An improved lower bound for Folkman's theorem

Background

Theorem (Schur 1916)

$\forall r \in \mathbb{N} \exists n \in \mathbb{N}$ s.t. whenever $[n]:=\{1, \ldots, n\}$ is r-coloured
\Longrightarrow monochromatic solution to $x+y=z$.
Given finite $A \subseteq \mathbb{N}$,

Background

Theorem (Schur 1916)

$\forall r \in \mathbb{N} \exists n \in \mathbb{N}$ s.t. whenever $[n]:=\{1, \ldots, n\}$ is r-coloured
\Longrightarrow monochromatic solution to $x+y=z$.
Given finite $A \subseteq \mathbb{N}$,

$$
S(A):=\left\{\sum_{x \in B} x: B \subseteq A, B \neq \emptyset\right\}
$$

Theorem (Folkman 1960s)

$\forall r, k \in \mathbb{N} \exists n=F(k, r)$ s.t. whenever $[n]$ is r-coloured $\Longrightarrow \exists a$ set $A \subset[n]$ s.t.

- $|A|=k$;
- $S(A) \subseteq[n]$ is monochromatic

Upper bound to Folkman's theorem

Theorem (Folkman 1960s)

$\forall r, k \in \mathbb{N} \exists n=F(k, r)$ s.t. whenever $[n]$ is r-coloured $\Longrightarrow \exists a$ set $A \subset[n]$ s.t.

- $|A|=k$;
- $S(A) \subseteq[n]$ is monochromatic

Set

$$
F(k):=F(k, 2) .
$$

Theorem (Taylor 1980)

3
$F(k) \leq k^{3^{k^{*}}} \quad$ (height $2 k$)

Lower bounds for Folkman's theorem

> Theorem (Erdős and Spencer 1989)
> $F(k) \geq 2^{\left(c k^{2}\right) / \log k}$ for some absolute constant $c>0$.

Question

$F(k) \geq 2^{c k^{2}}$ for some absolute constant $c>0$?

Theorem (B.E.N.T.W 2017)

Lower bounds for Folkman's theorem

Theorem (Erdős and Spencer 1989)

$F(k) \geq 2^{\left(c k^{2}\right) / \log k}$ for some absolute constant $c>0$.

Question

$F(k) \geq 2^{c k^{2}}$ for some absolute constant $c>0$?

> Theorem (B.E.N.T.W 2017)
> $F(k) \geq 2^{\left(2^{k-1}\right) / k}$

Proof idea

Given any k-set $A \subseteq \mathbb{N}$,

$$
\frac{k(k+1)}{2} \leq|S(A)| \leq 2^{k}-1
$$

For example, if $A=\{1, \ldots, k\}$ then $|S(A)|=\frac{k(k+1)}{2}$.
If $A=\left\{2^{1}, \ldots, 2^{k}\right\}$ then $|S(A)|=2^{k}-1$.

- If colouring in a 'random-like' way, want to deal with A s.t. $S(A)$ is 'large'.

The proof

Theorem (B.E.N.T.W 2017)

$F(k) \geq 2^{\left(2^{k-1}\right) / k}$
Proof of theorem:

- Let $n:=\left\lfloor 2^{\left(2^{k-1}\right) / k}\right\rfloor$
- 2-colour [n] s.t.:
(1) Randomly red/blue colour the odds
(2) Extend to a 2-colouring for [n] s.t. the colour of x different to $2 x$ for all x.
e.g. 3 red, 6 blue, 12 red...
- Fix $A \subseteq[n]$ of size k with $S(A) \subseteq[n]$.

The proof

Claim

$\mathbb{P}(S(A)$ monochromatic $) \leq 2^{1-2^{k-1}}$

Proof:

Case 1: $|S(A)| \leq 2^{k}-2$
$\Longrightarrow \exists B_{1} \neq B_{2} \subseteq A$ s.t. $\sum_{x \in B_{1}} x=\sum_{x \in B_{2}} x$
\Longrightarrow May assume $B_{1} \cap B_{2}=\emptyset$
$\Longrightarrow \exists 2$ elements y and $2 y$ in $S(A)$
$\Longrightarrow S(A)$ not monochromatic,
i.e. $\mathbb{P}(S(A)$ monochromatic $)=0$

Case 2: $|S(A)|=2^{k}-1$

- \forall odd $m \in \mathbb{N}$, let
$G_{m}:=\{m, 2 m, 4 m, \ldots\} \cap[n]$
- Note $[n]=G_{1} \cup G_{3} \cup G_{5} \cup \ldots$

Subclaim: $S(A)$ intersects $\geq 2^{k-1}$ of the G_{m}
To prove subclaim, first suppose there is an odd $r \in A$. Then

$$
|S(A \backslash\{r\})|=2^{k-1}-1
$$

Further, $\forall x \in S(A \backslash\{r\})$,

So at least $\left(2^{k-1}-1\right)+1=2^{k-1}$ odds in $S(A) \Longrightarrow$ subclaim.

The proof

Case 2: $|S(A)|=2^{k}-1$

- \forall odd $m \in \mathbb{N}$, let

$$
G_{m}:=\{m, 2 m, 4 m, \ldots\} \cap[n]
$$

- Note $[n]=G_{1} \cup G_{3} \cup G_{5} \cup \ldots$

Subclaim: $S(A)$ intersects $\geq 2^{k-1}$ of the G_{m}
To prove subclaim, first suppose there is an odd $r \in A$. Then

$$
|S(A \backslash\{r\})|=2^{k-1}-1
$$

Further, $\forall x \in S(A \backslash\{r\})$, either x odd or $x+r$ odd

So at least $\left(2^{k-1}-1\right)+1=2^{k-1}$ odds in $S(A) \Longrightarrow$ subclaim.

The proof

Case 2: $|S(A)|=2^{k}-1$

- \forall odd $m \in \mathbb{N}$, let

$$
G_{m}:=\{m, 2 m, 4 m, \ldots\} \cap[n]
$$

- Note $[n]=G_{1} \cup G_{3} \cup G_{5} \cup \ldots$

Subclaim: $S(A)$ intersects $\geq 2^{k-1}$ of the G_{m}

- For each $x \in G_{m}$, colour of x independent of colour of $y \in G_{m^{*}}$ for $m \neq m^{*}$.
- So

$$
\mathbb{P}(S(A) \text { is monochromatic }) \leq\left(\frac{1}{2}\right)^{2^{k-1}} \times 2=2^{1-2^{k-1}}
$$

Claim
$\mathbb{P}(S(A)$ monochromatic $) \leq 2^{1-2^{k-1}}$
Define

$$
X:=\# \text { sets s.t. }|A|=k \text { and } S(A) \text { monochromatic }
$$

$\Longrightarrow \exists$ a 2-colouring of $[n]$ where $X=0$.

$$
F(k) \geq n=\left\lfloor 2^{\left(2^{k-1}\right) / k}\right\rfloor
$$

The proof

Claim

$\mathbb{P}(S(A)$ monochromatic $) \leq 2^{1-2^{k-1}}$
Define

$$
X:=\# \text { sets s.t. }|A|=k \text { and } S(A) \text { monochromatic }
$$

$$
\mathbb{E}(X) \leq\binom{ n}{k} 2^{1-2^{k-1}}<1
$$

$\Longrightarrow \exists$ a 2-colouring of $[n]$ where $X=0$.
So

$$
F(k) \geq n=\left\lfloor 2^{\left(2^{k-1}\right) / k}\right\rfloor
$$

