '46)

Given $\eta > 0$, if G graph on sufficiently large n number of vertices and

$$e(G) \geq \left(1 - \frac{1}{\chi(H) - 1} + \eta\right) \frac{n^2}{2}$$

then $H \subseteq G$.

Corollary

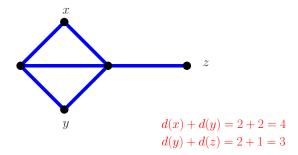
$$\delta(G) \geq \left(1 - \frac{1}{\chi(H) - 1} + \eta\right) n \implies H \subseteq G$$

• Erdős-Stone Theorem best possible (up to error term).

イロト イポト イヨト イヨト

Ore-type degree conditions:

Consider the sum of the degrees of non-adjacent vertices.



 • $\delta(G) \ge a \Rightarrow d(x) + d(y) \ge 2a \quad \forall x, y \in V(G) \text{ s.t. } xy \notin E(G).$

•
$$d(x) + d(y) \ge 2a \quad \forall \ldots \Rightarrow d(G) \ge a.$$

Corollary

Given $\eta > 0$, if G has sufficiently large order n and

$$d(x) + d(y) \ge 2\left(1 - \frac{1}{\chi(H) - 1} + \eta\right)n \quad \forall \ldots$$

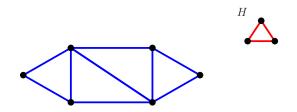
then $H \subseteq G$.

<ロ> (四) (四) (三) (三) (三)

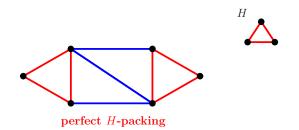
- An *H*-packing in *G* is a collection of vertex-disjoint copies of *H* in *G*.
- An *H*-packing is perfect if it covers all vertices in *G*.

向下 イヨト イヨト

- An *H*-packing in *G* is a collection of vertex-disjoint copies of *H* in *G*.
- An *H*-packing is perfect if it covers all vertices in *G*.

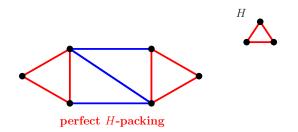


- An *H*-packing in *G* is a collection of vertex-disjoint copies of *H* in *G*.
- An *H*-packing is perfect if it covers all vertices in *G*.



A ■

- An *H*-packing in *G* is a collection of vertex-disjoint copies of *H* in *G*.
- An *H*-packing is perfect if it covers all vertices in *G*.



- If $H = K_2$ then perfect *H*-packing \iff perfect matching.
- Decision problem NP-complete (Hell and Kirkpatrick '83).
- Sensible to look for simple sufficient conditions.

Theorem (Hajnal, Szemerédi '70)

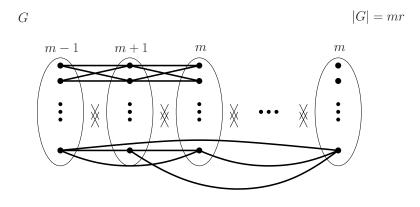
G graph, |G| = n where r|n and

$$\delta(G) \geq \left(1 - \frac{1}{r}\right)n$$

 \Rightarrow G contains a perfect K_r-packing.

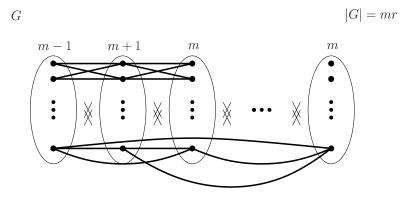
- 4 同 6 4 日 6 4 日 6

• Hajnal-Szemerédi Theorem best possible.



<ロ> (四) (四) (注) (注) (三)

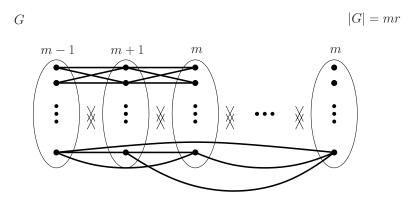
• Hajnal-Szemerédi Theorem best possible.



$$\delta(G) = m(r-1) - 1 = (1 - 1/r)|G| - 1$$

<ロ> (四) (四) (注) (注) (三)

• Hajnal-Szemerédi Theorem best possible.



$$\delta(G) = m(r-1) - 1 = (1 - 1/r)|G| - 1$$

no perfect K_r -packing Image: A matrix

- (注) - (注) - ()

Э

Andrew Treglown An Ore-type theorem for perfect packings in graphs • Given H, the critical chromatic number $\chi_{cr}(H)$ of H is

$$\chi_{cr}(H) := (\chi(H) - 1) \frac{|H|}{|H| - \sigma(H)}$$

where $\sigma(H)$ is the size of the smallest possible colour class in a $\chi(H)$ -colouring of H.

