An improved lower bound for Folkman's theorem

Andrew Treglown

University of Birmingham

July 2017

Joint work with Józsi Balogh, Sean Eberhard, Bhargav Narayanan and Adam Zsolt Wagner

Theorem (Schur 1916)

 $\forall r \in \mathbb{N} \exists n \in \mathbb{N} \text{ s.t. whenever } [n] := \{1, \dots, n\} \text{ is } r\text{-coloured} \implies monochromatic solution to } x + y = z.$

Given finite $A \subseteq \mathbb{N}$,

$$S(A) := \left\{ \sum_{x \in B} x : B \subseteq A, B \neq \emptyset \right\}.$$

Theorem (Folkman 1960s)

 $\forall r, k \in \mathbb{N} \exists n = F(k, r) \text{ s.t. whenever } [n] \text{ is } r\text{-coloured} \implies \exists a \text{ set } A \subset [n] \text{ s.t.}$

- |A| = k;
- $S(A) \subseteq [n]$ is monochromatic

Theorem (Schur 1916)

 $\forall r \in \mathbb{N} \exists n \in \mathbb{N} \text{ s.t. whenever } [n] := \{1, \dots, n\} \text{ is } r\text{-coloured} \implies monochromatic solution to } x + y = z.$

Given finite $A \subseteq \mathbb{N}$,

$$S(A) := \left\{ \sum_{x \in B} x : B \subseteq A, B \neq \emptyset \right\}$$

Theorem (Folkman 1960s)

 $\forall r, k \in \mathbb{N} \exists n = F(k, r) \text{ s.t. whenever } [n] \text{ is } r\text{-coloured} \implies \exists a \text{ set } A \subset [n] \text{ s.t.}$

- |A| = k;
- $S(A) \subseteq [n]$ is monochromatic

Theorem (Folkman 1960s)

 $\forall r, k \in \mathbb{N} \exists n = F(k, r) \text{ s.t. whenever } [n] \text{ is } r\text{-coloured} \implies \exists a \text{ set } A \subset [n] \text{ s.t.}$

- |A| = k;
- $S(A) \subseteq [n]$ is monochromatic

Set

$$F(k):=F(k,2).$$

Theorem (Taylor 1980) $F(k) \le k^{3^{k^{1}}} \quad (height \ 2k)$

・日・ ・ヨ・ ・ヨ・

TYP 40 Fund ATA

Theorem (Erdős and Spencer 1989)

 $F(k) \ge 2^{(ck^2)/\log k}$ for some absolute constant c > 0.

Question

$$F(k) \ge 2^{ck^2}$$
 for some absolute constant $c > 0$?

Theorem (B.E.N.T.W 2017)

 $F(k) \geq 2^{(2^{k-1})/k}$

(ロ) (同) (E) (E) (E)

TES AD TES AD

Theorem (Erdős and Spencer 1989)

 $F(k) \ge 2^{(ck^2)/\log k}$ for some absolute constant c > 0.

Question

$$F(k) \ge 2^{ck^2}$$
 for some absolute constant $c > 0$?

Theorem (B.E.N.T.W 2017)

 $F(k) \geq 2^{(2^{k-1})/k}$

・ロト ・回ト ・ヨト ・ヨト

Given any k-set $A \subseteq \mathbb{N}$,

$$\frac{k(k+1)}{2} \le |S(A)| \le 2^k - 1.$$

For example, if $A = \{1, ..., k\}$ then $|S(A)| = \frac{k(k+1)}{2}$. If $A = \{2^1, ..., 2^k\}$ then $|S(A)| = 2^k - 1$.

• If colouring in a 'random-like' way, want to deal with A s.t. S(A) is 'large'.

回 と く ヨ と く ヨ と

Theorem (B.E.N.T.W 2017)

 $F(k) \geq 2^{(2^{k-1})/k}$

Proof of theorem:

• Let
$$n := \lfloor 2^{(2^{k-1})/k} \rfloor$$

- 2-colour [*n*] s.t.:
 - (1) Randomly red/blue colour the odds
 - (2) Extend to a 2-colouring for [n] s.t. the colour of x different to 2x for all x.
- e.g. 3 red, 6 blue, 12 red...
 - Fix $A \subseteq [n]$ of size k with $S(A) \subseteq [n]$.

