The number of maximal sum-free subsets of integers

József Balogh, Hong Liu, Maryam Sharifzadeh, Andrew Treglown*
University of Birmingham

20th September 2014

Introduction

Definition

Denote $[n]:=\{1, \ldots, n\}$. A set $S \subseteq[n]$ is sum-free if $x+y \notin S$ for every $x, y \in S$ (x and y are not necessarily distinct).

Examples

- $\{4,5,8\}$ is not sum-free.
- Set of odds is sum-free.
- $\{n / 2+1, n / 2+2, \ldots, n\}$ is sum-free.

Last two examples show there are at least $2^{n / 2}$ sum-free subsets of [n].

Introduction

Cameron-Erdős Conjecture (1990)

The number of sum-free subsets of $[n]$ is $O\left(2^{n / 2}\right)$.

Green (2004), Sapozhenko (2003)

There are constants c_{e} and c_{o}, s.t. the number of sum-free subsets of $[n]$ is

$$
(1+o(1)) c_{e} 2^{n / 2}, \text { or }(1+o(1)) c_{o} 2^{n / 2}
$$

depending on the parity of n.

Introduction

- The previous result doesn't tell us anything about the distribution of the sum-free sets in [n].
- In particular, recall that $2^{n / 2}$ sum-free subsets of $[n]$ lie in a single maximal sum-free subset of $[n]$.

Cameron-Erdős Conjecture (1999)

There is an absolute constant $c>0$, s.t. the number of maximal sum-free subsets of $[n]$ is $O\left(2^{n / 2-c n}\right)$.

Lower bound construction

There are at least $2^{\lfloor n / 4\rfloor}$ maximal sum-free subsets of $[n]$.

- Suppose n is even. Let S consist of n together with precisely one number from each pair $\{x, n-x\}$ for odd $x<n / 2$.
- Notice distinct S lie in distinct maximal sum-free subsets of [n].
- Roughly $2^{n / 4}$ choices for S.

Main result

Denote by $f(n)$ the number of maximal sum-free subsets in [n]. Recall that $f(n) \geq 2^{\lfloor n / 4\rfloor}$.
Cameron-Erdős Conjecture (1999)

$$
\exists c>0, \quad f(n)=O\left(2^{n / 2-c n}\right)
$$

Łuczak-Schoen (2001)

$$
f(n) \leq 2^{n / 2-2^{-28} n} \text { for large } n
$$

Wolfovitz (2009)

$$
f(n) \leq 2^{3 n / 8+o(n)}
$$

Balogh-Liu-Sharifzadeh-T. (2014+)

$$
f(n)=2^{n / 4+o(n)} .
$$

Tools

From additive number theory:

- Container lemma of Green.
- Removal lemma of Green.
- Structure of sum-free sets by Deshouillers, Freiman, Sós and Temkin.

From extremal graph theory: upper bound on the number of maximal independent sets for

- all graphs by Moon and Moser.
- triangle-free graphs by Hujter and Tuza.
- Not too sparse and almost regular graphs.

Sketch of the proof

Container Lemma [Green]

There exists $\mathcal{F} \subseteq 2^{[n]}$, s.t.
(i) $|\mathcal{F}|=2^{o(n)}$;
(ii) $\forall S \subseteq[n]$ sum-free, $\exists F \in \mathcal{F}$, s.t. $S \subseteq F$;
(iii) $\forall F \in \mathcal{F},|F| \leq(1 / 2+o(1)) n$ and the number of Schur triples in F is $o\left(n^{2}\right)$.

Sketch of the proof

Container Lemma [Green]

There exists $\mathcal{F} \subseteq 2^{[n]}$, s.t.
(i) $|\mathcal{F}|=2^{o(n)}$;
(ii) $\forall S \subseteq[n]$ sum-free, $\exists F \in \mathcal{F}$, s.t. $S \subseteq F$;
(iii) $\forall F \in \mathcal{F},|F| \leq(1 / 2+o(1)) n$ and the number of Schur triples in F is $o\left(n^{2}\right)$.