•
$$\chi(H) - 1 < \chi_{cr}(H) \le \chi(H) \quad \forall H$$

・ 回 と く ヨ と く ヨ と

3

Theorem (Kühn, Osthus)

 \forall H, \exists C s.t. if |H| divides |G| and

$$\delta(G) \ge \left(1 - \frac{1}{\chi^*(H)}\right)|G| + C$$

then G contains a perfect H-packing. Here,

 $\chi^{*}(H) = \begin{cases} \chi(H) & \text{for some } H \text{ (including } K_{r}); \\ \chi_{cr}(H) & \text{otherwise.} \end{cases}$

• Result best possible up to constant term C.

(4月) (4日) (4日)

3

What Ore-type degree condition ensures a graph G contains a perfect H-packing?

Theorem (Kierstead, Kostochka '08)

G graph, |G| = n where r|n and

$$d(x) + d(y) \ge 2\left(1 - \frac{1}{r}\right)n - 1 \quad \forall \ldots$$

 \Rightarrow G contains a perfect K_r-packing.

- Result implies Hajnal-Szemerédi Theorem.
- Theorem best possible.

イロト イポト イヨト イヨト

What Ore-type degree condition ensures a graph G contains a perfect H-packing?

Theorem (Kierstead, Kostochka '08)

G graph, |G| = n where r|n and

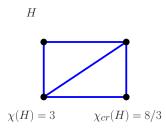
$$d(x) + d(y) \ge 2\left(1 - \frac{1}{r}\right)n - 1 \quad \forall \ldots$$

 \Rightarrow G contains a perfect K_r-packing.

- Result implies Hajnal-Szemerédi Theorem.
- Theorem best possible.

・ 同 ト ・ ヨ ト ・ ヨ ト

What about perfect H-packings for arbitrary H? An example:

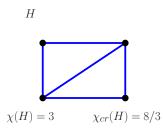


• Kühn-Osthus Theorem tells us that

$$\delta(G) \geq \left(1 - rac{1}{\chi_{cr}(H)}
ight) |G| + C \; \Rightarrow \; ext{ perfect } H ext{-packing}.$$

- 4 回 2 - 4 回 2 - 4 回 2

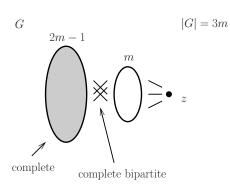
What about perfect H-packings for arbitrary H? An example:



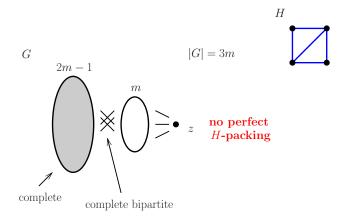
• Kühn-Osthus Theorem tells us that

$$\delta({\sf G}) \geq \left(1 - rac{1}{\chi_{cr}({\sf H})}
ight) |{\sf G}| + {\sf C} \; \Rightarrow \; {\sf perfect} \; {\sf H}{\sf -packing}.$$

・ 同 ト ・ ヨ ト ・ ヨ



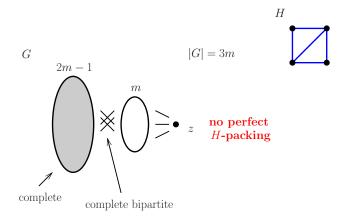
H



 $d(x) + d(y) \ge 4m - 2 = 2(1 - 1/\chi(H))|G| - 2 \quad \forall \ldots$

"Something else is going on!

イロト イヨト イヨト イヨト



 $d(x) + d(y) \ge 4m - 2 = 2(1 - 1/\chi(H))|G| - 2 \quad \forall \dots$ "Something else is going on!"

- 4 回 2 - 4 □ 2 - 4 □

Theorem (Kühn, Osthus, T. '08)

We characterised, asymptotically, the Ore-type degree condition which ensures that a graph contains a perfect H-packing.

- There are some graphs H for which this Ore-type condition depends on χ(H) and some for which it depends on χ_{cr}(H).
- However, for some graphs H it depends on a parameter strictly between $\chi_{cr}(H)$ and $\chi(H)$.
- This parameter in turn depends on the so-called 'colour extension number'.

(4月) イヨト イヨト

Pósa-Seymour Conjecture

G on *n* vertices, $\delta(G) \ge \frac{r}{r+1}n \implies G$ contains *r*th power of a Hamilton cycle

 Conjecture true for large graphs (Komlós, Sarközy and Szemerédi '98)

What Ore-type degree condition ensures a graph contains the *r*th power of a Hamilton cycle?

- 4 回 2 4 三 2 4 三 2 4

Pósa-Seymour Conjecture

G on *n* vertices, $\delta(G) \ge \frac{r}{r+1}n \implies G$ contains *r*th power of a Hamilton cycle

 Conjecture true for large graphs (Komlós, Sarközy and Szemerédi '98)

What Ore-type degree condition ensures a graph contains the *r*th power of a Hamilton cycle?

・ 同 ト ・ ヨ ト ・ ヨ ト