向下 イヨト イヨト

Claim

$$\mathbb{P}(S(A) \text{ monochromatic}) \leq 2^{1-2^{k-1}}$$

Proof:

Case 1:
$$|S(A)| \le 2^k - 2$$

$$\implies \exists B_1 \neq B_2 \subseteq A \text{ s.t. } \sum_{x \in B_1} x = \sum_{x \in B_2} x$$

$$\implies$$
 May assume $B_1 \cap B_2 = \emptyset$

$$\implies \exists 2 \text{ elements } y \text{ and } 2y \text{ in } S(A)$$

 \implies S(A) **not** monochromatic,

i.e.
$$\mathbb{P}(S(A) \text{ monochromatic}) = 0$$

< □ > < □ > < □ > < □ > < □ > .

Э

The proof

Case 2: $|S(A)| = 2^k - 1$

- \forall odd $m \in \mathbb{N}$, let $G_m := \{m, 2m, 4m, \dots\} \cap [n]$ • Note [n]
- Note $[n] = G_1 \cup G_3 \cup G_5 \cup \ldots$

Subclaim: S(A) intersects $\geq 2^{k-1}$ of the G_m To prove subclaim, first suppose there is an **odd** $r \in A$. Then

$$|S(A \setminus \{r\})| = 2^{k-1} - 1$$

Further, $\forall x \in S(A \setminus \{r\})$,

either x odd or x + r odd

So at least $(2^{k-1}-1)+1=2^{k-1}$ odds in $S(A) \implies$ subclaim.

소리가 소문가 소문가 소문가

The proof

Case 2: $|S(A)| = 2^k - 1$

- \forall odd $m \in \mathbb{N}$, let $G_m := \{m, 2m, 4m, \dots\} \cap [n]$
- Note $[n] = G_1 \cup G_3 \cup G_5 \cup \ldots$

Subclaim: S(A) intersects $\geq 2^{k-1}$ of the G_m To prove subclaim, first suppose there is an **odd** $r \in A$. Then

$$|S(A \setminus \{r\})| = 2^{k-1} - 1$$

Further, $\forall x \in S(A \setminus \{r\})$,

either x odd or x + r odd

So at least $(2^{k-1}-1)+1=2^{k-1}$ odds in $S(A) \implies$ subclaim.

伺 とう ヨン うちょう

The proof

Case 2: $|S(A)| = 2^k - 1$

- \forall odd $m \in \mathbb{N}$, let $G_m := \{m, 2m, 4m, \dots\} \cap [n]$ • Note $[n] = C \cup \cup C \cup \cup$
- Note $[n] = G_1 \cup G_3 \cup G_5 \cup \ldots$

Subclaim: S(A) intersects $\geq 2^{k-1}$ of the G_m

• For each $x \in G_m$, colour of x independent of colour of $y \in G_{m^*}$ for $m \neq m^*$.

So

$$\mathbb{P}(\mathcal{S}(\mathcal{A}) ext{ is monochromatic}) \leq \left(rac{1}{2}
ight)^{2^{k-1}} imes 2 = 2^{1-2^{k-1}}$$

向下 イヨト イヨ

Claim

$$\mathbb{P}(\mathcal{S}(\mathcal{A}) \ \textit{monochromatic}) \leq 2^{1-2^{k-1}}$$

Define

$$X := \#$$
 sets s.t. $|A| = k$ and $S(A)$ monochromatic

$$\mathbb{E}(X) \le \binom{n}{k} 2^{1-2^{k-1}} < 1$$

 \implies \exists a 2-colouring of [*n*] where X = 0.

So

$$F(k) \ge n = \lfloor 2^{(2^{k-1})/k} \rfloor$$

・ロン ・回 と ・ ヨン ・ ヨン

æ

Claim

$$\mathbb{P}(\mathcal{S}(\mathcal{A}) \ \textit{monochromatic}) \leq 2^{1-2^{k-1}}$$

Define

$$X := \#$$
 sets s.t. $|A| = k$ and $S(A)$ monochromatic

$$\mathbb{E}(X) \leq \binom{n}{k} 2^{1-2^{k-1}} < 1$$

 \implies \exists a 2-colouring of [*n*] where X = 0.

So

$$F(k) \geq n = \lfloor 2^{(2^{k-1})/k} \rfloor$$

イロト イヨト イヨト イヨト