By (i) and (ii), it suffices to show that for every container $A \in \mathcal{F}$,

$$
f(A) \leq 2^{n / 4+o(n)}
$$

Constructing maximal sum-free sets

Removal+Structural lemmas \Rightarrow classify containers $A \in \mathcal{F}$:

- Case 1: small container, $|A| \leq 0.45 n$;
- Case 2: 'interval' container, 'most' of A in $[n / 2+1, n]$.
- Case 3: 'odd' container, $|A \backslash O|=o(n)$.

Moreover, in all cases $A=B \cup C$ where B is sum-free and $|C|=o(n)$.

Constructing maximal sum-free sets

Removal+Structural lemmas \Rightarrow classify containers $A \in \mathcal{F}$:

- Case 1: small container, $|A| \leq 0.45 n$;
- Case 2: 'interval' container, 'most' of A in $[n / 2+1, n]$.
- Case 3: 'odd' container, $|A \backslash O|=o(n)$.

Moreover, in all cases $A=B \cup C$ where B is sum-free and $|C|=o(n)$.

Crucial observation

Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C;
(2) Extend S in B to a maximal one.

maximal sum-free sets \Rightarrow maximal independent sets

Definition

Given $S, B \subseteq[n]$, the link graph of S on B is $L_{S}[B]$, where $V=B$ and $x \sim y$ iff $\exists z \in S$ s.t. $\{x, y, z\}$ is a Schur triple.
$L_{2}[1,3,4,5]$

maximal sum-free sets \Rightarrow maximal independent sets

Definition

Given $S, B \subseteq[n]$, the link graph of S on B is $L_{S}[B]$, where $V=B$ and $x \sim y$ iff $\exists z \in S$ s.t. $\{x, y, z\}$ is a Schur triple.

Lemma

Given $S, B \subseteq[n]$ sum-free and $I \subseteq B$, if $S \cup I$ is a maximal sum-free subset of $[n]$, then I is a maximal independent set in $L_{S}[B]$.

Case 1: small container, $|A| \leq 0.45 n$.

Recall $A=B \cup C, B$ sum-free, $|C|=o(n)$.
Crucial observation
Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C;
(2) Extend S in B to a maximal one.

Case 1: small container, $|A| \leq 0.45 n$.

Recall $A=B \cup C, B$ sum-free, $|C|=o(n)$.

Crucial observation

Every maximal sum-free subset in A can be built in two steps:
(1) Choose a sum-free set S in C;
(2) Extend S in B to a maximal one.

- Fix a sum-free $S \subseteq C$ (at most $2^{|C|}=2^{o(n)}$ choices).
- Consider link graph $L_{S}[B]$.
- Moon-Moser: \forall graphs $G, \operatorname{MIS}(G) \leq 3^{|G| / 3}$.
- So \# extensions in (2) is exactly $\operatorname{MIS}\left(L_{S}[B]\right)$,

$$
\operatorname{MIS}\left(L_{S}[B]\right) \leq 3^{|B| / 3} \leq 3^{0.45 n / 3} \ll 2^{0.249 n}
$$

- In total, A contains at most $2^{o(n)} \times 2^{0.249 n} \ll 2^{n / 4}$ maximal sum-free sets.

Cases 2 and 3.

- Now container A could be bigger than $0.45 n$.
- This means crude Moon-Moser bound doesn't give accurate bound on $f(A)$.
- Instead we obtain more structural information about the link graphs.

Cases 2 and 3.

- Now container A could be bigger than $0.45 n$.
- This means crude Moon-Moser bound doesn't give accurate bound on $f(A)$.
- Instead we obtain more structural information about the link graphs.
- For example, when A 'close' to interval $[n / 2+1, n]$ link graphs are triangle-free
- Hujta-Tuza: $\operatorname{MIS}(G) \leq 2^{|G| / 2}$ for all triangle-free graphs G.
- Gives better bound on $f(A)$.

Thank you!

